10 research outputs found

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Improved Approximate Distance Oracles: Bypassing the Thorup-Zwick Bound in Dense Graphs

    Full text link
    Despite extensive research on distance oracles, there are still large gaps between the best constructions for spanners and distance oracles. Notably, there exist sparse spanners with a multiplicative stretch of 1+ε1+\varepsilon plus some additive stretch. A fundamental open problem is whether such a bound is achievable for distance oracles as well. Specifically, can we construct a distance oracle with multiplicative stretch better than 2, along with some additive stretch, while maintaining subquadratic space complexity? This question remains a crucial area of investigation, and finding a positive answer would be a significant step forward for distance oracles. Indeed, such oracles have been constructed for sparse graphs. However, in the more general case of dense graphs, it is currently unknown whether such oracles exist. In this paper, we contribute to the field by presenting the first distance oracles that achieve a multiplicative stretch of 1+ε1+\varepsilon along with a small additive stretch while maintaining subquadratic space complexity. Our results represent an advancement particularly for constructing efficient distance oracles for dense graphs. In addition, we present a whole family of oracles that, for any positive integer kk, achieve a multiplicative stretch of 2k1+ε2k-1+\varepsilon using o(n1+1/k)o(n^{1+1/k}) space

    Hierarchical Time-Dependent Oracles

    Get PDF
    We study networks obeying \emph{time-dependent} min-cost path metrics, and present novel oracles for them which \emph{provably} achieve two unique features: % (i) \emph{subquadratic} preprocessing time and space, \emph{independent} of the metric's amount of disconcavity; % (ii) \emph{sublinear} query time, in either the network size or the actual Dijkstra-Rank of the query at hand

    Distance Oracles for Time-Dependent Networks

    Full text link
    We present the first approximate distance oracle for sparse directed networks with time-dependent arc-travel-times determined by continuous, piecewise linear, positive functions possessing the FIFO property. Our approach precomputes (1+ϵ)(1+\epsilon)-approximate distance summaries from selected landmark vertices to all other vertices in the network. Our oracle uses subquadratic space and time preprocessing, and provides two sublinear-time query algorithms that deliver constant and (1+σ)(1+\sigma)-approximate shortest-travel-times, respectively, for arbitrary origin-destination pairs in the network, for any constant σ>ϵ\sigma > \epsilon. Our oracle is based only on the sparsity of the network, along with two quite natural assumptions about travel-time functions which allow the smooth transition towards asymmetric and time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An extended abstract also appeared in the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014, track-A

    A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs

    Full text link
    In 2001 Thorup and Zwick devised a distance oracle, which given an nn-vertex undirected graph and a parameter kk, has size O(kn1+1/k)O(k n^{1+1/k}). Upon a query (u,v)(u,v) their oracle constructs a (2k1)(2k-1)-approximate path Π\Pi between uu and vv. The query time of the Thorup-Zwick's oracle is O(k)O(k), and it was subsequently improved to O(1)O(1) by Chechik. A major drawback of the oracle of Thorup and Zwick is that its space is Ω(nlogn)\Omega(n \cdot \log n). Mendel and Naor devised an oracle with space O(n1+1/k)O(n^{1+1/k}) and stretch O(k)O(k), but their oracle can only report distance estimates and not actual paths. In this paper we devise a path-reporting distance oracle with size O(n1+1/k)O(n^{1+1/k}), stretch O(k)O(k) and query time O(nϵ)O(n^\epsilon), for an arbitrarily small ϵ>0\epsilon > 0. In particular, our oracle can provide logarithmic stretch using linear size. Another variant of our oracle has size O(nloglogn)O(n \log\log n), polylogarithmic stretch, and query time O(loglogn)O(\log\log n). For unweighted graphs we devise a distance oracle with multiplicative stretch O(1)O(1), additive stretch O(β(k))O(\beta(k)), for a function β()\beta(\cdot), space O(n1+1/kβ)O(n^{1+1/k} \cdot \beta), and query time O(nϵ)O(n^\epsilon), for an arbitrarily small constant ϵ>0\epsilon >0. The tradeoff between multiplicative stretch and size in these oracles is far below girth conjecture threshold (which is stretch 2k12k-1 and size O(n1+1/k)O(n^{1+1/k})). Breaking the girth conjecture tradeoff is achieved by exhibiting a tradeoff of different nature between additive stretch β(k)\beta(k) and size O(n1+1/k)O(n^{1+1/k}). A similar type of tradeoff was exhibited by a construction of (1+ϵ,β)(1+\epsilon,\beta)-spanners due to Elkin and Peleg. However, so far (1+ϵ,β)(1+\epsilon,\beta)-spanners had no counterpart in the distance oracles' world. An important novel tool that we develop on the way to these results is a {distance-preserving path-reporting oracle}

