
On the Hardness of Set Disjointness and Set
Intersection with Bounded Universe
Isaac Goldstein
Bar-Ilan University, Ramat Gan, Israel
goldshi@cs.biu.ac.il

Moshe Lewenstein
Bar-Ilan University, Ramat Gan, Israel
moshe@cs.biu.ac.il

Ely Porat
Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
In the SetDisjointness problem, a collection of m sets S1, S2, ..., Sm from some universe U is
preprocessed in order to answer queries on the emptiness of the intersection of some two query
sets from the collection. In the SetIntersection variant, all the elements in the intersection of the
query sets are required to be reported. These are two fundamental problems that were considered in
several papers from both the upper bound and lower bound perspective.

Several conditional lower bounds for these problems were proven for the tradeoff between
preprocessing and query time or the tradeoff between space and query time. Moreover, there are
several unconditional hardness results for these problems in some specific computational models.
The fundamental nature of the SetDisjointness and SetIntersection problems makes them useful for
proving the conditional hardness of other problems from various areas. However, the universe of the
elements in the sets may be very large, which may cause the reduction to some other problems to be
inefficient and therefore it is not useful for proving their conditional hardness.

In this paper, we prove the conditional hardness of SetDisjointness and SetIntersection with
bounded universe. This conditional hardness is shown for both the interplay between preprocessing
and query time and the interplay between space and query time. Moreover, we present several
applications of these new conditional lower bounds. These applications demonstrates the strength of
our new conditional lower bounds as they exploit the limited universe size. We believe that this new
framework of conditional lower bounds with bounded universe can be useful for further significant
applications.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases set disjointness, set intersection, 3SUM, space-time tradeoff, conditional
lower bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.7

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00831.

Funding Isaac Goldstein: This research is supported by the Adams Foundation of the Israel Academy
of Sciences and Humanities.
Moshe Lewenstein: This work was partially supported by ISF grant #1278/16.
Ely Porat: This work was partially supported by ISF grant #1278/16 and ERC grant MPM - 683064.

1 Introduction

The emerging field of fine-grained complexity receives much attention in the last years. One of
the most notable pillars of this field is the celebrated 3SUM conjecture. In the 3SUM problem,
given a set of n numbers we are required to decide if there are 3 numbers in this set that

© Isaac Goldstein, Moshe Lewenstein, and Ely Porat;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248536587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:goldshi@cs.biu.ac.il
mailto:moshe@cs.biu.ac.il
mailto:porately@cs.biu.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.7
https://arxiv.org/abs/1910.00831
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

sum up to zero. It is conjectured that no truly subquadratic solution to this problem exists.
This conjecture was extensively used to prove the conditional hardness of other problems
in a variety of research areas, see e.g. [9, 10, 1, 2, 3, 4, 11, 20, 19, 24, 27, 33]. The 3SUM
problem is closely related to the fundamental SetDisjointness problem. In the SetDisjointness
problem we are given m sets S1, S2, ..., Sm from some universe U for preprocessing. After
the preprocessing phase, given a query pair of indices (i, j) we are required to decide if the
intersection Si ∩ Sj is empty or not. In the SetIntersection variant, all the elements within
the intersection Si ∩ Sj are required to be reported.

Cohen and Porat [15] investigated the upper bound of both problems. Specifically, they
showed that SetDisjointness can be solved almost trivially in linear space and O(

√
N) query

time, where N is the total number of elements in all sets. This solution can be generalized
to a full tradeoff between the space S and the query time T such that S · T 2 = O(N2). For
the SetIntersection problem, Cohen and Porat demonstrated a linear space solution with
O(N

√
N) preprocessing time and O(

√
N
√
out+ out) query time, where out is the output

size. This was further generalized by Cohen [14] to a solution that uses O(N2−2t) space with
O(N2−t) preprocessing time and O(N tout1−t + out) query time for 0 ≤ t ≤ 1/2.

From the lower bound prespective, Pǎtraşcu [27] proved the conditional time hardness of
the multiphase problem, which is a dynamic version of the SetDisjointness problem, based on
the 3SUM conjecture. He also proved a connection between 3SUM and reporting triangles in a
graph which is closely related to the SetIntersection problem. His conditional hardness results
were improved by Kopelowitz et al. [24] that considered the preprocessing and query time
tradeoff of both SetDisjointness and SetInteresection. Specifically, they proved, based on the
3SUM conjecture, that SetDisjointness has the following lower bound on the tradeoff between
preprocessing time Tp and query time Tq for any 0 < γ < 1: Tp +N

1+γ
2−γ Tq = Ω(N

2
2−γ−o(1)).

Moreover, based on the 3SUM conjecture they also proved that SetIntersection has the
following lower bound on the tradeoff between preprocessing, query and reporting (per output
element) time for any 0 ≤ γ < 1, δ > 0: Tp + N

2(1+γ)
3+δ−γ Tq + N

2(2+δ)
3+δ−γ Tr = Ω(N

4
3+δ−γ−o(1)).

Kopelowitz et al. [23] also proved the conditional time hardness of the dynamic versions of
SetDisjointness and SetInteresection.

The lower bound on the space-query time tradeoff for solving SetDisjointness was con-
sidered by Cohen and Porat [16] and Pǎtraşcu and Roditty [28]. They have the following
conjecture regarding the hardness of SetDisjointness (this is the formulation of Cohen and
Porat. Pǎtraşcu and Roditty use slightly different formulation):

I Conjecture 1 (SetDisjointness Conjecture). Any data structure for the SetDisjointness
problem with constant query time must use Ω̃(N2) space.

Recently, Goldstein et al. [21] considered space conditional hardness in a broader sense
and demonstrated the conditional hardness of SetDisjointness and SetInteresection with
regard to their space-query time tradeoff. They had a generalized form of Conjecture 1 that
claims that the whole (simple) space-time tradeoff upper-bound for SetDisjointness is tight:

I Conjecture 2 (Strong SetDisjointness Conjecture). Any data structure for the SetDisjoint-
ness problem that answers queries in T time must use S = Ω̃(N

2

T 2) space.

