provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

scuencE@DmEcT° Theoretical
Computer Science

=t e

LSEVIER Theoretical Computer Science 340 (2005) 577-593

www.elsevier.com/locate/tcs

Informative labeling schemes for graphs
David Peleg?

Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Rehovot, 76100 Israel

Abstract

This paper introduces the notion ioformative labeling schemder arbitrary graphs. Ley (W)
be a function on subsets of verticBs An f labeling scheméabels the vertices of a weighted graph
G in such away thaf (W) can be inferred (or at least approximated) efficiently for any vertex subset
W of G by merely inspecting the labels of the vertices/gfwithout having to use any additional
information sources.

A number of results illustrating this notion are presented in the paper. We begin by devdloping
labeling schemes for three functioinsver the class afi-vertex trees. The first functioSepLevel
gives theseparation levebf any two vertices in the tree, namely, the depth of their least common
ancestor. The secontdCA provides theleast common ancestaf any two vertices. The third,
Center , yields the center of any three given vertiegsvo, vz in the tree, namely, the unique vertex
zconnected to them by three edge-disjoint paths. All of these three labeling schemetogée Gbit
labels, which is shown to be asymptotically optimal.

Our main results concern the functiSieiner (W), defined for weighted graphs. For any vertex
subsetVin the weighted grapls, Steiner (W) represents the weight of the Steiner tree spanning
the vertices ofV in G. Considering the class ofvertex trees withV-bit edge weights, it is shown
that for this class there existsSieiner labeling scheme using @V + logn) logn) bit labels,
which is asymptotically optimal. It is then shown that for the class of arbitnargrtex graphs with
M-bit edge weights, there exists approximateSteiner labeling scheme, providing an estimate
(up to a factor of @ogn)) for the Steiner weighBteiner (W) of a given set of vertice®/, using
O((M + logn)log? n) bit labels.
© 2005 Elsevier B.V. All rights reserved.

*Tel.: +972 8934 3478.
E-mail addressdavid.peleg@weizmann.ac.il

1 Supported in part by grants from the Israel Science Foundation and the Israel Ministry of Science and Art.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.015

https://core.ac.uk/display/81122479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:david.peleg@weizmann.ac.il

578 D. Peleg / Theoretical Computer Science 340 (2005) 577-593
1. Introduction
1.1. Problem and motivation

Network representations have played an extensive and often crucial role in many domains
of computer science, ranging from data structures, graph algorithms and combinatorial
optimization to databases, distributed computing and communication networks. Research
on network representations concerns the development of various methods and structures for
cheaply storing useful information about the network and making it readily and conveniently
accessible. This is particularly significant when the network is large and geographically
dispersed, and information about its structure must be accessed from various local points
in it.

The current paper is dedicated to a somewhat neglected component of network represen-
tations, namely, thiabels(or namesoridentifierg assigned to the vertices of the network.

The issue of precisely how are vertex identifiers to be selected is often viewed as minor
or inconsequential. For instance, most traditiareitralizedapproaches to the problem of
network representation are based on storing adjacency information using some kind of a
data structure, e.g., an adjacency matrix. Such representation enables one to decide, given
the indices of two vertices, whether or not they are adjacent in the network, simply by look-
ing at the appropriate entry in the table. However, note that (a) this decision cannot be made
in the absence of the table, and (b) the indices themselves contain no useful information,
and they serve only as “place holders,” or pointers to entries in the table, which forms a
global representation of the network.

In contrast, the notion afdjacency labeling schemestroduced by Breuer and Folkman
in [2,1], involves using morenformativeandlocalizedlabeling schemes for networks. The
idea is to associate with each vertex a label selected in a such way, that will allow us to
infer the adjacency of two verticelirectly from their labels, without usingny additional
information sources. Hence in essence, this rather extreme approach to the network repre-
sentation problerdiscardsall other components, and bases the entire representation on the
set of labelsalone

Obviously, labels of unrestricted size can be used to encode any desired information.
Specifically, it is possible to encode the entire rioiw the adjacency matrix of the graph
in the label chosen for vertax|t is clear, however, that for such a labeling scheme to be
useful, it should strive to use relativedortlabels (say, of length polylogarithmic im),
and yet allow us to deduce adjacencies efficiently (say, within polylogarithmic time). The
feasibility of suchefficientadjacency labeling schemes was explored over a decade ago by
Kannan et al. in [4].

Interest in this natural idea was recently revived by the observation that in addition to
adjacencylabeling schemes, it may be possible to devise similar schemes for capturing
distanceinformation. This has led to the notion dfstance labeling schemeshich are
schemes possessing the ability to determine the distance between two vertices efficiently
(say, in polylogarithmic time again) given their labels. This notion was introduced in [9],
and studied further in [3,6].

