
Theoretical Computer Science 340 (2005) 577–593
www.elsevier.com/locate/tcs

Informative labeling schemes for graphs

David Peleg∗,1
Department of Computer Science and Applied Mathematics, TheWeizmann Institute of Science,

Rehovot, 76100 Israel

Abstract

This paper introduces the notion ofinformative labeling schemesfor arbitrary graphs. Letf (W)

be a function on subsets of verticesW . An f labeling schemelabels the vertices of a weighted graph
G in such a way thatf (W) can be inferred (or at least approximated) efficiently for any vertex subset
W of G by merely inspecting the labels of the vertices ofW, without having to use any additional
information sources.

A number of results illustrating this notion are presented in the paper. We begin by developingf
labeling schemes for three functionsf over the class ofn-vertex trees. The first function,SepLevel ,
gives theseparation levelof any two vertices in the tree, namely, the depth of their least common
ancestor. The second,LCA, provides theleast common ancestorof any two vertices. The third,
Center , yields the center of any three given verticesv1, v2, v3 in the tree, namely, the unique vertex
zconnected to them by three edge-disjoint paths.All of these three labeling schemes use O(log2 n)-bit
labels, which is shown to be asymptotically optimal.

Our main results concern the functionSteiner (W), defined for weighted graphs. For any vertex
subsetW in the weighted graphG, Steiner (W) represents the weight of the Steiner tree spanning
the vertices ofW in G. Considering the class ofn-vertex trees withM-bit edge weights, it is shown
that for this class there exists aSteiner labeling scheme using O((M + logn) logn) bit labels,
which is asymptotically optimal. It is then shown that for the class of arbitraryn-vertex graphs with
M-bit edge weights, there exists anapproximate-Steiner labeling scheme, providing an estimate
(up to a factor of O(logn)) for the Steiner weightSteiner (W) of a given set of verticesW, using
O((M + logn)log2 n) bit labels.
© 2005 Elsevier B.V. All rights reserved.

∗ Tel.: +972 8934 3478.
E-mail address:david.peleg@weizmann.ac.il.

1 Supported in part by grants from the Israel Science Foundation and the Israel Ministry of Science and Art.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81122479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:david.peleg@weizmann.ac.il

578 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

1. Introduction

1.1. Problem and motivation

Network representations have played an extensive and often crucial role in many domains
of computer science, ranging from data structures, graph algorithms and combinatorial
optimization to databases, distributed computing and communication networks. Research
on network representations concerns the development of various methods and structures for
cheaply storing useful information about the network and making it readily and conveniently
accessible. This is particularly significant when the network is large and geographically
dispersed, and information about its structure must be accessed from various local points
in it.

The current paper is dedicated to a somewhat neglected component of network represen-
tations, namely, thelabels(ornames, or identifiers) assigned to the vertices of the network.
The issue of precisely how are vertex identifiers to be selected is often viewed as minor
or inconsequential. For instance, most traditionalcentralizedapproaches to the problem of
network representation are based on storing adjacency information using some kind of a
data structure, e.g., an adjacency matrix. Such representation enables one to decide, given
the indices of two vertices, whether or not they are adjacent in the network, simply by look-
ing at the appropriate entry in the table. However, note that (a) this decision cannot be made
in the absence of the table, and (b) the indices themselves contain no useful information,
and they serve only as “place holders,” or pointers to entries in the table, which forms a
global representation of the network.

In contrast, the notion ofadjacency labeling schemes, introduced by Breuer and Folkman
in [2,1], involves using moreinformativeandlocalizedlabeling schemes for networks. The
idea is to associate with each vertex a label selected in a such way, that will allow us to
infer the adjacency of two verticesdirectly from their labels, without usinganyadditional
information sources. Hence in essence, this rather extreme approach to the network repre-
sentation problemdiscardsall other components, and bases the entire representation on the
set of labelsalone.

Obviously, labels of unrestricted size can be used to encode any desired information.
Specifically, it is possible to encode the entire rowi in the adjacency matrix of the graph
in the label chosen for vertexi. It is clear, however, that for such a labeling scheme to be
useful, it should strive to use relativelyshort labels (say, of length polylogarithmic inn),
and yet allow us to deduce adjacencies efficiently (say, within polylogarithmic time). The
feasibility of suchefficientadjacency labeling schemes was explored over a decade ago by
Kannan et al. in [4].

Interest in this natural idea was recently revived by the observation that in addition to
adjacencylabeling schemes, it may be possible to devise similar schemes for capturing
distanceinformation. This has led to the notion ofdistance labeling schemes, which are
schemes possessing the ability to determine the distance between two vertices efficiently
(say, in polylogarithmic time again) given their labels. This notion was introduced in [9],
and studied further in [3,6].

The current paper is motivated by the naturally ensuing observation that the ability to
decide adjacency and distance are buttwo of a numberof basic properties a representation

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 579

may be required to possess, and that many other interesting properties may possibly be
representable via an appropriate labeling scheme.

