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Abstract

The conditional diameter of a connected graph �=(V , E) is defined as follows: given a propertyP of a pair (�1, �2) of subgraphs
of �, the so-called conditional diameter or P-diameter measures the maximum distance among subgraphs satisfying P. That is,

DP(�) := max
�1,�2⊂�

{�(�1,�2) : �1,�2 satisfy P}.

In this paper we consider the conditional diameter in which P requires that �(u)�� for all u ∈ V (�1), �(v)�� for all v ∈ V (�2),
|V (�1)|�s and |V (�2)|� t for some integers 1�s, t � |V | and ���, ���, where �(x) denotes the degree of a vertex x of �, �
denotes the minimum degree and � the maximum degree of �. The conditional diameter obtained is called (�, �, s, t)-diameter. We
obtain upper bounds on the (�, �, s, t)-diameter by using the k-alternating polynomials on the mesh of eigenvalues of an associated
weighted graph. The method provides also bounds for other parameters such as vertex separators.
© 2006 Elsevier B.V. All rights reserved.

MSC: 05C50; 05C12; 15A18

Keywords: Alternating polynomials; Adjacency matrix; Diameter; Cutsets; Conditional diameter; Graph eigenvalues

1. Introduction

In this paper all graphs � = (V , E) will be finite, undirected, simple and connected. The order of �, |V (�)|, will be
denoted by n, and the size, |E(�)|, will be denoted by m. The degree of a vertex vi ∈ V (�) will be denoted by �(vi)

(or by �i for short), the minimum degree of � will be denoted by � and the maximum by �. Moreover, the minimum
degree of a vertex subset U ⊆ V (�) will be denoted by �(U)

�(U) := min
u∈U

{�(u)}.

We recall that the distance �(u, v) between two vertices u and v is the minimum of the lengths of paths between u and
v and the distance �(U, W) between two sets of vertices U , W ⊆ V (�) is defined as

�(U, W) := min
u∈U,v∈W

{�(u, v)}.
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The conditional diameter of a graph was defined in [1] as follows: given a property P of a pair (�1, �2) of subgraphs
of �, the so-called conditional diameter or P-diameter measures the maximum distance among subgraphs satisfying
P. That is,

DP(�) := max
�1,�2⊂�

{�(V (�1), V (�2)) : �1, �2 satisfy P}.

The study of conditional diameter is of interest, for instance, in the design of interconnection networks when we need
to minimize the communication delays between the clusters represented by such subgraphs. A direct application of
conditional diameter to the study of the superconnectivity of interconnection networks is given in [1–3].

If P is the property of �i , i = 1, 2, being trivial (that is, isolated vertices) the conditional diameter DP(�)

coincides with the standard diameter D(�). Moreover, if P requires that |V (�1)| = s and |V (�2)| = t for some
integers 1�s, t � |V (�)|, the conditional diameter obtained is called (s, t)-diameter and denoted by D(s,t)(�). This
conditional diameter was bounded by Fiol et al. [6] by using the eigenvalues of the standard adjacency matrix.

In this paper we consider the case in which P requires that �(V (�1))��, �(V (�2))��, |V (�1)|�s and |V (�2)|� t

for some integers 1�s, t � |V (�)| and ���, ���. The conditional diameter obtained is called (�, �, s, t)-diameter

and will be denoted by D
(�,�)

(s,t) (�). In particular, the (�, �)-degree diameter is defined by

D(�,�)(�) := D
(�,�)

(1,1) (�) = max
u,v∈V

{�(u, v) : �(u)��, �(v)��}.

In this paper we obtain tight bounds on the (�, �, s, t)-diameter by using the k-alternating polynomials on the mesh
of eigenvalues of a suitable adjacency matrix that we call degree-adjacency matrix. The method provides also bounds
for other parameters such as vertex separators.

2. Degree-adjacency matrix

We define the degree-adjacency matrix of a graph � of order n as the n × n matrix A whose (i, j )-entry is

aij =
⎧⎨
⎩

1√
�i�j

if vi ∼ vj ,

0 otherwise.