The current paper is motivated by the naturally ensuing observation that the ability to
decide adjacency and distance aretiud of a numbeof basic properties a representation

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 579

may be required to possess, and that many other interesting properties may possibly be
representable via an appropriate labeling scheme.

In its broadest sense, this observation leads to the general question of developing label-
based network representations that will allow retrieving useful information alsbittary
functions or substructures in a graph ilmealizedmanner, i.e., using only the local pieces of
information available to, or associated with, the vertices under inspection, and not having to
search for additionalobalinformation. We term such representatiam®rmative labeling
schemes

To illustrate this idea, let us consider the classouited treesin addition to finding out
whether two given vertices andw are adjacent, or what is the distance between them,
one may be interested in many other pieces of information concerning these vertices. For
example, in some cases it may be useful to know i§ anancestor(or a descendant)
of w. It turns out that it is rather easy to encode the ancestry (or descendance) relation
in a tree using interval-based schemes [t0]). Another example for a useful piece of
non-numeric information is thkeast common ancestaf v andw. Moreover, the types
of localized information to be encoded by an informative labeling scheme are not limited
to binary relations. An example for information involvintpree verticesvy, v2 andvs is
finding theircenter namely, the unique vertexconnected to them by edge-disjoint paths.
More generally, for any subset of vertid@sin the tree, one may be interested in inferring
S(W), the weight of theiiSteiner tregnamely, the lightest tree spanning them), based on
their labels. The current paper demonstrates the feasibility of informative labeling schemes
by providing such schemes for all of the above types of information over the class of rooted
trees.

A natural question to ask at this point is whether efficieractinformative labeling
schemes can be developed &y graph family (including, in particular, the family @il
graphs). Unfortunately, the answer is negative. In [4] it is pointed out that for a family of
Q(exp(nlt%)) non-isomorphim-vertex graphs, foe > 0, any adjacency labeling scheme
must use labels whose total combined lengf®(s't¢), hence at least one label must be of
Q(»®) bits. In particular, any adjacency labeling scheme for the class ofiaitex graphs
requires labels of siz(n). The same observation carries over to other types of labeling
schemes.

This raises the next natural question, namely, could more efficient labeling schemes be
constructed if we abandon the requirement of captuexactinformation, and settle for
the less ambitious goal of obtainirgpproximateestimates. The last result presented in
this paper is an approximate scheme for the Steiner weight funstigf) over general
weighted graphs.

The relevance of distance labeling schemes in the context of communication networks
has been pointed out in [9], and illustrated by presenting an application of such labeling
schemes to distributed connection setup procedures in circuit-switched networks. Some
other problems where distance labeling schemes may be useful include memory-free rout-
ing schemes, bounded (“time-to-live”) broadcast protocols, topology update mechanisms,
etc.

It is plausible that other types of informative labeling schemes may also prove useful
for other applications. In particular, Steiner labeling schemes may be utilized as a basic
tool for optimizing multicast schedules and within mechanisms for the selection of subtrees

580 D. Peleg / Theoretical Computer Science 340 (2005) 577-593

for group communication via communication subtrees, and potentially even for certain
information representation problems on the web.

1.2. Related work

Adjacency labeling systems of general graphs based on Hamming distances were studied
by Breuer and Folkman if2,1]. Specifically, in [2] it is shown that it is possible to label the
vertices of every-vertex graph with 24-bit labels, such that two vertices are adjacent iff
their labels are at Hamming distancé 4 4 or less of each other, wheres the maximum
vertex degree in the graph.

An elegant labeling scheme is proposed in [4] for the class of trees usingn2bibg
labels. It is also shown in [4] how to extend that scheme, and constlad @ adjacency
labeling schemes for a number of other graph families, such as bounded arboricity graphs
(including, in particular, graphs of bounded degree or bounded genus, e.g., planar graphs),
various intersection-based graphs (including interval graphs)-aledomposable graphs.

It is clear that distance labeling schemes with short labels are easily derivable for highly
regular graph classes, such as rings, meshes, tori, hypercubes, and the like. Whether more
general graph classes can be labeled in this fashion is not as clear. It is shown in [9] that the
family of n-vertex weighted trees with-bit edge weights enjoys an(@ logn + log? n)
distance labeling scheme. This scheme is complemented by a matching lower bound givenin
[3], showing thaQQ(M logn + log? n) bit labels are necessary for this class. The approach
of [9] extends to handle also the classmflecomposable graphs for constapiwhich
includes the classes of series—parallel graphskematerplanar graphs, with= 2k. Also,
an approximate distance labeling scheme is given in [9] for the class of general weighted
graphs.