In its broadest sense, this observation leads to the general question of developing label-
based network representations that will allow retrieving useful information aboutarbitrary
functions or substructures in a graph in alocalizedmanner, i.e., using only the local pieces of
information available to, or associated with, the vertices under inspection, and not having to
search for additionalglobal information. We term such representationsinformative labeling
schemes.

To illustrate this idea, let us consider the class ofrooted trees. In addition to finding out
whether two given verticesv andw are adjacent, or what is the distance between them,
one may be interested in many other pieces of information concerning these vertices. For
example, in some cases it may be useful to know ifv is anancestor(or a descendant)
of w. It turns out that it is rather easy to encode the ancestry (or descendance) relation
in a tree using interval-based schemes (cf.[10]). Another example for a useful piece of
non-numeric information is theleast common ancestorof v andw. Moreover, the types
of localized information to be encoded by an informative labeling scheme are not limited
to binary relations. An example for information involvingthreeverticesv1, v2 andv3 is
finding theircenter, namely, the unique vertexzconnected to them by edge-disjoint paths.
More generally, for any subset of verticesW in the tree, one may be interested in inferring
S(W), the weight of theirSteiner tree(namely, the lightest tree spanning them), based on
their labels. The current paper demonstrates the feasibility of informative labeling schemes
by providing such schemes for all of the above types of information over the class of rooted
trees.

A natural question to ask at this point is whether efficientexact informative labeling
schemes can be developed foranygraph family (including, in particular, the family ofall
graphs). Unfortunately, the answer is negative. In [4] it is pointed out that for a family of
�(exp(n1+�)) non-isomorphicn-vertex graphs, for� > 0, any adjacency labeling scheme
must use labels whose total combined length is�(n1+�), hence at least one label must be of
�(n�) bits. In particular, any adjacency labeling scheme for the class of alln-vertex graphs
requires labels of size�(n). The same observation carries over to other types of labeling
schemes.

This raises the next natural question, namely, could more efficient labeling schemes be
constructed if we abandon the requirement of capturingexactinformation, and settle for
the less ambitious goal of obtainingapproximateestimates. The last result presented in
this paper is an approximate scheme for the Steiner weight functionS(W) over general
weighted graphs.

The relevance of distance labeling schemes in the context of communication networks
has been pointed out in [9], and illustrated by presenting an application of such labeling
schemes to distributed connection setup procedures in circuit-switched networks. Some
other problems where distance labeling schemes may be useful include memory-free rout-
ing schemes, bounded (“time-to-live”) broadcast protocols, topology update mechanisms,
etc.

It is plausible that other types of informative labeling schemes may also prove useful
for other applications. In particular, Steiner labeling schemes may be utilized as a basic
tool for optimizing multicast schedules and within mechanisms for the selection of subtrees

580 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

for group communication via communication subtrees, and potentially even for certain
information representation problems on the web.

1.2. Related work

Adjacency labeling systems of general graphs based on Hamming distances were studied
by Breuer and Folkman in[2,1]. Specifically, in [2] it is shown that it is possible to label the
vertices of everyn-vertex graph with 2n�-bit labels, such that two vertices are adjacent iff
their labels are at Hamming distance 4�− 4 or less of each other, where� is the maximum
vertex degree in the graph.

An elegant labeling scheme is proposed in [4] for the class of trees using 2 logn-bit
labels. It is also shown in [4] how to extend that scheme, and construct O(logn) adjacency
labeling schemes for a number of other graph families, such as bounded arboricity graphs
(including, in particular, graphs of bounded degree or bounded genus, e.g., planar graphs),
various intersection-based graphs (including interval graphs), andc-decomposable graphs.

It is clear that distance labeling schemes with short labels are easily derivable for highly
regular graph classes, such as rings, meshes, tori, hypercubes, and the like. Whether more
general graph classes can be labeled in this fashion is not as clear. It is shown in [9] that the
family of n-vertex weighted trees withM-bit edge weights enjoys an O(M logn + log2 n)

distance labeling scheme. This scheme is complemented by a matching lower bound given in
[3], showing that�(M logn+ log2 n) bit labels are necessary for this class. The approach
of [9] extends to handle also the class ofc-decomposable graphs for constantc, which
includes the classes of series–parallel graphs andk-outerplanar graphs, withc = 2k. Also,
an approximate distance labeling scheme is given in [9] for the class of general weighted
graphs.

In [3] it is shown also thatn-vertex graphs with ak-separator support a distance labeling
with labels of size O(k logn+ log2 n). This implies, in particular, that the family ofn-vertex
planar graphs enjoys such a labeling scheme with O(

√
n logn)-bit labels, and the family

of n-vertex graphs with bounded treewidth has a distance labeling scheme with labels of
size O(log2 n). Forn-vertex planar graphs, there exists also a lower bound of�(n1/3) on
the label size required for distance labeling, leaving an intriguing (polynomial) gap. More
recently, O(log2 n) distance labeling schemes forn-vertex interval and permutation graphs
were presented in [6].