The matrix A can be regarded as the adjacency matrix of a weighted graph in which the edge-weight of the edge
vivj is equal to 1/

√
�i�j , thus justifying the terminology used. The degree-adjacency matrix is the adjacency matrix

derived from the Laplacian matrix used systematically by Chung [4].
In the case of � = (

√
�1,

√
�2, . . . ,

√
�n) we have A� = �. Thus, � = 1 is an eigenvalue of A and � is an eigenvector

associated to �. Hence, as A is non-negative and irreducible in the case of connected graphs, by the Perron–Frobenius
theorem, � = 1 is a simple eigenvalue and � = 1� |�j | for every eigenvalue �j of A. Hereafter, the eigenvalues of A
will be called degree-adjacency eigenvalues of �.

It is well known that there are non-isomorphic graphs that have the same standard adjacency eigenvalues with the
same multiplicities (the so-called cospectral graphs). For instance, two connected graphs, both having the characteristic
polynomial P(x) = x6 − 7x4 − 4x3 + 7x2 + 4x − 1, are shown in Fig. 1. So, in such cases, the spectral study does
not allow to obtain structural properties that differentiate both graphs. Therefore, we can try to study cospectral graphs
by using an alternative matrix, for instance, the degree-adjacency matrix A. If we consider the matrix A, as one
might expect, the eigenvalues of both graphs are different: the left-hand side graph has degree-adjacency eigenvalues
1, ± 1

2 and − 1
4 (1 ± √

2.6) (where the eigenvalue − 1
2 has multiplicity 2), on the other hand, the right-hand side graph

has degree-adjacency eigenvalues 1, −1 ± √
2/3, ±√

3/3 and − 1
3 . Even so, the degree-adjacency eigenvalues do not

determine the graph. That is, there are non-isomorphic graphs (and non-cospectral) that are cospectral with regard to
the degree-adjacency matrix. For instance, the degree-adjacency eigenvalues of the cycle graph C4 and the semi-regular
bipartite graph K1,3 are the same: 1, 0, 0, −1. However, the standard eigenvalues are 2, 0, 0, −2, in the case of C4, and√

3, 0, 0, −√
3 in the case of K1,3.

We identify the degree-adjacency matrix A with an endomorphism of the “vertex-space” of �, l2(V (�)) which, for
any given indexing of the vertices, is isomorphic to Rn. Thus, for any vertex vi ∈ V (�), ei will denote the corresponding
unit vector of the canonical base of Rn.
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Fig. 1. Two cospectral graphs but not cospectral with regard to A.

If for two vertices vi , vj ∈ V (�) we have �(vi, vj ) > k then (Ak(�))ij = 0. Thus, for a real polynomial P of degree
k, we have

�(vi, vj ) > k ⇒ P(A(�))ij = 0. (1)

Through this fact we will study the (�, �, s, t)-diameter of � by using the degree-adjacency matrix (or its eigenvalues)
and the k-alternating polynomials.

Another application of the degree-adjacency matrix can be found in [8] where spectral-like bounds on the higher
Randić index R2(�) are given.

3. Alternating polynomials

The k-alternating polynomials, defined and studied in [5] by Fiol et al., can be defined as follows: let M =
{�1 > · · · > �b} be a mesh of real numbers. For any k = 0, 1, . . . , b − 1 let Pk denote the k-alternating polynomial
associated to M. That is, the polynomial of Rk[x] such that

Pk(�) = sup
P∈Rk[x]

{P(�) : ‖P ‖∞ �1},

where � is any real number greater than �1 and ‖P ‖∞ = max1� i �b {|P(�i )|}. We collect here some of its main
properties, referring the reader to [5] for a more detailed study:

• For any k = 0, 1, . . . , b − 1 there is a unique Pk which, moreover, is independent of the value of �(> �1);
• Pk has degree k;
• P0(�) = 1 < P1(�) < · · · < Pb−1(�);
• Pk takes k + 1 alternating values ±1 at the mesh points;
• there are explicit formulae for P0(=1), P1, P2, and Pb−1, while the other polynomials can be computed by solving

a linear programming problem (for instance by the simplex method).

