13 research outputs found

    Distance labeling schemes for trees

    Get PDF
    We consider distance labeling schemes for trees: given a tree with nn nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et. al. (J. Alg. 2004) and an upper bound by Peleg (J. Graph Theory 2000) establish that labels must use Θ(log2n)\Theta(\log^2 n) bits\footnote{Throughout this paper we use log\log for log2\log_2.}. Gavoille et. al. (ESA 2001) show that for very small approximate stretch, labels use Θ(lognloglogn)\Theta(\log n \log \log n) bits. Several other papers investigate various variants such as, for example, small distances in trees (Alstrup et. al., SODA'03). We improve the known upper and lower bounds of exact distance labeling by showing that 14log2n\frac{1}{4} \log^2 n bits are needed and that 12log2n\frac{1}{2} \log^2 n bits are sufficient. We also give (1+ϵ1+\epsilon)-stretch labeling schemes using Θ(logn)\Theta(\log n) bits for constant ϵ>0\epsilon>0. (1+ϵ1+\epsilon)-stretch labeling schemes with polylogarithmic label size have previously been established for doubling dimension graphs by Talwar (STOC 2004). In addition, we present matching upper and lower bounds for distance labeling for caterpillars, showing that labels must have size 2lognΘ(loglogn)2\log n - \Theta(\log\log n). For simple paths with kk nodes and edge weights in [1,n][1,n], we show that labels must have size k1klogn+Θ(logk)\frac{k-1}{k}\log n+\Theta(\log k)

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    Informative labeling schemes for graphs

    Get PDF
    AbstractThis paper introduces the notion of informative labeling schemes for arbitrary graphs. Let f(W) be a function on subsets of vertices W. An f labeling scheme labels the vertices of a weighted graph G in such a way that f(W) can be inferred (or at least approximated) efficiently for any vertex subset W of G by merely inspecting the labels of the vertices of W, without having to use any additional information sources.A number of results illustrating this notion are presented in the paper. We begin by developing f labeling schemes for three functions f over the class of n-vertex trees. The first function, SepLevel, gives the separation level of any two vertices in the tree, namely, the depth of their least common ancestor. The second, LCA, provides the least common ancestor of any two vertices. The third, Center, yields the center of any three given vertices v1,v2,v3 in the tree, namely, the unique vertex z connected to them by three edge-disjoint paths. All of these three labeling schemes use O(log2n)-bit labels, which is shown to be asymptotically optimal.Our main results concern the function Steiner(W), defined for weighted graphs. For any vertex subset W in the weighted graph G, Steiner(W) represents the weight of the Steiner tree spanning the vertices of W in G. Considering the class of n-vertex trees with M-bit edge weights, it is shown that for this class there exists a Steiner labeling scheme using O((M+logn)logn) bit labels, which is asymptotically optimal. It is then shown that for the class of arbitrary n-vertex graphs with M-bit edge weights, there exists an approximate-Steiner labeling scheme, providing an estimate (up to a factor of O(logn)) for the Steiner weight Steiner(W) of a given set of vertices W, using O((M+logn)log2n) bit labels

    Distance Labeling Schemes for Cube-Free Median Graphs

    Get PDF
    Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently by merely inspecting the labels of u and v, without using any other information. One of the important problems is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance labeling scheme with labels of O(log^3 n) bits

    Labelings vs. Embeddings: On Distributed Representations of Distances

    Full text link
    We investigate for which metric spaces the performance of distance labeling and of \ell_\infty-embeddings differ, and how significant can this difference be. Recall that a distance labeling is a distributed representation of distances in a metric space (X,d)(X,d), where each point xXx\in X is assigned a succinct label, such that the distance between any two points x,yXx,y \in X can be approximated given only their labels. A highly structured special case is an embedding into \ell_\infty, where each point xXx\in X is assigned a vector f(x)f(x) such that f(x)f(y)\|f(x)-f(y)\|_\infty is approximately d(x,y)d(x,y). The performance of a distance labeling or an \ell_\infty-embedding is measured via its distortion and its label-size/dimension. We also study the analogous question for the prioritized versions of these two measures. Here, a priority order π=(x1,,xn)\pi=(x_1,\dots,x_n) of the point set XX is given, and higher-priority points should have shorter labels. Formally, a distance labeling has prioritized label-size α(.)\alpha(.) if every xjx_j has label size at most α(j)\alpha(j). Similarly, an embedding f:Xf: X \to \ell_\infty has prioritized dimension α(.)\alpha(.) if f(xj)f(x_j) is non-zero only in the first α(j)\alpha(j) coordinates. In addition, we compare these their prioritized measures to their classical (worst-case) versions. We answer these questions in several scenarios, uncovering a surprisingly diverse range of behaviors. First, in some cases labelings and embeddings have very similar worst-case performance, but in other cases there is a huge disparity. However in the prioritized setting, we most often find a strict separation between the performance of labelings and embeddings. And finally, when comparing the classical and prioritized settings, we find that the worst-case bound for label size often ``translates'' to a prioritized one, but also a surprising exception to this rule

    Shorter Labeling Schemes for Planar Graphs

    Get PDF
    An \emph{adjacency labeling scheme} for a given class of graphs is an algorithm that for every graph GG from the class, assigns bit strings (labels) to vertices of GG so that for any two vertices u,vu,v, whether uu and vv are adjacent can be determined by a fixed procedure that examines only their labels. It is known that planar graphs with nn vertices admit a labeling scheme with labels of bit length (2+o(1))logn(2+o(1))\log{n}. In this work we improve this bound by designing a labeling scheme with labels of bit length (43+o(1))logn(\frac{4}{3}+o(1))\log{n}. In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)n^{4/3+o(1)} vertices that contains all planar graphs on nn vertices as induced subgraphs, improving the previous best upper bound of n2+o(1)n^{2+o(1)}. Our scheme generalizes to graphs of bounded Euler genus with the same label length up to a second-order term. All the labels of the input graph can be computed in polynomial time, while adjacency can be decided from the labels in constant time
    corecore