1.3. Framework

Let us now formalize the notion of informative labeling schemes.

Definition 1.1. A vertex-labeling of the graphG is a functionL assigning a labelL(u) to
each vertexu of G.

A labeling scheme is composed of two major components. The first is amarkeralgorithm
M, which given a graphG, selects a label assignmentL = M(G) for G. The second
component is adecoderalgorithmD, which given a set of labelŝL = {L1, . . . , Lk}, returns
a valueD(L̂). The time complexity of the decoder is required to be polynomial in its input
size.

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 581

Definition 1.2. Let f be a function defined on sets of vertices in a graph. Given a familyG
of weighted graphs, anf labeling schemefor G is a marker-decoder pair〈Mf ,Df 〉 with
the following property. Consider any graphG ∈ G, and letL = Mf (G) be the vertex
labeling assigned by the markerMf to G. Then for any set of verticesW = {v1, . . . , vk}
in G, the value returned by the decoderDf on the set of labelŝL(W) = {L(v) | v ∈ W }
satisfiesDf (L̂(W)) = f (W).

It is important to note that the decoderDf , responsible for thef-computation, is inde-
pendent ofG or of the number of vertices in it. ThusDf can be viewed as a method for
computingf-values in a “distributed” fashion, given any set of labels and knowing that the
graph belongs to some specific familyG. In particular, it must be possible to defineDf

as a constant size algorithm. In contrast, the labels contain some information that can be
pre-computed by considering the whole graph structure.

Clearly, anf-decoder always exists for any graph family if arbitrarily large labels are
allowed. Our focus here is on the existence off labeling schemes which assign labelings
with short labels.

For a labelingL for the graphG = (V ,E), let |L(u)| denote the number of bits in the
(binary) stringL(u).

Definition 1.3. Given a graphG and a marker algorithmM which assigns the labelingL
toG, denote

LM(G) = max
u∈V |L(u)|.

For a finite graph familyG, set

LM(G) = max{LM(G) |G ∈ G}.

Finally, given a functionf and a finite graph familyG, let

L(f,G) = min{LM(G) | ∃D, 〈M,D〉 is anf labelling scheme forG}.

Labeling schemes providingapproximateinformation are defined in an analogous way to
Definition 1.2.

Definition 1.4. Let f be a function from sets of vertices in a graph to the integers. Given a
family G of weighted graphs,R-approximatef labeling schemefor G is a marker-decoder
pair 〈Mf ,Df) with the following property. Consider any graphG ∈ G, and letL =
Mf (G) be the vertex labeling assigned by the markerMf to G. Then for any set of
verticesW = {v1, . . . , vk} in G, the value returned by the decoderDf on the set of labels
L̂(W) = {L(v) | v ∈ W } satisfies

Df (L̂(W))�f (W)�R · Df (L̂(W)).

582 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

1.4. Our results

This paper starts by introducing and studyingf -labeling schemes for three basic functions
on the classT of unweighted trees. For a graph familyG, let Gn denote the subfamily
containing then-vertex graphs ofG.

First, we consider theseparation levelfunctionSepLevel . The separation level of two
vertices in a rooted tree is defined as the depth of their least common ancestor (i.e., its
distance from the root of the tree). We show that this function is equivalent to the distance
function on the classT of unweighted trees in terms of its labelability on trees, i.e., it
requires labels of size�(log2 n), or formally,L(SepLevel , Tn) = �(log2 n).

Next, we consider anLCA labeling scheme for trees, wherez = LCA(v,w) is theleast
common ancestorof any two verticesv,w. Formally, we assume that each vertexu has a
uniqueidentifier, denotedI (u), typically of size O(log n), and the functionLCAmaps the
vertex pair(v,w) to the identifierI (z). It is shown that for the class ofn-vertex trees, there
exists such a labeling scheme using O(log2 n) bit labels, and this is asymptotically optimal,
i.e.,L(LCA, Tn) = �(log2 n).

Next, we turn to vertex triples, and consider theCenter function. The center of three
verticesv1, v2, v3 in a treeT is the unique vertexz such that the three paths connectingz
to v1, v2 andv3 are edge-disjoint. Here, too, we show the existence of an (asymptotically
optimal) Center labeling scheme using O(log2 n) bit labels, i.e.,L(Center , Tn) =
�(log2 n) as well.