Hereafter, the different eigenvalues of A will be denoted by �0 = 1, �1, . . . , �b with �0 = 1 > �1 > · · · > �b.

Proposition 1. Let � be a simple and connected graph. Let Pk be the k-alternating polynomial associated to the mesh
M={�1 > · · · > �b} of degree-adjacency eigenvalues of �. Let � be an eigenvector belonging to the eigenvalue �0 = 1.
If z ∈ �⊥ then ‖Pk(A(�))z‖�‖Pk‖∞‖z‖.

Proof. Using the following decomposition of the vector z:

z =
b∑

l=1

zl where zl ∈ Ker(A − �lI)
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we obtain

‖Pk(A)z‖2 =
∥∥∥∥∥Pk(A)

b∑
l=1

zl

∥∥∥∥∥
2

=
∥∥∥∥∥

b∑
l=1

Pk(�l )zl

∥∥∥∥∥
2

=
b∑

l=1

(Pk(�l ))
2‖zl‖2 �‖Pk‖2∞

b∑
l=1

‖zl‖2 = ‖Pk‖2∞‖z‖2.

Hence, the result follows. �

Recently, the k-alternating polynomials have been successfully applied to the study of several parameter related to
the concept of distance in graphs and hypergraphs. For instance, we cite [5–7,9–11]. We emphasize the following result
on the (s, t)-diameter [6]

Pk(�) >

√(‖v‖2

s
− 1

)(‖v‖2

t
− 1

)
⇒ D(s,t)(�)�k, (2)

where Pk denotes the k-alternating polynomials on the mesh of eigenvalues of the standard adjacency matrix of �, �
denotes the largest eigenvalue of �, and v the eigenvector associated to � with minimum component 1. In the case of
regular graphs, as v = j , the all-1 vector, the result (2) simplifies to

Pk(�) >

√(n

s
− 1

) (n

t
− 1

)
⇒ D(s,t)(�)�k, (3)

where n = |V (�)|.

4. Bounding the (�, �, s, t)-diameter

Lemma 2. Let � be a simple and connected graph of size m. Let Pk be the k-alternating polynomial associated to the
mesh M={�1 > · · · > �b} of degree-adjacency eigenvalues of �. Let S ={vi1 , vi2 , . . . , vis } and T ={vj1 , vj2 , . . . , vjt }
be two sets of vertices of �, and let 	s = (∑s

l=1

√
�(vil )

)2
, 	t = (∑t

r=1

√
�(vjr )

)2
. Then,

Pk(1) >

√(
2ms

	s

− 1

)(
2mt

	t

− 1

)
⇒ �(S, T )�k.

Proof. Let 
 = ∑s
l=1 eil and � = ∑t

r=1 ejr be the vectors of Rn associated to the sets S and T. Using the following
decomposition:


 = 〈
, �〉
‖�‖2 � + u =

√
	s

2m
� + u, � = 〈�, �〉

‖�‖2 � + w =
√

	t

2m
� + w, (4)

where � = (
√

�1,
√

�2, . . . ,
√

�n) and u, w ∈ �⊥, we obtain

�(S, T ) > k ⇒ 〈Pk(A)
, �〉 = 0

⇒ Pk(1)

√
	s	t

2m
= −〈Pk(A)u, w〉.

Thus, by the Cauchy–Schwarz inequality we have

�(S, T ) > k ⇒ Pk(1)

√
	s	t

2m
�‖Pk(A)u‖‖w‖,

and by Proposition 1 we obtain

�(S, T ) > k ⇒ Pk(1)

√
	s	t

2m
�‖Pk‖∞‖u‖‖w‖. (5)
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Moreover, the decomposition (4) leads to

s = ‖
‖2 = 	s

2m
+ ‖u‖2 ⇒ ‖u‖ =

√
s − 	s

2m

and

t = ‖�‖2 = 	t

2m
+ ‖w‖2 ⇒ ‖w‖ =

√
t − 	t

2m
.