Moreover, they also presented a conjecture regarding the space-time tradeoff for SetInter-
section:

I Conjecture 3 (Strong SetIntersection Conjecture). Any data structure for the SetIntersection
problem that answers queries in O(T + out) time, where out is the size of the output of the
query, must use S = Ω̃(N

2

T) space.

I. Goldstein, M. Lewenstein, and E. Porat 7:3

Goldstein et al. [21] showed connections between these conjectures and other problems
like 3SUM-Indexing (a data structure variant of 3SUM), k-Reachability and boolean matrix
multiplication. Unconditional lower bounds for the space-time tradeoff of SetDisjointness
and SetIntersection were proven by Dietz et al. [18] and Afshani and Nielsen [5] for specific
models of computation. The results of Dietz et al. [18] implies that Conjecture 2 is true in the
semi-group model. Afshani and Nielsen [5] proved Conjecture 3 in the pointer-machine model.

The fundamental nature of SetDisjointness and SetIntersection makes them useful for
proving conditional lower bounds especially when considering their connection to the 3SUM
problem. Indeed, several conditional lower bounds where proven using these problems
(see [16, 17, 20, 24, 28, 29]). One major problem with this approach is that the universe of
the elements in the sets of the SetDisjointness and SetIntersection problems can be large.
This may cause the reduction from these problems to other problems, which we wish to
prove their conditional hardness, to be inefficient. Therefore, it is of utmost interest to
obtain a conditional lower bound on the hardness of SetDisjointness and SetIntersection with
bounded universe, which in turn will be fruitful for achieving conditional lower bounds for
other applications.

Our Results. In this paper we prove several conditional lower bounds for SetDisjointness
and SetIntersection with bounded universe. We obtain the following results regarding the
interplay between space and query time for solving these problems: (1) Based on the Strong
SetDisjointness Conjecture, we prove that SetDisjointness with m sets from universe [u]
must either use Ω(m2−o(1)) space or have Ω(u1/2−o(1)) query time. (2) Based on the Strong
SetDisjointness Conjecture, we prove that SetIntersection with m sets from universe [u]
must either use Ω(m2−o(1)) space or have Ω̃(uα−o(1) + out) query time, for any 1/2 ≤ α ≤ 1
and any output size out such that out = Ω(u2α−1−δ) and δ > 0 (3) Based on the Strong
SetIntersection Conjecture, we prove that SetIntersection with m sets from universe [u] must
either use Ω((m2uα)1−o(1)) space or have Ω̃(uα−o(1) + out) query time for any 1/2 ≤ α ≤ 1
and any output size out such that out = Ω(u2α−1−δ) and δ > 0.

Regarding the interplay of preprocessing and query time we demonstrate a reduction from
3SUM to SetDisjointness and SetIntersection. Using this reduction we prove the following
results based on the 3SUM conjecture: (i) Any solution to SetDisjointness with m sets from
universe [u] must either have Ω(m2−o(1)) preprocessing time or have Ω(u1/2−o(1)) query time.
(ii) Any solution to SetIntersection with m sets from universe [u] must either have Ω(m2−o(1))
preprocessing time or have Ω(u1−o(1)) query time.

These new conditional lower bounds are useful in proving conditional lower bounds for
other problems that exploit the small universe size as explained before. We give some
examples of such applications.

(1) Range Mode. The Range Mode problem is a classic problem that was studied in several
papers (see e.g. [12, 26]). In this problem, an array A with n elements is given for
preprocessing. Then, we are required to answer range mode queries. That is, given a
range [i, j] we have to find the mode element (the most frequent element) in the range
[i, j] in A. The best known upper bound for the space-query time tradeoff of this problem
is S · T 2 = Õ(n2), where S is the space usage and T is the query time ([12, 26]). We
prove using our new lower bound for SetDisjointess with bounded universe the following
lower bound on the tradeoff between space and query time: S · T 4 = Ω(n2−o(1)). We
note that if the query time in the lower bound on SetDisjointness (in Theorem 4, see (1)
above) was Ω̃(u1−o(1)) then the lower and upper bounds were tight.

(2) Distance oracle is a data structure for computing the shortest path between any two
vertices in a graph. We say that a distance oracle has a stretch t if for any two vertices
in the graph the distance it returns is no more than t times the true distance between

ISAAC 2019

7:4 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

these vertices. Approximate distance oracles were investigated in many papers (see for
example [7, 6, 13, 28, 29, 30]). Agrawal [6] showed a (5

3)-stretch distance oracle for a
graph G = (V,E) that uses Õ(|E| + |V |2

α) space and has O(α |E||V |) query time for any
1 ≤ α ≤ (|V |

2

|E|) 1
3 . We prove that this tradeoff is the best that can be achieved for any

stretch-less-than-2 distance oracles based on our new lower bound on SetDisjointness
with bounded universe (see a more detailed discussion in Section 4).