We then turn toweightedgraphs. For a graph familyG, let Gn,M denote the subfamily
containing then-vertex graphs ofG with M-bit edge weights. We considerSteiner la-
beling schemes for graphs. Given a subsetWof vertices inG, aSteiner treeTS(W) forW is
a minimum weight tree spanning all the vertices ofW (and perhaps some other vertices as
well) inG. TheSteiner weightofW, denotedSteiner (W), is the weight of the Steiner tree
TS(W). Using theLCA labeling scheme, we show that theSteiner weight function has
an O((M + logn) logn) size labeling scheme on the classTn,M of weightedn-vertex trees
with M-bit edge weights, and this is asymptotically optimal, i.e.,L(Steiner , Tn,M) =
�((M + logn) logn).

Finally, we consider the class ofarbitraryweighted graphsG. Note that dist(v1, v2,G) =
Steiner (W) for any pair of verticesW = {v1, v2}. Hence anySteiner labeling scheme
can be used also as a distance labeling scheme. Subsequently, given the lower bound of
L(dist,Gn) = �(n) established in[3] for the class ofunweighted n-vertex graphsGn, an
exactSteiner labeling scheme for the class of arbitrary weighted graphsGn,M clearly
requires at least�(M + n)-bit labels.

We therefore turn to labeling schemes providing approximate information, and show
that for the class of arbitraryn-vertex graphs withM-bit edge weights, there exists an
O(logn)-approximateSteiner labeling scheme using O((M + logn) log2 n) bit
labels.

This paper introduces the concept of informative labeling schemes, illustrates it through a
number of simple examples and presents a rather preliminary study of the properties of such
schemes. Many questions are left for further research. Informative labeling schemes for the
functions of flow and connectivity in graphs were subsequently studied in [5]. A cardinal
direction for future study is handling dynamically changing networks. This direction is

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 583

pursued in[7], where some initial results are established for restricted dynamic network
models.

2. SepLevel labeling schemes

We start with aSepLevel labeling scheme for trees. Consider a rooted treeTwith root
r0. The depth of a vertexv ∈ T , denoted depth(v), is its distance dist(v, r0) from the root
r0. Two verticesv,w ∈ T are said to haveseparation levelSepLevel (v,w) = � if their
least common ancestorz has depth depth(z) = �. We now claim that for the classT of
unweighted trees, distance labeling andSepLevel labeling require the same label size up
to an additive logarithmic2 term.

Lemma 2.1. (1) L(SepLevel , Tn)�L(dist, Tn) + logn.
(2) L(dist, Tn)�(Seplevel , Tn) + logn.

Proof. Suppose that we are given a distance labeling scheme〈Mdist,Ddist〉 for Tn. Define
aSepLevel labeling scheme〈MSepLevel,DSepLevel〉 for Tn as follows. Given a treeT, let
L be the labeling assigned byMdist for T. TheSepLevel -markerMSepLevel augments
each labelL(v) into a labelL′(v) with an additional logn bit field containingv’s depth,
depth(v).

Consider two verticesv,w with z = LCA(v,w). Let �v = dist(z, v), �w = dist(z, w)

and�r0 = dist(z, r0) = depth(z). Given the labelsL′(v) = 〈L(v),depth(v)〉 andL′(w) =
〈L(w),depth(w)〉, the fieldsL(v) andL(w) allow theSepLevel -decoderDsepLevel to
deduce the distance dist(v,w) = �v + �w, and the two additional fields provide it with
depth(v) = dist(v, r0) = �v+�r0 and depth(w) = dist(w, r0) = �w+�r0. Combined, these
three equations allowDSepLevel to deduce depth(z) = �r0. Thus〈MSepLevel,DSeplevel〉
is a SepLevel labeling scheme, and the labels it uses are larger than those used by
〈Mdist,Ddist) by logn.

For the opposite direction, suppose that we are given aSepLevel labeling scheme
〈MSepLevel,DSepLevel〉 for Tn. Define a distance labeling scheme〈Mdist,Ddist〉 for Tn as
follows. Given a treeT, letL be the labeling assigned byMSepLevel for T. The dist-marker
Mdist augments each labelL(v) into a labelL′(v) in the same way. The proof now follows
along similar lines to the first part.�

Based on the upper and lower bounds of[3,9] for distance labeling schemes for trees, we
get

Corollary 2.2. There exists aSepLevel labeling scheme for the class of n-vertex trees
Tn using labels ofO(log2 n) bits,and anySepLevel labeling scheme forTn requires some
labels of�(log2 n) bits, i.e.,

L(SepLevel , Tn) = �(log2 n).

2 For clarity of presentation we ignore rounding issues in stating our claims. For instance, here and in several
other places, logn stands for�logn�.

584 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

3. LCA labeling schemes

We now turn to developing anLCA labeling scheme for trees, wherez = LCA(v,w) is
the least common ancestorof any two verticesv,w. As mentioned earlier, this requires us
to assume that each vertexu has a uniqueidentifier, denotedI (u), of size O(logn), and the
functionLCAmaps the vertex pair(v,w) to the identifierI (z).