In [3] it is shown also than-vertex graphs with &separator support a distance labeling
with labels of size @ logn +log? »). This implies, in particular, that the family afvertex
planar graphs enjoys such a labeling scheme witly/ogn)-bit labels, and the family
of n-vertex graphs with bounded treewidth has a distance labeling scheme with labels of
size Qlog? n). Forn-vertex planar graphs, there exists also a lower bour@(et/3) on
the label size required for distance labeling, leaving an intriguing (polynomial) gap. More
recently, Qlog? n) distance labeling schemes fowertex interval and permutation graphs
were presented in [6].

1.3. Framework
Let us now formalize the notion of informative labeling schemes.

Definition 1.1. A vertex-labeling of the grapl® is a functionL assigning a label (1) to
each vertexi of G.

A labeling scheme is composed of two major components. The firshagkeralgorithm
M, which given a grapl, selects a label assignmeht= M(G) for G. The second
component is decoderlgorithmD, which given a set of labels = {L1, ..., Ly}, returns
avalueD(L). The time complexity of the decoder is required to be polynomial in its input
size.

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 581

Definition 1.2. Letf be a function defined on sets of vertices in a graph. Given a family
of weighted graphs, aif labeling scheméor G is a marker-decoder pafi ¢, Dy) with
the following property. Consider any graggh € G, and letL = M ((G) be the vertex
labeling assigned by the marké# » to G. Then for any set of vertice® = {vy, ..., v}

in G, the value returned by the decodey on the set of labeld (W) = {L(v) |v € W}

satisfiesD s (L(W)) = f(W).

It is important to note that the decod®r;, responsible for thé-computation, is inde-
pendent ofG or of the number of vertices in it. ThuB; can be viewed as a method for
computingf-values in a “distributed” fashion, given any set of labels and knowing that the
graph belongs to some specific famdy In particular, it must be possible to defifiz;
as a constant size algorithm. In contrast, the labels contain some information that can be
pre-computed by considering the whole graph structure.

Clearly, anf-decoder always exists for any graph family if arbitrarily large labels are
allowed. Our focus here is on the existencefdabeling schemes which assign labelings
with short labels.

For a labelingL for the graphG = (V, E), let|L(u)| denote the number of bits in the
(binary) stringL ().

Definition 1.3. Given a graplG and a marker algorithmM which assigns the labelirg
to G, denote

Lm(G) = me‘l/x |L(u)|.

For a finite graph familyg, set
Lm(G) =maXxLa(G)|G € G).
Finally, given a functionf and a finite graph family, let

L(f,G) =min{L\(G)|TID, (M,D)isanf labelling scheme fog}.

Labeling schemes providingpproximateinformation are defined in an analogous way to
Definition 1.2.

Definition 1.4. Let f be a function from sets of vertices in a graph to the integers. Given a
family G of weighted graphsR-approximatef labeling scheméor G is a marker-decoder
pair (M ¢, Dr) with the following property. Consider any grafgh € G, and letL =

M (G) be the vertex labeling assigned by the marker: to G. Then for any set of
verticesW = {v1, ..., v} in G, the value returned by the decodey on the set of labels

L(W) = {L(v)|v € W} satisfies

Dr(LW) < FW)KR-Dy(L(W)).

582 D. Peleg / Theoretical Computer Science 340 (2005) 577-593
1.4. Our results

This paper starts by introducing and studyjfitabeling schemes for three basic functions
on the class] of unweighted trees. For a graph family let G, denote the subfamily
containing then-vertex graphs of;.

First, we consider theeparation levelunctionSepLevel . The separation level of two
vertices in a rooted tree is defined as the depth of their least common ancestor (i.e., its
distance from the root of the tree). We show that this function is equivalent to the distance
function on the clas§™ of unweighted trees in terms of its labelability on trees, i.e., it
requires labels of siz®(log? n), or formally, £(SepLevel , 7,) = ©(log? n).

Next, we consider ahCA labeling scheme for trees, where= LCA(v, w) is theleast
common ancestasf any two verticew, w. Formally, we assume that each vertekas a
uniqueidentifier, denoted! (1), typically of size Glog n), and the functioh. CAmaps the
vertex pair(v, w) to the identifier (z). It is shown that for the class ofvertex trees, there
exists such a labeling scheme usin@a®? ») bit labels, and this is asymptotically optimal,

i.e., L(LCA T,) = ©(log? n).

Next, we turn to vertex triples, and consider tbenter function. The center of three
verticesvi, vz, v3 in a treeT is the unique vertex such that the three paths connecting
to v1, v2 andvz are edge-disjoint. Here, too, we show the existence of an (asymptotically
optimal) Center labeling scheme using @g? ») bit labels, i.e.,L(Center ,7,) =
O(log? n) as well.