(3) 3SUM-Indexing is a data structure variant of 3SUM. In this problem, two arrays A and
B with n numbers in each of them are preprocessed. Then, given a query number z we
are required to decide if there are x ∈ A and y ∈ B such that x + y = z. Goldstein et
al. [21] conjecture that there is no Õ(1) query time solution to 3SUM-Indexing using truly
subquadratic space. In a stronger form of this conjecture they claim that there is no truly
sublinear query time solution to 3SUM-Indexing using truly subquadratic space. Recently,
it was proven that the strong 3SUM-Indexing conjecture is false [22, 25]. However, the
exact interplay between time and space for solving 3SUM-Indexing is unclear and it
still seems that there might be some strong variant of the 3SUM-Indexing conjecture
that is true. Goldstein et al. [21] proved some connections between 3SUM-Indexing,
SetDisjointness and SetIntersection. In this paper we strengthen their results using
our new lower bounds for SetDisjointness and SetIntersection with bounded universe.
Specifically, we prove based on our new lower bound on SetDisjointness with bounded
universe that any solution to 3SUM-Indexing where the universe of the numbers within
arrays A and B is [n2+ε] for any ε > 0 has this lower bound on the tradeoff between space
(S) and query time (T): S ·T 2 = Ω(n2−o(1)). Moreover, we prove the same lower bound on
the tradeoff between preprocessing (Tp) and query time (Tq): Tp · T 2

q = Ω̃(n2−o(1)). The
latter is proven based on the 3SUM conjecture following our reduction to SetDisjointness
with bounded universe.
In the 3SUM conjecture the universe of the numbers in the given instance is assumed to
be [n3] (see [27]) or even [n4] (see [32]). It is known that 3SUM can be easily solved in
O(u log u) time if the universe is [u] by using FFT. Therefore, 3SUM with numbers from
universe [n2−ε] for any ε > 0 can be solved in truly subquadratic time. Consequently,
assuming that no truly subquadratic solution to 3SUM with universe [n2] seems to be
much stronger conjecture (it was used once in [9]). Solving 3SUM-Indexing can be done
easily with Õ(n2) preprocessing time, O(n2) space and Õ(1) query time. Our results
demonstrate that this is tight even if the universe of the numbers in A and B and the query
numbers is [n2+ε] for any ε > 0. This is a very strong lower bound, as 3SUM-Indexing
with numbers from universe [u] can be solved with Õ(u) preprocessing time, O(u) space
and Õ(1) query time. This is done in a similar way to solving 3SUM with numbers from
universe [u]. Consequently, for any ε > 0, 3SUM-Indexing with numbers from universe
[n2−ε] can be solved by a data structure that has constant query, while the preprocessing
time and space are subquadratic. Our new conditional lower bound demonstrates that
having such a data structure for a slightly larger universe seems to be impossible.

2 Hardness of Space-Time Tradeoff for SD and SI with Bounded
Universe

We prove the hardness of SetDisjointness with bounded universe in the following theorem:

I Theorem 4. Any solution to SetDisjointness with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω(m2−o(1)) space or

have Ω̃(u1/2−o(1)) query time, unless the Strong SetDisjointness Conjecture is false.

I. Goldstein, M. Lewenstein, and E. Porat 7:5

Proof. Let us assume to the contradiction that the Strong SetDisjointness Conjecture is
true, but there is an algorithm A that solves SetDisjointness on m sets from a universe
[u] and creates a data structure D, such that the space complexity of the data structure
D is O(m2−ε1) for some ε1 > 0 and the query time of algorithm A is O(u1/2−ε2) for some
0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

Now, given an instance of SetDisjointness with sets S′1, S′2, ..., S′m′ , we denote by N ′ the
total number of elements in all sets, that is N ′ =

∑m
i=1 |S′i|. We rename the elements of all

the sets such that each element ei is mapped to some integer xi ∈ [N ′].
We distinguish between 3 types of sets:

(a) Large sets are all the sets with more than
√
u elements. Denote by d the number of

large sets. Let Sp1 , Sp2 , ..., Spd be some ordering of the large sets. Let p be a function
such that p(i) = pj if Si is the set Spj in the ordering of the large sets.

(b) Small sets are all the sets with O(u1/2−ε) elements.
(c) Medium sets are all the sets that are neither large nor small. Denote by e the number

of medium sets. Let Sq1 , Sq2 , ..., Sqe be some ordering of the medium sets. Let q be a
function such that q(i) = qj if Si is the set Sqj in the ordering of the medium sets.

Now, we can solve SetDisjointness in the following way.

Preprocessing:
(1) For any set Si use static hashing to save all elements of the set in a table Ti, such that

we can check if some element exists in the set in O(1) time and the size of Ti is O(|Si|).
(2) Maintain a d × (d + e) matrix M . The `th row in this matrix represents the set Sp` .

For 1 ≤ ` ≤ d, the `th column represents Sp` and for d+ 1 ≤ ` ≤ d+ e, the `th column
represents Sq`−d .

(3) For all pairs of sets Si and Sj such that Si is a large set and Sj is a large or medium set,
save an explicit answer to the emptiness of the intersection of Si and Sj in M [p(i), p(j)]
and M [p(j), p(i)] if Sj is a large set and in M [p(i), d+ q(j)] if Sj is a medium set.

(4) Pick logn hash functions hi : N → [8u], for 1 ≤ i ≤ logn. Apply each hi to all elements
in all medium sets. Denote by hi(Sj) the set Sj after hi has been applied to its elements.

(5) For every i, j ∈ [e], if Sqi ∩ Sqj = ∅ do the following: Check if for all k ∈ [logn] there are
x ∈ Sqi and x′ ∈ Sqj such that x 6= x′ but hk(x) = hk(x′). If so, go back to step (4).

(6) For every k ∈ [logn]:
(6.1) Apply hk to all the elements of all the medium sets.
(6.2) Use algorithm A to create a data structure Dk that solves the set disjointness

problem on the medium sets Sq1 , Sq2 , ..., Sqe after hk has been applied to their
elements.

Query: Given a pair of indices i and j, we need to determine if Si ∩ Sj is empty or not.
Without loss of generality we assume that |Si| < |Sj | and do the following:

(1) If Si is a small set:
(1.1) For each element x ∈ Si: Check if x ∈ Sj using table Tj . If so, return 0.
(1.2) Return 1.

(2) If Sj is a large set:
(2.1) If Si is a large set: Return M [p(i), p(j)].
(2.2) If Si is a medium set: Return and M [p(j), d+ q(i)].

ISAAC 2019

7:6 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

(3) Else (if both Si and Sj are medium sets):
For every k ∈ [logn], check by using algorithm A and the data structure Dk if Si and
Sj are disjoint.
If there is at least one value of k for which these sets are disjoint, return 1.
Otherwise, return 0.