3.1. Definitions

For every vertexv in the tree, letT (v) denote the subtree ofT rooted atv. For 0� i�
depth(v), denotev’s ancestor at leveli of the tree by�i (v). In particular,�0(v) = r0 and
�depth(v)(v) = v.

Definition 3.1. A nonroot vertexvwith parentw is calledsmallif its subtree,T (v), contains
at most half the number of vertices contained in its parents’ subtree,T (w). Otherwise,v is
large. (The root is defined to be small.)

For every vertexv, the “small ancestor” levels of v are the levels above it in which its
ancestor is small,

SAL(v) = {i | 1� i�depth(v), �i (v) is small},
thesmall ancestorsof v are

SA(v) = {�i (v) | i ∈ SAL(v)}
and their identifiers are

SAI(v) = {I (�i (v)) | i ∈ SAL(v)}.
Fig. 1 depicts a vertexv and its small ancestors.

5

2

γ (v)

γ (v)

7

151 1

0

Level

17

v1

2

γ (v)

2

0

5

4

3

Fig. 1. Bold circles mark the small ancestors ofv. HereSAL(v) = {2,4,5}. The number of vertices inT (w) is
displayed for every ancestorw = �i (v) of v.

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 585

3.2. TheLCA-marker

The labels are constructed as follows. As a preprocessing step, assign eachv an interval
Int(v)as in the interval labeling scheme of[10], in addition to its identifierI (v). This scheme
is based on the following two steps. First, construct adepth-firstnumbering of the treeT,
starting at the root, and assign each vertexu ∈ T a depth-first numberDFS(u). Then, label
a vertexu by the intervalInt(u) = [DFS(u),DFS(w)], wherew is the last descendent ofu
visited by the DFS tour. The resulting interval labels are of size O(logn). What makes these
interval labels useful for our purposes is the fact that they enjoy the following important
property:
For every two vertices u andv of the tree T, Int(v) ⊆ Int(u) iff v is a descendent of

u in T.

Definition 3.2. For a vertexv and 1� i < depth(v), thei-triple of v consists of the identi-
fiers of its ancestors on levelsi − 1, i andi + 1,

Qi(v) = 〈〈i − 1, I (�i−1(v))〉, 〈i, I (�i (v))〉, 〈i + 1, I (�i+1(v))〉〉.
In the second and main stage we do the following. For each vertexv, assign the label

L(v) = (I (v), Int(v), {Qi(v) | 1� i < depth(v), i ∈ SAL(v)}〉.
3.3. TheLCA-decoder

Let us now describe theLCA-decoderDLCA which, given two vertex labelsL(v) and
L(w), infers the identifierI (z) of their least common ancestorz = LCA(v,w).

DecoderDLCA

1. If Int(w) ⊆ Int(v) /∗ v is an ancestor ofw ∗/
then returnI (v).

2. If Int(v) ⊆ Int(w) /∗ w is an ancestor ofv ∗/
then returnI (w).

3. /∗ w andv are unrelated∗/
Extract fromL(v) andL(w) the setsSAL(v),SAL(w),SAI(v) andSAI(w).

4. Let� be the highest level vertex inSA(v) ∩ SA(w).

/∗ � is the least commonsmallancestor ofv andw ∗/

LetK be its level, i.e.,� = �K(v) = �K(w).
5. If I (�K+1(v)) �= I (�K+1(w)) then returnI (�).
6. /∗ �K+1(v) = �K+1(w) is also a common (yet large) ancestor ofv andw ∗/

Let iv = min{i ∈ SAL(v) | i > K},
iw = min{i ∈ SAL(w) | i > K},

7. If iv� iw then extractI (�iv−1(v)) from theiv-tripleQiv (v).
Else extractI (�iw−1(w)) from theiw-tripleQiw(w).

8. Return the extracted identifier.

586 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

z

r

v

y

w

depth(v)

depth(w)

x

0

Level

0

t

t+1

Fig. 2. The least common ancestorz = LCA(v,w) and its childrenx andy. Straight lines represent edges, and
winding lines represent paths.

3.4. Correctness proof

Let us now prove the correctness of the labeling scheme. It is immediate to observe that
if v is an ancestor ofw or vice versa, then Steps 1, 2 of the decoderDLCA correctly find
LCA(v,w). Hence hereafter we assume that neither of the above holds, i.e.,LCA(v,w) is
neitherv norw.

For the remainder of this section, denotez = LCA(v,w), and let its level bet = depth(z).
Let x be the child ofz on the path tov, and lety be the child ofz on the path tow (see
Fig. 2).

Lemma 3.3. SA(v) ∩ SA(w) = SA(z).

Let K and� = �K(v) = �K(w) be the level number and vertex selected in Step 4 of
the algorithm. By the previous lemma,� ∈ SA(z), soK� t and� is small, and hence
K ∈ SAL(z).

