8,469 research outputs found

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    Characterization and Efficient Search of Non-Elementary Trapping Sets of LDPC Codes with Applications to Stopping Sets

    Full text link
    In this paper, we propose a characterization for non-elementary trapping sets (NETSs) of low-density parity-check (LDPC) codes. The characterization is based on viewing a NETS as a hierarchy of embedded graphs starting from an ETS. The characterization corresponds to an efficient search algorithm that under certain conditions is exhaustive. As an application of the proposed characterization/search, we obtain lower and upper bounds on the stopping distance smins_{min} of LDPC codes. We examine a large number of regular and irregular LDPC codes, and demonstrate the efficiency and versatility of our technique in finding lower and upper bounds on, and in many cases the exact value of, smins_{min}. Finding smins_{min}, or establishing search-based lower or upper bounds, for many of the examined codes are out of the reach of any existing algorithm

    Note on the upper bound of the rainbow index of a graph

    Full text link
    A path in an edge-colored graph GG, where adjacent edges may be colored the same, is a rainbow path if every two edges of it receive distinct colors. The rainbow connection number of a connected graph GG, denoted by rc(G)rc(G), is the minimum number of colors that are needed to color the edges of GG such that there exists a rainbow path connecting every two vertices of GG. Similarly, a tree in GG is a rainbow~tree if no two edges of it receive the same color. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow tree connecting SS for each kk-subset SS of V(G)V(G) is called the kk-rainbow index of GG, denoted by rxk(G)rx_k(G), where kk is an integer such that 2kn2\leq k\leq n. Chakraborty et al. got the following result: For every ϵ>0\epsilon> 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connection, where the bound depends only on ϵ\epsilon. Krivelevich and Yuster proved that if GG has nn vertices and the minimum degree δ(G)\delta(G) then rc(G)<20n/δ(G)rc(G)<20n/\delta(G). This bound was later improved to 3n/(δ(G)+1)+33n/(\delta(G)+1)+3 by Chandran et al. Since rc(G)=rx2(G)rc(G)=rx_2(G), a natural problem arises: for a general kk determining the true behavior of rxk(G)rx_k(G) as a function of the minimum degree δ(G)\delta(G). In this paper, we give upper bounds of rxk(G)rx_k(G) in terms of the minimum degree δ(G)\delta(G) in different ways, namely, via Szemer\'{e}di's Regularity Lemma, connected 22-step dominating sets, connected (k1)(k-1)-dominating sets and kk-dominating sets of GG.Comment: 12 pages. arXiv admin note: text overlap with arXiv:0902.1255 by other author

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    A Breezing Proof of the KMW Bound

    Full text link
    In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with nn nodes and maximum degree Δ\Delta on which Ω(min{logn/loglogn,logΔ/loglogΔ})\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\}) (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 1515 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple\mathit{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.Comment: 21 pages, 6 figure

    The (a,b,s,t)-diameter of graphs: a particular case of conditional diameter

    Get PDF
    The conditional diameter of a connected graph Γ=(V,E)\Gamma=(V,E) is defined as follows: given a property P{\cal P} of a pair (Γ1,Γ2)(\Gamma_1, \Gamma_2) of subgraphs of Γ\Gamma, the so-called \emph{conditional diameter} or P{\cal P}-{\em diameter} measures the maximum distance among subgraphs satisfying P{\cal P}. That is, DP(Γ):=maxΓ1,Γ2Γ{(Γ1,Γ2):Γ1,Γ2satisfyP}. D_{{\cal P}}(\Gamma):=\max_{\Gamma_1, \Gamma_2\subset \Gamma} \{\partial(\Gamma_1, \Gamma_2): \Gamma_1, \Gamma_2 \quad {\rm satisfy }\quad {\cal P}\}. In this paper we consider the conditional diameter in which P{\cal P} requires that δ(u)α\delta(u)\ge \alpha for all uV(Γ1) u\in V(\Gamma_1), δ(v)β\delta(v)\ge \beta for all vV(Γ2)v\in V(\Gamma_2), V(Γ1)s| V(\Gamma_1)| \ge s and V(Γ2)t| V(\Gamma_2)| \ge t for some integers 1s,tV1\le s,t\le |V| and δα,βΔ\delta \le \alpha, \beta \le \Delta, where δ(x)\delta(x) denotes the degree of a vertex xx of Γ\Gamma, δ\delta denotes the minimum degree and Δ\Delta the maximum degree of Γ\Gamma. The conditional diameter obtained is called (α,β,s,t)(\alpha ,\beta, s,t)-\emph{diameter}. We obtain upper bounds on the (α,β,s,t)(\alpha ,\beta, s,t)-diameter by using the kk-alternating polynomials on the mesh of eigenvalues of an associated weighted graph. The method provides also bounds for other parameters such as vertex separators
    corecore