Correctness. If at least one of the query sets is small then we can check if any of its elements
is in the other query set using the hash tables that have been created in step (1) of the
preprocessing phase. This is done in step (1) of the query algorithm. If at least one of the
sets is large we can find the answer immediately by looking at the right position of matrix
M that has been created in steps (2)-(3) of the preprocessing phase. The last option is that
both query sets are medium. If this is the case we use the data structures that have been
created in step (6) of the preprocessing phase. In steps (4) and (5) of the preprocessing phase
we look for logn hash functions such that if any pair of sets are disjoint then they must be
disjoint when applying the hash functions to their elements by at least one of the logn hash
functions. Therefore, if any of the data structures that have been created in step (6) of the
preprocessing phase reports that a pair of sets are disjoint they must be disjoint. Moreover,
if a pair of sets are disjoint then there must be at least one data structure that reports that
they are disjoint. This is checked in the step (3) of the query algorithm.

The last thing that needs to be justified is the existence of logn hash function such that
for every pair of sets Si and Sj that are disjoint they are also disjoint after applying the
hash functions by at least one of the logn hash functions. The range of the hash function is
[8u]. The number of elements in the medium sets is no more than

√
u. Therefore, for any

two medium sets Si and Sj and a hash function hk : N → [8u] we have by the union-bound
that Pr[∃x1 ∈ Si, x2 ∈ Sj : x1 6= x2 ∧ hk(x1) = hk(x2)] ≤

√
u·
√
u

8u = 1/8. Consequently, the
probability that a pair of disjoint medium sets Si and Sj are not disjoint when applying hk
for all k ∈ [logn] is no more than (1/8)logn = 1/n3. Therefore, the probability that any pair
of disjoint medium sets are not disjoint when applying hk for all k ∈ [logn] is no more than
n2/n3 = 1/n by the union-bound. Using the probabilistic method we get that there must be
logn hash functions such that for every pair of sets Si and Sj that are disjoint they are also
disjoint after applying the hash functions by at least one of the logn hash functions.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N) - linear in the total number of elements. The total number of large sets d is at most
O(N/u1/2). The total number of medium sets e is at most O(N/u1/2−ε). Therefore, the
size of the matrix M is at most O(N/u1/2 · (N/u1/2 + N/u1/2−ε)) = O(N2/u1−ε). There
are logn data structures that are created in step (6). Each data structure uses at most
O((N/u1/2−ε)2−ε) = O(N2−ε/u1−5ε/2+ε2) space. Consequently, the total space complexity
is S = Õ(N2/u1−ε +N2−ε/u1−5ε/2+ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(u1/2−ε) as this
is the size of the largest small set. Step (2) is done in constant time by looking at the right
position in M . In step (3) we do logn queries using algorithm A and the data structures Dk.
The query time for each query is O(u1/2−ε) as the universe of the sets after applying any
hash function hk is [8u]. Therefore, the total query time is T = O(u1/2−ε).

I. Goldstein, M. Lewenstein, and E. Porat 7:7

Following our analysis we have that S ·T 2 = Õ((N2/u1−ε+N2−ε/u1−5ε/2+ε2)·(u1/2−ε)2) =
Õ(N2u−ε+N2−εuε/2−ε2) = Õ(N2u−ε+N2u−ε

2) (the last equality follows from the fact that
u ≤ N).This contradicts the Strong SetDisjointness Conjecture and therefore our assumption
is false. J

From the proof of the above theorem we get a specific range for the value of m for hard
instances of SetDisjointness. Bounding the value of m for hard instances may be useful
for some specific applications. Therefore, we state the following corollary of the proof of
Theorem 4:

I Corollary 5. For any ε > 0, any solution to set disjointness with sets S1, S2, ..., Sm ⊆ [u]
for any value of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si|, δ > 0 and the solution works for any

value of m in the range [N
u1/2 ,

N
u1/2−ε], must either use Ω(m2−o(1)) space or have Ω(u1/2−o(1))

query time, unless the Strong SetDisjointness Conjecture is false.

We also prove conditional lower bounds on SetIntersection with bounded universe based
on the Strong SetDisjointness Conjecture and the Strong SetIntersection Conjecture by
generalizing the ideas from the previous proof. These results appear in Appendix A.

3 Hardness of Preprocessing-Query Time Tradeoff for SD and SI
with Bounded Universe

We combine the ideas of Goldstein et al. [20] and Kopelowitz et al. [24] to get conditional
lower bounds on the complexity of SetDisjointness with bounded universe. To achieve these
bounds we prove the following lemma:

I Lemma 6. Let X be any integer in [nδ, n] for any δ > 0. For any ε > 0, an instance of
3SUM-Indexing that contains 2 arrays with n integers can be reduced to 2ε logX instances
of SetDisjointness SD1, SD2, ..., SD2ε logX . For any 1 ≤ i ≤ 2ε logX, instance SDi have
Ni = n

√
ui elements from universe [ui] and m = n

√
X
ui

sets that each one of them is of size
O(√ui), where ui = X1+ε/2i−1. The time and space complexity of the reduction is truly
subquadratic in n. Each query to the 3SUM-Indexing instance can be answered by at most
O(n/

√
X) queries to each instance SDi plus some additional time that is truly sublinear in n.