Now observe that ifK = t then we are done, since in this case the test done in Step 5 will
necessarily succeed, and subsequently the algorithm will returnI (�), which is the correct
answer. Hence it remains to handle the case whenK < t . In this case, the test of Step 5
will fail, and the execution will reach Steps 6 and 7. Our analysis of this case is based on
showing that in this case the situation is that depicted in Fig.3, namely, all the vertices on
the path from� to theLCAz (includingz itself) are large, and that necessarily eitherx or
y (or both) must be small, hence justifying the choice made by the algorithm.

The following is obvious from the definitions.

Lemma 3.4. Each vertex has at most one large child.

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 587

z

Level

depth(w)

Kα

large

small

depth(v)

t

t+1x

v

y

w

Fig. 3. The situation in caseK < t .

Consequently, asx �= y and both are the children of the same parentz, at least one of
them is small, hence we have:

Lemma 3.5. x ∈ SA(v) or y ∈ SA(w).

Lemma 3.6. iv, iw� t + 1.

Lemma 3.7. (1) If x ∈ SA(v) theniv = t + 1,
(2) If y ∈ SA(w) theniw = t + 1.

Combining the last three lemmas yields

Corollary 3.8. min{iv, iw} = t + 1.

Hence the output returned by the algorithm in Step 7 is the correct one,z = �t (v) = �t (w).

Lemma 3.9. Forevery twoverticesv andw, thedecoderDLCA correctly deducesLCA(v,w)

givenL(v) andL(w).

3.5. Analysis of the resulting label size

The following is obvious from the definitions.

Lemma 3.10. In an n-vertex tree, every vertexv has at mostlogn small ancestors, i.e.,
|SA(v)|� logn.

588 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

It follows that each vertexv has at most logn i-triplesQi(v). The size of the resulting
labels thus depends on the size of the identifiers used by the scheme. In particular, let
g(n) denote the maximum size of an identifier assigned to any vertex in anyn-vertex tree.
Clearlyg(n) = �(logn), hence each triple requires O(g(n)) bits, and the entire label is of
size O(g(n) logn).

Theorem 3.11. 〈MLCA,DLCA〉 is anLCA labeling scheme with labels of sizeO(g(n) logn)
for the classTn of n-vertex trees with identifiers of sizeg(n).

Since logn-bit identifiers can always be chosen, we get the following corollary.

Corollary 3.12. L(LCA, Tn) = O(log2 n).

Note that this is optimal, in the following sense.

Lemma 3.13. If Tn has anLCA labeling scheme withl(n) · g(n)-bit labels overg(n)-bit
identifiers, then it has aSepLevel labeling scheme withl(n) · (g(n) + logn)-bit labels.

Proof. Suppose that we are given anLCA labeling scheme〈MLCA,DLCA〉 with l(n) ·
g(n)-bit labels overg(n)-bit identifiers for Tn. Define aSepLevel labeling scheme
〈MSepLevel,DSepLevel〉 for Tn as follows. Given a treeT, theSepLevel -markerMSepLevel

augments the identifierI (v) of each vertexv into I ′(v) with an additional logn bit field
containingv’s depth, depth(v), and then invokes theLCA-markerMLCA to generate a la-
belingL for T. As the new identifiers are of sizeg(n) + logn, the labelingL uses labels of
sizel(n) · (g(n) + logn).

Consider two verticesv,w with z = LCA(v,w). The labelsL(v) andL(w) allow the
SepLevel -decoderDSepLevel to deduce the identifierI ′(z) of z, and hence its depth
depth(z), which is the separation levelSepLevel (v,w). It follows that 〈MSepLevel,

DSepLevel〉 is indeed aSepLevel labeling scheme. �

Sinceg(n) = �(logn), Corollary 2.2 implies

Corollary 3.14. AnyLCA labeling scheme forTn requires some labels of�(log2 n) bits.
Hence

L(LCA, Tn) = �(log2 n).

4. Center labeling schemes

For every three verticesv1, v2, v3 in a treeT, letCenter (v1, v2, v3) denote theircenter,
namely, the unique vertexz such that the three paths connectingz to v1, v2 and v3 are
edge-disjoint (in fact, also vertex-disjoint except atz). See Fig.4.

We now show that anLCA-marker can serve also as aCenter -marker, provided that the
identifiers it uses are themselves ancestry and depth labelings, namely, the identifierI (v)

containsv’s level depth(v)and any two identifiersI (v)andI (w)allow us to deduce whether

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 589

z

3v

2

v1

v

Fig. 4. Three verticesv1, v2, v3 and their centerz.

1,2z

v

v1

v32

z2,3

r0

Fig. 5. The least common ancestorsz1,2 = z1,3 andz2,3 in the case handled by Step 3 of the algorithm.

one of the two vertices is an ancestor of the other. As mentioned earlier, both requirements
are achievable using identifiers of size O(logn). Hence theCenter -markerMCenter will
first pick such identifiers for the vertices, and then invoke theLCA-markerMLCA described
in the previous section for generating the labels.