So, by (5), we obtain

�(S, T ) > k ⇒ Pk(1)
√

	s	t �
√

(2ms − 	s)(2mt − 	t ). (6)

The converse of (6) leads to the result. �

Theorem 3. Let � be a simple and connected graph of size m. Let Pk be the k-alternating polynomial associated to
the mesh M = {�1 > · · · > �b} of degree-adjacency eigenvalues of �. Then,

Pk(1) >

√(
2m

s�
− 1

)(
2m

t�
− 1

)
⇒ D

(�,�)

(s,t) ��k. (7)

Proof. Consider S, T ⊂ V (�) such that |S|�s, �(S)��, |T |� t and �(T )��. Then we have

	s =
(∑

u∈S

√
�(u)

)2

�s2� and 	t =
(∑

v∈T

√
�(v)

)2

� t2�.

Hence,(
2m

s�
− 1

)(
2m

t�
− 1

)
�
(

2ms

	s

− 1

)(
2mt

	t

− 1

)
.

Therefore, by Lemma 2 the result follows. �

As we can see in the following examples, the above bound is attained for several values of the related parameters.

Example 4. The graph of Fig. 2 has degree-adjacency eigenvalues:{
1,

1 + √
19

6
, 0.5358 . . . , 0, 0, −1

3
, −1

3
, −0.3765 . . . ,

1 − √
19

6
, −0.8259 . . .

}

from which we obtain P4(1) = 3, 89, P5(1) = 12, 2 and P6(1) = 266, 5. Thus, the following bounds are attained:
D(�)=D

(2,2)
(1,1)(�)=D(2,2)(�)�6,D(2,3)

(1,1)(�)=D(2,3)(�)�5,D(2,3)
(1,2)(�)�5,D(3,3)

(2,2)(�)�4 andD
(2,2)
(3,3)(�)=D(3,3)(�)�4.

Fig. 2.
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Fig. 3.

Example 5. The graph of Fig. 3 has degree-adjacency eigenvalues:{
1,

−3 + √
249

24
,

1

4
, 0, −1

2
, −1

2
,
−3 − √

249

24

}

from which we obtain P1(1) = 1.7, P2(1) = 5, P3(1) = 15.2 and P4(1) = 58. Thus, the following bounds are attained:

D(1,2)(�)�3, D(3,4)(�)�2 and D(4,4)(�)�1.

As particular cases of above theorem we derive the following results in which the expression (7) is simplified.

Corollary 6. Let � = (V , E) be a simple and connected graph of order n and size m. Let Pk be the k-alternating
polynomial associated to the mesh M = {�1 > · · · > �b} of degree-adjacency eigenvalues of �. Then,

(a) Pk(1) > 2m/� − 1 ⇒ D(�,�)(�)�k.
(b) The standard diameter is bounded by Pk(1) > 2m/� − 1 ⇒ D(�)�k.
(c) If � is regular, the standard diameter is bounded by Pk(1) > n − 1 ⇒ D(�)�k.
(d) If � is an unicyclic graph, i.e., a connected graph containing exactly one cycle, the standard diameter is bounded

by Pk(1) > 2n − 1 ⇒ D(�)�k.
(e) If � is regular, the (s, t)-diameter is bounded by

Pk(1) >

√(n

s
− 1

) (n

t
− 1

)
⇒ D(s,t)(�)�k.

The bound (c) is an analogous result to the previous one given by Fiol et al. in [5] by using the standard adjacency
matrix. Moreover, bound (e) is an analogous result to (3).

4.1. Cutsets

Now we are going to give some other consequences of above study involving sets of vertices of equal cardinality
and cutsets.