Proof. We begin with an instance of 3SUM indexing with arrays A and B and do the
following construction in order to reduce this 3SUM indexing instance to 2ε logn instances of
SetDisjointness. The construction uses almost-linear and almost-balanced hash functions that
serve as a useful tool in many reductions from 3SUM. We briefly define this notion here (see full
details in [24, 31]). LetH be a family of hash functions from [u]→ [m]. H is called linear if for
any h ∈ H and any x, x′ ∈ [u], we have h(x) +h(x′) ≡ h(x+x′) (modm). H is called almost-
linear if for any h ∈ H and any x, x′ ∈ [u], we have either h(x)+h(x′) ≡ h(x+x′)+ch (modm),
or h(x) +h(x′) ≡ h(x+x′) + ch+ 1 (modm), where ch is an integer that depends only on the
choice of h. For a function h : [u]→ [m] and a set S ⊂ [u] where |S| = n, we say that i ∈ [m]
is an overflowed value of h if |{x ∈ S : h(x) = i}| > 3n/m. H is called almost-balanced if
for a random h ∈ H and any set S ⊂ [u] where |S| = n, the expected number of elements
from S that are mapped to overflowed values is O(m). For simplicity of presentation, we
treat the almost-linear hash functions as linear and this only affects some constant factors in
our analysis.

ISAAC 2019

7:8 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

Construction

Initial Construction. We use an almost-linear almost-balanced hash function h1 : U → [R]
to map the elements of A to R buckets A1, A2, ..., AR such that Ai = {x ∈ A : h1(x) = i}
and the elements of B to R buckets B1, B2, ..., BR such that Bi = {x ∈ B : h1(x) = i}. As
h1 is almost-balanced the expected size of each bucket is O(n/R). Moreover, buckets with
more than 3n/R elements, called overflowed buckets, have no more than O(R) elements in
total. We save these O(R) elements in lists LA and LB (we put elements from overflowed
buckets of A in LA and elements from overflowed buckets of B in LB). We also sort A and
B and save lookup tables for both A and B.

We pick another almost-linear almost-balanced hash function h2 : U → [n]. For each
bucket Ai, we create an n-length characteristic vector vAi such that vAi [j] = 1 if there is
x ∈ Ai such that h2(x) = j and vAi [j] = 0 if there is no x ∈ Ai such that h2(x) = j. In the
same way we create an n-length characteristic vector vBj for each bucket Bj .

Quad Trees Construction. We create a search quad tree for each pair of buckets Ai and
Bj following the idea of Goldstein et al. [20]. The construction involves calculating the
convolution of many pairs of vectors. The convolution of two vectors u, v ∈ {R+ ∪ {0}}n is a
vector c, such that c[k] =

∑k
i=0 u[i]v[k − i] for 0 ≤ k ≤ 2n− 2. Constructing the quad tree

is done as follows:
Quad-Tree-Construction(vAi ,vBj ,X).
(1) For the bottom level of the quad tree:

(1.1) Partition the characteristic vector vAi into dn/Xe sub-vectors vAi1 , ..., vAidn/Xe
each of them of length X.

(1.2) Pad the last sub-vector with zeroes if needed.
(1.3) Let i1, i2, ..., iY be the indices of the ones in some sub-vector vAik . If Y > X/R

(1.3.1) Duplicate vAik t = dY/(X/R)e times.
(1.3.2) For every p ∈ [t]: Save in the pth copy of vAik just the ones in the indices

i(p−1)·(X/R)+1, ..., ip·(X/R)−1. Replace all other ones by zeroes.
(1.4) Denote the sequence of sub-vectors of vAi and their duplicates by

PAi = v1
Ai
, v2
Ai
, ..., v

cn/X
Ai

for some constant c ≥ 1. Order the sub-vectors in PAi by
the locations of the ones. That is, sub-vector w occurs before u in PAi if the ones
in w appear before the ones of u in vAi . A sub-vector w that contains only zeroes
and therefore represents a sub-vector vAik for some 1 < k ≤ dn/Xe without any
duplicates appears before all sub-vectors vAik′ for k

′ > k and their duplicates.
(1.5) Repeat steps (1.1)-(1.4) for vBj and create a sequence of sub-vectors

PBj = v1
Bj
, v2
Bj
, ..., v

c′n/X
Bj

for some constant c′ ≥ 1.
(1.6) Without loss of generality let us assume that c ≥ c′. Add to the end of the sequence

PBj the vectors v
c′n/X+1
Bj

, ..., v
cn/X
Bj

, such that each of these vectors contains exactly
X zeroes.

(1.7) For each pair of sub-vectors vkAi and v
`
Bj

:
(1.7.1) Create a node ck,`i,j in the quad tree.
(1.7.2) Calculate the convolution of vkAi and v

`
Bj

and save the result in ck,`i,j .
(2) For the next level of the quad tree upward:

(2.1) Create a sequence of sub-vectors v′1Ai , v
′2
Ai , ..., v

′cn/2X
Ai

such that v′kAi is the concat-
enation of v2k−1

Ai
and v2k

Ai
from the previous level.

I. Goldstein, M. Lewenstein, and E. Porat 7:9

(2.2) For every v′kAi if there are overlapping locations in v2k−1
Ai

and v2k
Ai

- merge them.
That is, if there are elements in both sub-vectors that represent the same interval
of vAi , merge all of them in v′kAi by setting each overlapping location to 1 if any of
the two overlapping elements in this location is 1, and setting each overlapping
location to 0 otherwise.

(2.3) Repeat steps (2.1) and (2.2) for vBj and create a sequence v′1Bj , v
′2
Bj , ..., v

′cn/2X
Bj

.
(2.4) For each pair of sub-vectors v′kAi and v

′`
Bj create a node c′k,`i,j in the quad tree.

(2.5) Make the node c′k,`i,j the parent of 4 nodes from the previous level:
c2k−1,`−1
i,j , c2k−1,`

i,j , c2k,`−1
i,j , c2k,2`

i,j .
(2.6) Calculate the convolution of v′kAi and v′

`
Bj and save the result in c′

k,`
i,j . The

convolution of v′kAi and v
′`
Bj can be easily calculated using the convolution results

that are saved in c2k−1,`−1
i,j , c2k−1,`

i,j , c2k,`−1
i,j , c2k,2`

i,j from the previous level.
(3) Repeat step (2) for all the levels up to the root. Notice that in the root we have the

complete vectors vAi and vBj and we calculate and save their convolution within the
root node.