We then turn tonveightedgraphs. For a graph famil§, let G, » denote the subfamily
containing then-vertex graphs off with M-bit edge weights. We consid&teiner la-
beling schemes for graphs. Given a sub¥eff vertices inG, aSteiner treel’s (W) for Wis
a minimum weight tree spanning all the verticeddfand perhaps some other vertices as
well) in G. TheSteiner weightf W, denotedSteiner (W), is the weight of the Steiner tree
Ts(W). Using theLCA labeling scheme, we show that tB&einer weight function has
an Q((M + logn) logn) size labeling scheme on the clagsy, of weightedn-vertex trees
with M-bit edge weights, and this is asymptotically optimal, i&Steiner , 7, ») =
®O(M + logn) logn).

Finally, we consider the class afbitrary weighted graph§. Note that distv1, v2, G) =
Steiner (W) forany pair of vertice$V = {v1, v2}. Hence anysteiner labeling scheme
can be used also as a distance labeling scheme. Subsequently, given the lower bound of
Ldist, G,) = O(n) established i3] for the class ounweighted rvertex graphgj,, an
exactSteiner labeling scheme for the class of arbitrary weighted graphg clearly
requires at leaf®2(M + n)-bit labels.

We therefore turn to labeling schemes providing approximate information, and show
that for the class of arbitrarg-vertex graphs withM-bit edge weights, there exists an
O(logn)-approximate Steiner labeling scheme using @ + logn)log? n) bit
labels.

This paper introduces the concept of informative labeling schemes, illustrates it through a
number of simple examples and presents a rather preliminary study of the properties of such
schemes. Many questions are left for further research. Informative labeling schemes for the
functions of flow and connectivity in graphs were subsequently studied in [5]. A cardinal
direction for future study is handling dynamically changing networks. This direction is

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 583

pursued in[7], where some initial results are established for restricted dynamic network
models.

2. SepLevel labeling schemes

We start with &SepLevel labeling scheme for trees. Consider a rooted Tresth root
ro. The depth of a vertex € T, denoted depity), is its distance digt, rg) from the root
ro. Two verticesv, w € T are said to haveeparation leveSepLevel (v, w) = ¢ if their
least common ancestarhas depth depth) = ¢. We now claim that for the clasg of
unweighted trees, distance labeling &epLevel labeling require the same label size up
to an additive logarithmié term.

Lemma 2.1. (1) L(SepLevel , T7,) < L(dist, 7,) + logn.
(2) Ldist, T,,) < (Seplevel |, T,) + logn.

Proof. Suppose thatwe are given a distance labeling schémegs., Dqist) for 7,,. Define

aSeplevel labeling scheméMseyrever; Dseprever) fOr 7, as follows. Given a treg, let

L be the labeling assigned byl,;s. for T. TheSepLevel -markerMgepieve1 augments
each labelL (v) into a labelL’(v) with an additional log bit field containingv’s depth,
depthv).

Consider two vertices, w with z = LCA(v, w). Let ¢, = dist(z, v), £, = dist(z, w)
and¢,, = dist(z, ro) = depth(z). Given the labeld’(v) = (L (v), depthv)) andL'(w) =
(L(w), depthw)), the fieldsL(v) and L(w) allow the SepLevel -decoderDs.pcyer tO
deduce the distance dist w) = ¢, + £,,, and the two additional fields provide it with
depth(v) = dist(v, ro) = ¢, +£,, and deptw) = dist(w, ro) = £,,+£,,. Combined, these
three equations alloWseprever t0 deduce depth) = £,,. Thus (Mseprever Psepirevel)
is a SepLevel labeling scheme, and the labels it uses are larger than those used by
(Maist, Daist) by logn.

For the opposite direction, suppose that we are giv&eplLevel labeling scheme
(Mseprever, Dseprever) fOr 7. Define a distance labeling scheryelqist, Daist) for 7, as
follows. Given a tred, letL be the labeling assigned bylsepiever for T. The dist-marker
M ist augments each lab&l(v) into a labelL’(v) in the same way. The proof now follows
along similar lines to the first part.[]

Based on the upper and lower bound§39] for distance labeling schemes for trees, we
get

Corollary 2.2. There exists &epLevel labeling scheme for the class of n-vertex trees
7, using labels 0O(log? n) bits, and anySepLevel labeling scheme fdf, requires some
labels ofQ(log? n) bits, i.e.,

L(SepLevel ,T,) = O(log® n).

2 For clarity of presentation we ignore rounding issues in stating our claims. For instance, here and in several
other places, log stands forilogn .

584 D. Peleg / Theoretical Computer Science 340 (2005) 577-593
3. LCAlabeling schemes

We now turn to developing anCA labeling scheme for trees, where= LCA(v, w) is
theleast common ancestof any two vertices, w. As mentioned earlier, this requires us
to assume that each vertexas a uniquéentifier, denoted (u), of size Qlogn), and the
functionLCAmaps the vertex paiw, w) to the identifierl (z).