Proposition 7. Let � = (V , E) be a simple and connected graph of size m. Let Pk be the k-alternating polynomial
associated to the mesh M = {�1 > · · · > �b} of degree-adjacency eigenvalues of �. Let S1, S2 ⊂ V (�) such that
|S1| = |S2| = s, �(S1, S2) > k and �(v)�� for all v ∈ S1 ∪ S2. Then

s�
⌊

2m

�(Pk(1) + 1)

⌋
· (8)

Proof. Taking � = � and s = t , the converse of (7) gives

�(S1, S2) > k ⇒ Pk(1)� 2m

s�
− 1.

Solving for s, and considering that it is an integer, we obtain the result. �
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Example 8. To show the tightness of above bound we consider again the graph of Fig. 2. For instance, taking
s =|S1|=|S2|, �(S1, S2) > 5 and �(v)�2 for all v ∈ S1 ∪S2, we obtain s�1. Moreover, as for this graph P3(1)=2, 33,
in the case of �(S1, S2) > 3 and �(v)�3 for all v ∈ S1 ∪ S2, we obtain s�2.

Note that, as in Proposition 7, if there are two sets S1, S2 ⊂ V (�) such that |S1|=|S2|=s, �(S1, S2) > k and �(v)��
for all v ∈ S1 ∪ S2, then

��
⌊

2m

s(Pk(1) + 1)

⌋
· (9)

In the case of regular graphs, Proposition 7 allows us to derive the following result.

Corollary 9. Let � be a regular graph of order n. Let S1, S2 ⊂ V (�) such that |S1|= |S2|= s and �(S1, S2) > k. Then

s�
⌊

n

Pk(1) + 1

⌋
. (10)

The above result is analogous to the previous one given by Yebra and the author in [11], for not necessarily regular
graphs, by using the standard Laplacian matrix. These result becomes the main tool to the study of cutsets in [9].

A k-vertex separator is a subset Tk ⊂ V (�) whose deletion separates V (�) into two sets of equal cardinality, that
are at distance greater than k. We denote by vsk(�) the minimum cardinality among all k-vertex separators, that is,

vsk(�) = min{|Tk| : Tk is a k-vertex separator of �}.
In [9] were obtained bounds on vsk(�) by using the k-alternating polynomials and the standard Laplacian spectrum.
Proposition 7 allows us to study a particular case of vertex separator: a (�, k)-vertex separator is a vertex set whose
deletion separates V (�) into two sets, U and W, of equal cardinality whose minimum vertex degree is �, such that
�(U, W) > k. We denote by vs(�,k)(�), the minimum cardinality among all (�, k)-vertex separators.

Corollary 10. Let � = (V , E) be a simple and connected graph of order n and size m. Let Pk be the k-alternating
polynomial associated to the mesh M = {�1 > · · · > �b} of degree-adjacency eigenvalues of �. Then

vs(�,k)(�)�n − 2

⌊
2m

�(Pk(1) + 1)

⌋
. (11)

5. Laplacian matrix

Now we consider the Laplacian matrix, L, defined by Chung as L = I − A, where I denotes the identity matrix.
We denote by �0 = 0 < �1 < · · · < �b the different eigenvalues of L. Thus, the eigenvalues of both matrices, L and

A, are related by

�l = 1 − �l , l = 0, 1, . . . , b.

Notice also that the eigenvalue �0 =0 has eigenvector �=(
√

�1, . . . ,
√

�n) and multiplicity one in the case of connected
graphs. Hence, both matrices, A and L, lead to equivalent spectral-like results. Particularly, the following theorem is
the analogous of Theorem 7. The proof is basically as before.

Theorem 11. Let � = (V , E) be a simple and connected graph of size m. Let Pk be the k-alternating polynomial
associated to the mesh M = {�1 < · · · < �b} of L = L(�). Then

Pk(0) >

√(
2m

s�
− 1

)(
2m

t�
− 1

)
⇒ D

(�,�)

(s,t) (�)�k.

We recall that if we use the standard adjacency matrix and the standard Laplacian matrix, the results are equivalent
only in the regular case. In this sense, a comparative study was done in [10].
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