We emphasize that in the bottom level of the quad tree the number of sub-vectors of vAi
including all duplicates is no more than cn/X for some constant c ≥ 1, as the total number
of ones in vAi is O(n/R). Therefore, the size of the sequence in step (1.4) is cn/X.

We call a quad tree such that the length of the sub-vectors in its bottom level is X
X-quad-tree. We denote the level of the quad tree with sub-vectors of length Z by `Z . We
emphasize that we consider the length of the sub-vectors for the last notation by their length
if we do no merging in any level of the quad tree.

Convolution by SetDisjointness. The convolution c of two X-length vectors v and u can
be calculated using SetDisjointness in the following way: Let us denote by vi (for any
0 ≤ i ≤ X − 1) a (2X − 1)-length vector, such that vi[j + i] = v[j] for every 0 ≤ j ≤ X − 1
and all other elements of vi are zeroes. It is clear that vi is the vector v that its elements
where shifted by i locations and the empty locations are filled with zeroes. Therefore, we call
the vector vi an i-shift of v. We define ui in a similar way. Let us denote by vR the vector v
in reverse order of elements. It is straightforward to observe that c[j] (the jth element in the
convolution result of v and u) equals to the inner product of vRj (we note that the reverse
operation is done before the shift operation) and uX−1. Informally, the complete convolution
of v and u can be calculated by the inner product of (padded) u and the reversed version of
(padded) v in X − 1 different shifts. We can reduce the number of shifts to v by shifting both
v and u. Specifically, the value of c[j] can be obtained by the inner product of vR

j mod
√
X

and uX−1−b j√
X
c·
√
X . Therefore, the convolution of v and u can be calculated by the inner

product of O(
√
X) shifted versions of both v and u.

Each of the (2X − 1)-length boolean vectors can be represented by a set corresponding
to the ones in the vector. Formally, for a vector w we construct a set Sw such that Sw =
{j|w[j] = 1}. Instead of calculating the inner product of vR

j mod
√
X

and uX−1−b j√
X
c·
√
X ,

we can calculate |SvR
j mod

√
X

∩ Su
X−1−b j√

X
c·
√
X
| and get the same result. In our query

process through the quad tree we just need to know in each node if the value in some
position of the convolution within that node is zero or not. Thus, instead of calculating
|SvR

j mod
√
X

∩ Su
X−1−b j√

X
c·
√
X
| we just need to determine if SvR

j mod
√
X

∩ Su
X−1−b j√

X
c·
√
X

= ∅

or not. All in all, the convolution of two X-length vectors v and u can be determined by a

ISAAC 2019

7:10 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

SetDisjointness instance that contains O(
√
X) sets such that their size equals to the number

of ones in either v or u. Consequently, instead of saving explicitly the convolution result in
each node in some level of the quad tree that represents sub-vectors of length X, we can
create an instance of SetDisjointness that can be used to determine if a specific position in a
convolution result is zero or not.

Hybrid Quad Tree Construction. Using the idea from the previous paragraph we modify
the quad tree construction in the following way: We construct in the regular way, that
is explained in detail above, each of the quad trees until level `X1−ε . From level `X1−ε to
level `X1+ε we do not save the convolution results explicitly in the quad tree for each level,
but rather we create a SetDisjointness instance that can be used to answer if a specific
position in a convolution result is zero or not. This is an hybrid construction in which we
create an (X1+ε)-quad-tree that the bottom X2ε levels are not saved explicitly. Instead, the
information for these bottom levels is determined by the SetDisjointness instances we create.
These levels are called the implicit levels of the hybrid quad tree while the levels in which we
save the convolution results explicitly are called the explicit levels of the hybrid quad tree.

Query. Given a query integer number z, we search for a pair of integers x ∈ A and y ∈ B
such that x+ y = z. First of all, we check for each element x ∈ LA if there is y ∈ B such that
x+ y = z and we also check for each element y ∈ LB if there is x ∈ A such that x+ y = z.
This can be done easily in Õ(R) time using the sorted versions of A and B. Then, if x
is in bucket Ai then by the (almost) linearity property of h1 we expect y to be in bucket
Bj such that j = i − h1(z). In order to find out if there is x ∈ Ai and y ∈ Bj such that
x+ y = z we can calculate the convolution of vAi and vBj . Denote the vector that contains
their convolution result by Ci,j . If Ci,j [h2(z)] = 0 then there are no x ∈ Ai and y ∈ Bj such
that x+ y = z. However, if Ci,j [h2(z)] 6= 0 then there may be x ∈ Ai and y ∈ Bj such that
x+ y = z, but it may also be the case that h2(x) + h2(y) = h2(z) while x+ y 6= z. Therefore,
in order to verify if there are x ∈ Ai and y ∈ Bj such that x + y = z, we need to find all
pairs of x′ ∈ Ai and y′ ∈ Bj such that h2(x′) +h2(y′) = h2(z) and check if indeed x′+ y′ = z.
There are exactly Ci,j [h2(z)] such pairs, which are also called witnesses.

In order to efficiently find the witnesses of Ci,j [h2(z)], we use the hybrid quad tree we
have constructed for buckets Ai and Bj in the following way: We start at the root of the
hybrid quad tree if the convolution result in the root is non-zero at location h2(z), we look at
the children of the root node and continue the search at each child that contains a non-zero
value in the convolution result it saves in the index that corresponds to index h2(z) of the
convolution in the root. This way we continue downward all the way to the leaves. In the
levels of the hybrid quad tree that the convolution results are not saved explicitly we query
the SetDisjointness instances in order to get an indication for the existence of a witness in
the search path from the root.

If we reach a leaf of the quad tree and the convolution result within this leaf is non-zero
in the location that corresponds to the index h2(z) of the convolution in the root, then we
do a “2SUM-like” search within this leaf.