3.1. Definitions

For every vertex in the tree, letl'(v) denote the subtree df rooted atv. For 0<i <
depth(v), denotev’s ancestor at levdl of the tree byy; (v). In particular,yg(v) = ro and

Vdeptf(v)(v) ="v.

Definition 3.1. Anonrootvertex with parentw is calledsmallif its subtree I (v), contains
at most half the number of vertices contained in its parents’ sulffriee). Otherwiseyp is
large. (The root is defined to be small.)

For every vertex, the “small ancestdrlevels of v are the levels above it in which its
ancestor is small,

SAL(v) = {i | 1<i<depthv), 7v;(v) is small,
thesmall ancestorsf v are

SAv) = {y;(v) |i € SALv)}
and their identifiers are

SAI(w) = {I(y;(v)) |i € SALw)}.
Fig. 1 depicts a vertex and its small ancestors.

Level
Yo¥)

w

S

o) :
Fig. 1. Bold circles mark the small ancestorsvtoHereSAL(v) = {2, 4, 5}. The number of vertices iff (w) is
displayed for every ancestar = y; (v) of v.

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 585
3.2. TheLCA-marker

The labels are constructed as follows. As a preprocessing step, assignagdoterval
Int(v) asinthe interval labeling schemd 0], in addition to its identifief (v). This scheme
is based on the following two steps. First, construdegth-firstnumbering of the tre@,
starting at the root, and assign each vertex T' a depth-first numbeDFS(«). Then, label
a vertexu by the intervalnt () = [DFS(u), DFS(w)], wherew is the last descendent of
visited by the DFS tour. The resulting interval labels are of side@:). What makes these
interval labels useful for our purposes is the fact that they enjoy the following important
property:

For every two vertices u and of the tree TInt(v) C Int(u) iff v is a descendent of
uinT.

Definition 3.2. For a vertexv and 1<i < depth(v), thei-triple of v consists of the identi-
fiers of its ancestors on levels- 1, i andi + 1,

Qi) = (i =1, I(y;_1()), (@, I(y; (), (i +1, 1(p;1(0)))).
In the second and main stage we do the following. For each ver@ssign the label
L) = (I(v), Int(v), {Q;(v)|1<i < depthv), i € SALW)}).

3.3. TheLCA-decoder

Let us now describe theCA-decoderD.¢, which, given two vertex labelé (v) and
L(w), infers the identified (z) of their least common ancestoe= LCA(v, w).

DecoderD;c,
. If Int(w) C Int(v) /* vis an ancestor ofv */
then return/ (v).
2. If Int(v) C Int(w) /* wis an ancestor ob */
then return/ (w).
3. /* wandv are unrelated/
Extract fromL(v) andL(w) the setsSAL(v), SAL(w), SAl(v) andSAl(w).
4. Leta be the highest level vertex BA(v) N SAw).

=

/* ais the least commosmallancestor ofv andw */

LetK be its level, i.e.q = yx (v) = yg (w).
IfI(pg 1) # (g 1(w)) then returnl (o).
6. /* yx41(v) = Y1 (w) is also a common (yet large) ancestowaindw */
Let i,=min{i € SALW)|i > K},
iw=min{i € SALw) |i > K},
7. If iy <iy, then extract (y; _1(v)) from thei,-triple Q;, (v).
Else extractl (y; _1(w)) from thei,-triple Q;, (w).
8. Return the extracted identifier.

o

586 D. Peleg / Theoretical Computer Science 340 (2005) 577-593

Level

(&) :

° depth(v)

o depth(w)

Fig. 2. The least common ancestoe= LCA(v, w) and its childrerx andy. Straight lines represent edges, and
winding lines represent paths.

3.4. Correctness proof

Let us now prove the correctness of the labeling scheme. It is immediate to observe that
if v is an ancestor ofv or vice versa, then Steps 1, 2 of the decobgg, correctly find
LCA(v, w). Hence hereafter we assume that neither of the above hold$,CA(y, w) is
neitherv nor w.

For the remainder of this section, dengte LCA(v, w), and letits level be = depth(z).

Let x be the child ofz on the path ta, and lety be the child ofz on the path tav (see
Fig. 2).

Lemma 3.3. SAv) N SAw) = SA®Z).

LetK anda = yx(v) = ygx(w) be the level number and vertex selected in Step 4 of
the algorithm. By the previous lemma, € SAz), so K <t and« is small, and hence
K € SAL®R).