    Shortest-Path Queries in Geometric Networks

    Get PDF
    A Euclidean t-spanner for a point set V ? ?^d is a graph such that, for any two points p and q in V, the distance between p and q in the graph is at most t times the Euclidean distance between p and q. Gudmundsson et al. [TALG 2008] presented a data structure for answering ?-approximate distance queries in a Euclidean spanner in constant time, but it seems unlikely that one can report the path itself using this data structure. In this paper, we present a data structure of size O(nlog n) that answers ?-approximate shortest-path queries in time linear in the size of the output

    On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

    Full text link
    For an undirected unweighted graph G=(V,E)G=(V,E) with nn vertices and mm edges, let d(u,v)d(u,v) denote the distance from uVu\in V to vVv\in V in GG. An (α,β)(\alpha,\beta)-stretch approximate distance oracle (ADO) for GG is a data structure that given u,vVu,v\in V returns in constant (or near constant) time a value d^(u,v)\hat d (u,v) such that d(u,v)d^(u,v)αd(u,v)+βd(u,v) \le \hat d (u,v) \le \alpha\cdot d(u,v) + \beta, for some reals α>1,β\alpha >1, \beta. If β=0\beta = 0, we say that the ADO has stretch α\alpha. Thorup and Zwick~\cite{thorup2005approximate} showed that one cannot beat stretch 3 with subquadratic space (in terms of nn) for general graphs. P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one can obtain stretch 2 using O(m1/3n4/3)O(m^{1/3}n^{4/3}) space, and so if mm is subquadratic in nn then the space usage is also subquadratic. Moreover, P\v{a}tra\c{s}cu and Roditty~\cite{patrascu2010distance} showed that one cannot beat stretch 2 with subquadratic space even for graphs where m=O~(n)m=\tilde{O}(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can be stored using subquadratic space while supporting a sub-2 stretch. In particular, we show that if the maximum degree in GG is ΔGO(n1/2ε)\Delta_G \leq O(n^{1/2-\varepsilon}) for some 0<ε1/20<\varepsilon \leq 1/2, then there exists an ADO for GG that uses O~(n22ε3)\tilde{O}(n^{2-\frac {2\varepsilon}{3}}) space and has a sub-2 stretch. Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer klognk \leq \log n, obtaining a sub-k+2k\frac{k+2}{k} stretch for graphs with maximum degree Θ(n1/k)\Theta(n^{1/k}) requires quadratic space. Thus, for graphs with maximum degree Θ(n1/2)\Theta(n^{1/2}), obtaining a sub-2 stretch requires quadratic space

    On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

    Get PDF
    In the SetDisjointness problem, a collection of m sets S_1,S_2,...,S_m from some universe U is preprocessed in order to answer queries on the emptiness of the intersection of some two query sets from the collection. In the SetIntersection variant, all the elements in the intersection of the query sets are required to be reported. These are two fundamental problems that were considered in several papers from both the upper bound and lower bound perspective. Several conditional lower bounds for these problems were proven for the tradeoff between preprocessing and query time or the tradeoff between space and query time. Moreover, there are several unconditional hardness results for these problems in some specific computational models. The fundamental nature of the SetDisjointness and SetIntersection problems makes them useful for proving the conditional hardness of other problems from various areas. However, the universe of the elements in the sets may be very large, which may cause the reduction to some other problems to be inefficient and therefore it is not useful for proving their conditional hardness. In this paper, we prove the conditional hardness of SetDisjointness and SetIntersection with bounded universe. This conditional hardness is shown for both the interplay between preprocessing and query time and the interplay between space and query time. Moreover, we present several applications of these new conditional lower bounds. These applications demonstrates the strength of our new conditional lower bounds as they exploit the limited universe size. We believe that this new framework of conditional lower bounds with bounded universe can be useful for further significant applications

    Distance Oracles for Stretch Less Than 2

    No full text
    corecore