The “2SUM-like” search is done as follows: Let us assume that the leaf represents 2
sub-vectors vkAi and v

`
Bj

. We recover the original elements that these sub-vectors represent.
Let the array Aki contain all x ∈ Ai such that there is one in vkAi that corresponds to h2(x).
In the same way we construct array B`j . We sort both Aki and B`j . Let d be the size of Aki .
Then, if Aki [d− 1] +B`j [0] = z we are done. Otherwise, if the sum is greater than z we check
if Aki [d− 2] +B`j [0] = z and if it is smaller than z we check if Aki [d− 1] +B`j [1] = z. This
way we continue until we get to the end of one of the arrays or find a pair of elements that
its sum equals z.

I. Goldstein, M. Lewenstein, and E. Porat 7:11

Analysis. There are R2 possible pairs of buckets Ai and Bj . Therefore, we construct R2

quad trees. In order to save the convolution results in all the nodes in an explicit level `Z of
some hybrid quad tree, the space we need to use is O(n2/Z) (for each pair Ai and Bj , there
are O(n2/Z2) pairs of sub-vectors one from vAi and the other from vBj . The size of the
convolution of the two sub-vectors is O(Z)). Therefore, the total space for constructing the
explicit levels of the hybrid quad trees is Õ(n2/X1+ε ·R2) (a level that is closer to the root
requires less space than a level that is farther away from the root. There are at most logn
levels in each quad tree. The bottom explicit level is `X1+ε). This is also the preprocessing
time for constructing these levels of the hybrid quad trees as the convolution of two n-length
vector can be calculated in Õ(n) time.

From level `X1−ε to level `X1+ε we do not save the convolution results explicitly in the quad
tree for each level, but rather we create a SetDisjointness instance that can be used to answer
if a specific position in a convolution result is zero or not, as explained in detail previously. Let
us analyse the cost of the SetDisjointness instance for some implicit level `Z . We have O(R)
buckets. Each bucket is represented by a characteristic vector that is partitioned into O(n/Z)
parts of length Z, such that each part contains O(Z/R) ones. For each sub-vector we create
O(
√
Z) sets that represent O(

√
Z) shifts of the sub-vector as explained previously. Therefore,

the total number of sets we have is O(R ·n/Z ·
√
Z) = O(nR/

√
Z). Each set contains O(Z/R)

elements, so the total number of elements in all sets is O(R · n/
√
Z · Z/R) = O(n

√
Z). The

universe of all the elements in the sets is Z.
For a query integer z we have O(R) pairs of buckets Ai and Bj in which we may have two

elements, one from each array, that sum up to z (as j = i− h1(z)). For a pair of buckets Ai
and Bj , we search for all the witnesses of Ci,j [h2(z)] in the quad tree of Ai and Bj . Searching
for a witness from the root to a leaf of the quad tree can be done in O(logn) time in the levels
we save the convolution explicitly and a constant number of queries for each SetDisjointness
instance. Within a leaf we do a “2SUM-like” search on 2 arrays that contain O(X1−ε/R)
elements. Therefore, the total search time per witness is at most Õ(X1−ε/R). A false witness
is a witness pair of elements (x, y) such that x + y 6= z, but h2(x) + h2(y) = h2(z). The
probability that a pair of numbers (x, y) is a false witness is 1/n (because the range of h2 is
[n]). Therefore, the expected number of false witnesses within a specific pair of buckets is at
most O((n/R)2 · 1/n) = O(n/R2) by the union-bound (notice that the number of elements
in each bucket is O(n/R)). Consequently, the total expected number of false witnesses is
at most O(Rn/R2) = O(n/R). As explained before, the total search time per witness is at
most Õ(X1−ε/R). Thus, the total query time is Õ(nX1−ε/R2).

All in all, the total space and preprocessing time that is required by the explicit levels of
the O(R2) hybrid quad trees is Õ(n2/X1+ε ·R2) which is truly subquadratic in n if we set
R =

√
X. Moreover, the total query time is Õ(nX1−ε/R2) which is truly sublinear in n if

we set R =
√
X. Therefore, by setting R =

√
X we have that the space and preprocessing

time of the reduction is truly subquadratic in n. Additionally, a query can be answer by at
most O(n/

√
X) queries to each SetDisjointness instance plus some additional time that is

truly sublinear in n. J

I Theorem 7. Any solution to SetDisjointness with sets S1, S2, ..., Sm ⊆ [u] for any value of
u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either have Ω(m2−o(1)) preprocessing

time or have Ω(u1/2−o(1)) query time, unless the 3SUM Conjecture is false.

Proof. Given an instance of the 3SUM problem that contains 3 arrays A,B and C with
n numbers in each of them, we can solve this instance simply by creating a 3SUM in-
dexing instance with arrays A and B and n queries - one for each number in C. Thus,

ISAAC 2019

7:12 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

using the previous lemma the given 3SUM instance can be reduced for any integer value
of X in [nδ, n] (for any δ > 0) and for any ε > 0 to 2ε logX instances of SetDisjointness
SD1, SD2, ..., SD2ε logX . For any 1 ≤ i ≤ 2ε logX, instance SDi have N = n

√
ui elements

from universe [ui] and m = n
√

X
ui

sets that each one of them is of size O(√ui), where
ui = X1+ε/2i−1. The total time for this reduction is O(n2−ε1) for some ε1 > 0, and the total
number of queries is Õ(n2/

√
X). Consequently, if we assume to the contradiction that there

is an algorithm that solves SetDisjointness on m sets from a universe [u] with O(m2−ε2)
preprocessing time for some ε2 > 0 and O(u1/2−ε3) query time for some 0 < ε3 ≤ 1/2,
then we have a solution to 3SUM with O(n2−ε1) +

∑2ε logX
i=1 O((n

√
X
ui

)2−ε2 + n2
√
X
u

1/2−ε3
i)

time. We have that for any i, ui ≤ X1+ε and
√

X
ui
≤

√
X

X1−ε = Xε/2. Therefore,∑2ε logX
i=1 O((n

√
X
ui

)2−ε2 + n2
√
X
u

1/2−ε3
i)) = Õ(n(1+ε/2)(2−ε2) + n2

√
X
X(1+ε)(1/2−ε3)). Thus, by

setting ε = min(ε2, ε3) we have a total running time that is truly subquadratic in n. This
contradicts the 3SUM Conjecture. J

Another implication of our reduction in Lemma 6 is a similar reduction from 3SUM to
SetIntersection. This reduction leads to a similar conditional lower bound on the preprocessing
and query time tradeoff of SetIntersection with bounded universe. This is done in Appendix A.