Now observe that ik = 7 then we are done, since in this case the test done in Step 5 will
necessarily succeed, and subsequently the algorithm will réfann which is the correct
answer. Hence it remains to handle the case wkiea t. In this case, the test of Step 5
will fail, and the execution will reach Steps 6 and 7. Our analysis of this case is based on
showing that in this case the situation is that depicted inFigamely, all the vertices on
the path fromx to the LCA z (including z itself) are large, and that necessarily eithesr
y (or both) must be small, hence justifying the choice made by the algorithm.

The following is obvious from the definitions.

Lemma 3.4. Each vertex has at most one large child.

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 587

Level

small K
large {

(%) t

ORNORE"

depth(v)

“ depth(w)

Fig. 3. The situation in cask < 1.

Consequently, as # y and both are the children of the same patgrdt least one of
them is small, hence we have:

Lemma 3.5. x € SAv) or y € SAw).
Lemma 3.6. iy, iy, >t + 1.

Lemma 3.7. (1) If x € SA(v) theni, =1+ 1,
(2)If y € SAw) theni, =1 + 1.

Combining the last three lemmas yields
Corollary 3.8. min{i,, i,,} =t + 1.

Hence the outputreturned by the algorithmin Step 7 isthe correct eag, (v) = vy, (w).
Lemma 3.9. Forevery two verticesandw, the decodeD, ¢, correctly deducesCA(v, w)
givenL(v) and L(w).

3.5. Analysis of the resulting label size
The following is obvious from the definitions.

Lemma 3.10. In an n-vertex tregevery vertexo has at mostogn small ancestorsi.e.,
ISA(W)| < logn.

588 D. Peleg / Theoretical Computer Science 340 (2005) 577-593

It follows that each vertex has at most log i-triples Q; (v). The size of the resulting
labels thus depends on the size of the identifiers used by the scheme. In particular, let
g(n) denote the maximum size of an identifier assigned to any vertex in-&eytex tree.
Clearlyg(n) = Q(logn), hence each triple requireg gQn)) bits, and the entire label is of

size Qg(n)logn).

Theorem 3.11. (Mcy, Drca) is anLCAlabeling scheme with labels of si@€g () logn)
for the classT,, of n-vertex trees with identifiers of sizén).

Since logn-bit identifiers can always be chosen, we get the following corollary.
Corollary 3.12. £(LCA 7,) = O(log? n).
Note that this is optimal, in the following sense.

Lemma 3.13. If 7, has anLCA labeling scheme with(n) - g(n)-bit labels overg (n)-bit
identifiers then it has eéSepLevel labeling scheme with(n) - (g(n) + logn)-bit labels.

Proof. Suppose that we are given &€CA labeling schemgM;cy, Drcy) With [(n) -
g(n)-bit labels overg(n)-bit identifiers for7,. Define aSepLevel labeling scheme
(MsepLever» Dseprever) fOr 7, as follows. Given a tre€, theSeplLevel -markerMsgeprever
augments the identifiek(v) of each vertex into I’(v) with an additional log: bit field
containingv’s depth, depttv), and then invokes theCA-marker M, to generate a la-
belingL for T. As the new identifiers are of sizén) + logn, the labeling. uses labels of
sizel(n) - (g(n) + logn).

Consider two vertices, w with z = LCA(v, w). The labelsL(v) and L(w) allow the
SepLevel -decoderDsepeve1 t0 deduce the identifief’(z) of z and hence its depth
depth(z), which is the separation lev&epLevel (v, w). It follows that (Mseprever,
Dseprever) IS indeed eéSeplevel labeling scheme. [

Sinceg(n) = Q(logn), Corollary 2.2 implies

Corollary 3.14. AnyLCA labeling scheme fof,, requires some labels @2(log? n) bits.
Hence

L(LCA Ty,) = O(log? n).

4. Center labeling schemes

For every three verticag, vo, vzin atreerT, letCenter (v1, vz, v3) denote theicenter
namely, the unique vertex such that the three paths connectintp v1, v and vz are
edge-disjoint (in fact, also vertex-disjoint excepkatSee Fig4.

We now show that ahCA-marker can serve also a€anter -marker, provided that the
identifiers it uses are themselves ancestry and depth labelings, namely, the idgqtjfier
containa’s level deptliv) and any two identifiers(v) and/ (w) allow us to deduce whether

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 589

Q 0.

o M
oy ({ }) g

Fig. 4. Three verticess, vy, v3 and their centet.

Fig. 5. The least common ancesteiS, = z1 3 andzp 3 in the case handled by Step 3 of the algorithm.

one of the two vertices is an ancestor of the other. As mentioned earlier, both requirements
are achievable using identifiers of sizél@n). Hence theCenter -markerM eqier Will
first pick such identifiers for the vertices, and then invokeltGé-markerM ¢, described
in the previous section for generating the labels.
Proving the claim requires us to present an algorithm for comp@erger (v, v2, v3)
given the labeld.(v1), L(v2) andL(v3).