Proving the claim requires us to present an algorithm for computingCenter (v1, v2, v3)

given the labelsL(v1), L(v2) andL(v3).

4.1. TheCenter -decoder

For 1� i�j�3, denotezi,j = LCA(vi, vj).

DecoderDCenter

1. ComputeI (z1,2), I (z1,3) andI (z2,3).
2. If the threeLCA’s coincide then returnI (z1,2).
3. If exactly twoLCA’s coincide, say,z1,3 = z1,2, then return the third,I (z2,3).

Fig. 5 depicts the case handled by Step 3 of the algorithm.

4.2. Correctness proof

We rely on the following easy to verify facts.

Fact 4.1. (1) For every three verticesv1, v2, v3 in rooted tree, at least two of the three
LCA’s z1,2, z1,3 andz2,3 must coincide.

(2) If z1,3 = z1,2 �= z2,3, thenz2,3 is a descendent ofz1,3.

590 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

As an easy corollary we get

Corollary 4.2. For every three verticesv1, v2 andv3, theCenter -decoderDCenter cor-
rectly deducesCenter (v1, v2, v3) givenL(vi) for i = 1,2,3.

Theorem 4.3. L(Center , Tn) = O(log2 n).

Finally, let us record the following fact for later use.

Lemma 4.4. TheCenter labeling scheme allows us also to deduce the distance between
z = Center (v1, v2, v3) and eachvi,1� i�3.

5. Steiner labeling schemes

Our final two sections concernweightedtrees and graphs. For a setW of vertices in a
weighted graphG, theirSteiner tree, denotedTS(W), is the minimum-weight subtree ofG
spanning the vertices ofW, and its weight is denotedSteiner (W). A Steiner labeling
scheme can deduceSteiner (W) given the labelsL(v) for everyv ∈ W .

We now show that theCenter -markerMCenter presented in the previous section can
serve also as aSteiner -marker within aSteiner labeling scheme for the class of
weighted trees. In particular, we rely also on the fact that in the labelings produced by the
Center -markerMCenter, the identifiersI (v) of every vertexv provide depth(v).

Dealing with weighted graphs requires us, in particular, to use weighted measures of
distance and depth. This means that when employing theCenter labeling scheme of the
previous section, which in turn makes use of our other schemes, the distance and depth
functions used by the schemes must be the weighted ones. While this does not require any
other change in the schemes, it does have some immediate implications on the size of the
resulting labels, as explained later on.

5.1. TheSteiner decoder

Given aCenter -markerMCenter as in the previous section, and taking theSteiner -
marker to beMSteiner = MCenter, we now present aSteiner -decoderDSteiner for
computing the weightSteiner (W) of the Steiner treeTS(W) for any vertex setW in T,
given as input the labelsL(v) for everyv ∈ W .

Let us first consider the case when|W | = 3, or W = {v1, v2, v3}. In this case, the
Steiner -decoderDSteiner can simply deduce the centerz = Center (v1, v2, v3), cal-
culate the distancesdi = dist(vi, z) for 1� i�3 as in Lemma 4.4, and return�(W) =
d1 + d2 + d3.

Now suppose thatWcontains more than three vertices,W = {v1, . . . , vq} for q > 3. For
every 3�k�q, let Wk = {v1, . . . , vk}. Given the setW, theSteiner -decoderDSteiner

works iteratively, starting by computing�(W3) and adding the remaining vertices one at a
time, computing�(Wk) for k = 4, . . . , q.

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 591

DecoderDSteiner

1. Deduce the centerz = Center (v1, v2, v3).
2. Calculate the distancesdi = dist(vi, z) for 1� i�3 (as in Lemma 4.4).
3. Let�(W3) = d1 + d2 + d3.
4. For k = 4 toq do:

(a) For every 1� i�j�k, computezi,j = Center (vi, vj , vk+1).
(b) For every 1� i < j�k, computedi,j = dist(zi,j , vk+1) (again, as in Lemma 4.4).
(c) Let 1� i′ �j ′ �k be the pair minimizingdi,j .
(d) Let�(Wk+1) = �(Wk) + di′,j ′ .

5. Return�(Wq).

5.2. Correctness proof

Definition 5.1. For a subtreeT ′ and a vertexv inT, letp(v, T ′) denote the (unique) shortest
path connectingv to some vertex ofT ′.

Lemma 5.2. For every set of verticesW = {v1, . . . , vk} and vertexv /∈ W , there exists
a pair of verticesvi, vj ∈ W , connected by a pathPi,j in T, such thatp(v, TS(W)) =
p(v, Pi,j).