4.1. TheCenter -decoder
For 1<i <j <3, denote; ; = LCA(v;, v;).
DecoderDeenter

1. Computel (z1,2), 1(z1,3) andI (z2,3).

2. If the threeLCA's coincide then retur (z1,2).

3. If exactly twoLCAs coincide, sayz1 3 = z1.2, then return the third] (z2,3).
Fig. 5 depicts the case handled by Step 3 of the algorithm.

4.2. Correctness proof
We rely on the following easy to verify facts.
Fact 4.1. (1) For every three verticess, vz, vz in rooted tree at least two of the three

LCAsz1 2, 71,3 andzp 3 must coincide.
(2) If z1.3 = z1.2 # z2.3, thenzp 3 is a descendent af 3.

590 D. Peleg / Theoretical Computer Science 340 (2005) 577-593
As an easy corollary we get

Corollary 4.2. For every three verticess, vo and vz, the Center -decoderDgepier COI-
rectly deduce€enter (v1, v2, v3) givenL(v;) fori = 1,2, 3.

Theorem 4.3. L(Center , 7,,) = O(log? n).
Finally, let us record the following fact for later use.

Lemma 4.4. TheCenter labeling scheme allows us also to deduce the distance between
z = Center (v1, v2, v3) and eachy;, 1<i <3.

5. Steiner labeling schemes

Our final two sections concemmueightedtrees and graphs. For a d&tof vertices in a
weighted graplt, their Steiner treedenotedl’s (W), is the minimum-weight subtree &
spanning the vertices oY, and its weight is denote8teiner (W). A Steiner labeling
scheme can dedu@&teiner (W) given the labeld.(v) for everyv € W.

We now show that th€enter -marker M.t Presented in the previous section can
serve also as &teiner -marker within aSteiner labeling scheme for the class of
weighted trees. In particular, we rely also on the fact that in the labelings produced by the
Center -markerMcenter, the identifierd (v) of every vertexv provide deptkw).

Dealing with weighted graphs requires us, in particular, to use weighted measures of
distance and depth. This means that when employin@teer labeling scheme of the
previous section, which in turn makes use of our other schemes, the distance and depth
functions used by the schemes must be the weighted ones. While this does not require any
other change in the schemes, it does have some immediate implications on the size of the
resulting labels, as explained later on.

5.1. TheSteiner decoder

Given aCenter -markerM_center @s in the previous section, and taking Bteiner -
marker to beMsieiner = Mecenters WE NOW present &teiner -decoderDgieiner fOr
computing the weighSteiner (W) of the Steiner tre@s(W) for any vertex setWin T,
given as input the labels(v) for everyv € W.

Let us first consider the case whegi| = 3, or W = {v1, v, v3}. In this case, the
Steiner -decoderDgqiner Can simply deduce the center= Center (v1, vz, v3), cal-
culate the distanceg = dist(v;, z) for 1<i <3 as in Lemma 4.4, and return(W) =
d1+ dp + d3.

Now suppose that/ contains more than three verticég,= {vs, ..., v,} forg > 3. For
every 3<k<gq, let Wy = {v1, ..., vt}. Given the seW, the Steiner -decoderDg;ciner
works iteratively, starting by computing(Ws) and adding the remaining vertices one at a
time, computingn(Wy) fork =4, ..., q.

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 591

DecoderDsteiner
. Deduce the center= Center (v1, v2, v3).
. Calculate the distancds = dist(v;, z) for 1<i <3 (as in Lemma 4.4).
. Letw(W3) =dy + do + d3.
. Fork =4toqdo:
(a) Forevery Ki< j<k, computey; ; = Center (v;, v, vg+1).
(b) Forevery Ki < j<k, computed; ; = dist(z; j, vk+1) (again, as in Lemma 4.4).
(c) Let1<i’ < j' <k be the pair minimizingy; ;.
(d) Leto(Wiy1) = ox(Wy) +dyr jr.
5. Returnm(W,).

A WN PP

5.2. Correctness proof

Definition 5.1. Forasubtre&’and avertex inT, let p(v, T') denote the (unique) shortest
path connecting to some vertex of”’.

Lemma 5.2. For every set of vertice® = {v1, ..., vt} and vertexv ¢ W, there exists
a pair of verticesv;, v; € W, connected by a patt®; ; in T, such thatp(v, Ts(W)) =
p(, P j).