Proof. Let P ′ = p(v, TS(W)) and letz be the vertex ofTS(W) that meetsP ′. (In casev
itself occurs onTS(W), the pathP ′ is of length 0, i.e., it consists of the single vertexz = v.)
As z ∈ TS(W), zoccurs on the pathPi,j connectingsometwo leavesvi andvj of TS(W).
Observing that the leaf set ofTS(W) is a subset ofW, the claim follows. �

Lemma 5.3. For every set of vertices W in T, theSteiner -decoderDSteiner correctly
deduces�(W) givenL(v) for everyv ∈ W .

As mentioned earlier, label sizes may be somewhat larger in the weighted case. Specif-
ically, if M-bit edge weights are used, then the depth(v) field in the identifierI (v) may
require�(M + logn) bits in the worst case. On the other hand, as dist(v1, v2, T) =
Steiner (W) for any pair of verticesW = {v1, v2}, the lower bound ofL(dist, Tn,M) =
�(M logn + log2 n) established in[3] extends to theSteiner function as well. This
yields the following result.

Theorem 5.4. L(Steiner , Tn,m) = �(M logn + log2 n).

6. Approximate Steiner labeling schemes for general graphs

Our last result concerns approximateSteiner labeling schemes for the classGn,M

of arbitraryn-vertex graphs withM-bit edge weights. The presented scheme relies on the
following relation between Steiner trees and minimum weight spanning trees, established
in [5]. Consider a weighted graphG = (V ,E,�) and a set of verticesW in G. Let G′ =
(W,E′,�′) denote the complete weighted graph defined on the vertex setW by setting

592 D. Peleg / Theoretical Computer Science 340 (2005) 577–593

�′(x, y) = dist(x, y,G) for everyx, y ∈ W . Let MST(W) denote the minimum weight
of a spanning tree forG′. Then the following claim is established in[8] (in the proof of
Theorem 1 therein).

Lemma 6.1(Kou et al.[8]). Steiner (W)�MST(W)�2 · Steiner (W).

Now consider anRapproximate-distance labeling scheme〈M′
dist,D′

dist〉 for Gn,M . The
same marker algorithmM′

dist can also be employed as part of a 2R-approximateSteiner
labeling scheme forGn,M , using the following decoding procedure.

Approximate DecoderD′
Steiner

Given the labelL(v) of every vertexv ∈ W , the decoder does the following.
1. Using the distance decoderD′

dist, calculate a distance estimatẽ�(x, y) for every
x, y ∈ W .

2. Construct a minimum-weight spanning treeT ′ for the complete graphG′ = (W,E′, �̃).
3. Calculate its weight MST(W) = �̃(T ′).
4. Return MST(W).

The following is immediate from Lemma 6.1.

Lemma 6.2. The decoderD′
Steiner yields a2R-approximation forSteiner (W).

Corollary 6.3. If Gn,M enjoys an R-approximate distance labeling scheme, then it also
enjoys a2R-approximateSteiner labeling scheme with labels of the same size.

We now rely on the approximate-distance labeling scheme for the classGn,M , due to[9].

Lemma 6.4(Peleg[9]). There exists an8 logn-approximate distance labeling scheme for
the classGn,M with labels of sizeO((M + logn) log2 n).

Corollary 6.5. The classGn,M enjoys a16 logn-approximateSteiner labeling scheme
with labels of sizeO((M + logn) log2 n).

Acknowledgements

I am grateful to Michal Katz and Nir Katz for their helpful comments and suggestions.

References

[1] M.A. Breuer, Coding the vertexes of a graph, IEEE Trans. Inform. Theory IT-12 (1966) 148–153.
[2] M.A. Breuer, J. Folkman, An unexpected result on coding the vertices of a graph, J. Math. Anal. Appl. 20

(1967) 583–600.
[3] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs, in: Proc. 12th ACM-SIAM Symp.

on Discrete Algorithms, ACM-SIAM, January 2001, pp. 210–219.

D. Peleg / Theoretical Computer Science 340 (2005) 577–593 593

[4] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, in: Proc. 20th ACM Symp. on Theory of
Computing, May 1988, pp. 334–343.

[5] M. Katz, N.A. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, in: Proc. 13th ACM-
SIAM Symp. on Discrete Algorithms, ACM-SIAM, January 2002, pp. 927–936.

[6] M. Katz, N.A. Katz, D. Peleg, Distance labeling schemes for well-separated graph classes, in: Proc. 17th
Symp. on Theoretical Aspects of Computer Science, February 2000, pp. 516–528.

[7] A. Korman, D. Peleg, Y. Rodeh, Labeling schemes for dynamic tree networks, in: Proc. 19th Symp. on
Theoretical Aspects of Computer Science, March 2002, pp. 76–87.

[8] L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Inform. 15 (1984) 141–145.
[9] D. Peleg, Proximity-preserving labeling schemes and their applications, in: Proc. 25th Internat. Workshop

on Graph-Theoretic Concepts in Computer Science, June 1999, pp. 30–41.
[10] N. Santoro, R. Khatib, Labelling and implicit routing in networks, Comput. J. 28 (1985) 5–8.