Proof. Let P’ = p(v, Ts(W)) and letz be the vertex of (W) that meetsP’. (In casev
itself occurs orT’s (W), the pathP’ is of length 0, i.e., it consists of the single vertex v.)
As z € Ts(W), zoccurs on the patl®; ; connectingsometwo leavesy; andv; of Ts(W).
Observing that the leaf set @ (W) is a subset 0@V, the claim follows. [

Lemma 5.3. For every set of vertices W in, The Steiner -decoderDgeine, COrrectly
deducesn(W) givenL(v) for everyv € W.

As mentioned earlier, label sizes may be somewhat larger in the weighted case. Specif-
ically, if M-bit edge weights are used, then the dépitield in the identifier/ (v) may
require ®(M + logn) bits in the worst case. On the other hand, as(disto, 7) =
Steiner (W) for any pair of verticedV = {v1, vz}, the lower bound oL (dist, 7, ») =
O(M logn + log? n) established if3] extends to theSteiner function as well. This
yields the following result.

Theorem 5.4. L(Steiner , 7,.,) = ®(M logn + log? n).

6. Approximate Steiner labeling schemes for general graphs

Our last result concerns approximéeiner labeling schemes for the clags u
of arbitraryn-vertex graphs withiv-bit edge weights. The presented scheme relies on the
following relation between Steiner trees and minimum weight spanning trees, established
in [5]. Consider a weighted graphi = (V, E, w) and a set of verticed/in G. Let G’ =
(W, E’, ') denote the complete weighted graph defined on the vertew/¢st setting

592 D. Peleg / Theoretical Computer Science 340 (2005) 577-593

' (x,y) = dist(x, y, G) for everyx,y € W. Let MST(W) denote the minimum weight
of a spanning tree fo&’. Then the following claim is established i8] (in the proof of
Theorem 1 therein).

Lemma 6.1(Kou et al.[8]). Steiner (W)<MST(W)<2- Steiner (W).

Now consider arR approximate-distance labeling schetie .., Dyi;) for G, u. The
same marker algorithov ., can also be employed as part of R&-approximateSteiner
labeling scheme fog, s, using the following decoding procedure.

Approximate DecoderDg, .:, .,

Given the label (v) of every vertexw € W, the decoder does the following.

1. Using the distance decodé;,, calculate a distance estimafe(x, y) for every

x,ye W.
2. Construct a minimum-weight spanning ti®eor the complete graptf’ = (W, E’,).
3. Calculate its weight MSTW) = & (T").
4. Return MSTW).

The following is immediate from Lemma 6.1.

ist?

Lemma 6.2. The decodeDDy, ;... Yields a2R-approximation foiSteiner (W).

Corollary 6.3. If G, » enjoys an R-approximate distance labeling schetimen it also
enjoys a2R-approximatesteiner labeling scheme with labels of the same size.

We now rely on the approximate-distance labeling scheme for the@lagsdue to[9].
Lemma 6.4(Peleg[9]). There exists aB logn-approximate distance labeling scheme for
the clasgj,) with labels of siz&((M + logn) log? n).

Corollary 6.5. The clasg, » enjoys al6 logn-approximateSteiner labeling scheme
with labels of siz®((M + logn) log? n).
Acknowledgements

I am grateful to Michal Katz and Nir Katz for their helpful comments and suggestions.

References

[1] M.A. Breuer, Coding the vertexes of a graph, IEEE Trans. Inform. Theory IT-12 (1966) 148—-153.

[2] M.A. Breuer, J. Folkman, An unexpected result on coding the vertices of a graph, J. Math. Anal. Appl. 20
(1967) 583-600.

[3] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs, in: Proc. 12th ACM-SIAM Symp.
on Discrete Algorithms, ACM-SIAM, January 2001, pp. 210-219.

D. Peleg / Theoretical Computer Science 340 (2005) 577-593 593

[4] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, in: Proc. 20th ACM Symp. on Theory of
Computing, May 1988, pp. 334-343.

[5] M. Katz, N.A. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, in: Proc. 13th ACM-
SIAM Symp. on Discrete Algorithms, ACM-SIAM, January 2002, pp. 927-936.

[6] M. Katz, N.A. Katz, D. Peleg, Distance labeling schemes for well-separated graph classes, in: Proc. 17th
Symp. on Theoretical Aspects of Computer Science, February 2000, pp. 516-528.

[7] A. Korman, D. Peleg, Y. Rodeh, Labeling schemes for dynamic tree networks, in: Proc. 19th Symp. on
Theoretical Aspects of Computer Science, March 2002, pp. 76-87.

[8] L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Inform. 15 (1984) 141-145.

[9] D. Peleg, Proximity-preserving labeling schemes and their applications, in: Proc. 25th Internat. Workshop
on Graph-Theoretic Concepts in Computer Science, June 1999, pp. 30-41.

[10] N. Santoro, R. Khatib, Labelling and implicit routing in networks, Comput. J. 28 (1985) 5-8.