4 Applications

In this section we present several applications of our lower bounds on SetDisjointness and
SetIntersection with bounded universe. Several hardness results on the reporting variants of
the problems in this section appear in Appendix B

4.1 Range Mode
As mentioned in the introduction, the range mode problem can be solved using S space and
T query time such that: S · T 2 = Õ(n2) [12, 26]. In the following Theorem we prove that
S · T 4 = Ω̃(n2). This lower bound is proved based on the Strong SetDisjointness Conjecture
using Theorem 4. We note that if the lower bound on the query time in Theorem 4 was
Ω(u1−o(1)) instead of Ω(u1/2−o(1)) then the lower bound and upper bound were tight.

I Theorem 8. Any data structure that answers Range Mode Queries in T time on a string
of length n must use S = Ω̃(n2/T 4) space, unless the Strong SetDisjointness Conjecture
is false.

Proof. We use the idea of Chan et al. [12] and apply our theorem on the hardness of
SetDisjointness with bounded universe. We begin with an instance of SetIntersection with
sets S1, S2, ..., Sm ⊆ [u] such that u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0. We create a string

STR that is the concatenation of two string T1 and T2 of equal length. The string T1 is the
concatenation of the strings T11, T12, ..., T1m. For each i the string T1i is of length u and
each character in it is a different number in [u]. The prefix of T1i contains all the numbers in
[u] \ Si in a sorted order. This prefix is followed by all the numbers in Si in a sorted order.
This is called the suffix of T1i. T2 is constructed very similar to T1 but with a change in the
order of the suffix and prefix. Specifically, the string T2 is given by the concatenation of the
strings T21, T22, ..., T2m. For each i the string T2i is of length u and each character in it is a
different number in [u]. The prefix of T2i contains all the numbers in Si in a sorted order.

I. Goldstein, M. Lewenstein, and E. Porat 7:13

This prefix is followed by all the numbers in [u] \ Si in a sorted order. This is called the
suffix of T2i. For every 1 ≤ i ≤ m, let us denote by ai the index where the prefix of T1i ends
and by bi the index where the prefix of T2i ends.

The string STR is preprocessed for range mode queries. Then, given a query pair (i, j) for
SetDisjointness, we need to decide if Si ∩ Sj = ∅ or not. This is done by a range mode query
for the range [ai + 1, bj]. For every p ∈ [2] and q ∈ [m], the string Tpq contains characters
that represent all the numbers in [u], such that each of these numbers occurs exactly once in
the string. Between T1i and T2j we have m− i+ j − 1 substrings that each of them contains
all the characters from [u]. Therefore, each character occurs m− i+ j − 1 times between T1i
and T2j . The suffix of T1i starting at index ai + 1 contains all the characters that represent
the elements of Si, while the prefix of T2j ending at index bj contains all the characters that
represent the elements of Sj . Consequently, if there is an intersection between Si and Sj we
will have at least one character that occurs in both the suffix of T1i and the prefix of T2j .
Thus, the mode of the range [ai + 1, bj] will be m− i+ j + 1 if Si ∩ Sj 6= ∅, and less than
m− i+ j + 1 if the Si ∩ Sj = ∅. Therefore, if we get from the range mode query a character
c that occurs m− i+ j + 1 times in the query range we know that the intersection is not
empty, and if not we know that the intersection is empty. Even if the range mode query
does not return the frequency of the mode within the query range, but rather just the mode
element itself, we can save a hash table for every input set and use this tables to check in
constant time if the returned element occurs in both Si and Sj .

Consequently, an instance of SetDisjointness with m sets from universe [u] (such that
u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0), can be reduced to an instance of the range mode

problem with a string of length n = 2mu, such that every query to the SetDisjointness
instance can be answered by a query to the range mode instance. Let us assume to the
contrary that the range mode problem can be solved by a data structure that answers queries
in Õ(T) time per query using Õ(S) space such that S · T 4 = Õ(n2−ε). Let T = Õ(u1/2−ε/4),
we have that S = Õ(n2ε/T 4) = Õ((mu)2−ε/u4(1/2−ε/4)) = Õ(m2−εu2−ε/u2−ε)) = Õ(m2−ε).
Therefore, we have a solution to SetDisjointness with m sets from universe [u] with query
time Õ(u1/2−ε/4) and space Õ(mu+m2−ε) (we add mu to the space usage, as we must at
least save the string ST). According to Corollary 5 the reduction from general SetDisjointness
to SetDisjointness with bounded universe holds for N/

√
u ≤ m. Therefore, for any value

of u ≤ N2/3−ε we have that
√
u ≤ N1/3−ε/2. Thus, the following holds:

√
u ≤ N1/3−ε/2 ⇒

1
N1/3−ε/2 ≤ 1√

u
⇒ N

N1/3−ε/2 ≤ N√
u
⇒ N2/3+ε/2 ≤ N√

u
≤ m ⇒ N2/3+ε/2− 2

3 ε−
ε2
2 ≤ m1−ε.

Consequently, we have that u ≤ N2/3−ε < N2/3−ε/6−ε/2 ≤ N2/3−ε/6−ε2/2 ≤ m. All in all, for
any u ≤ N2/3−ε the reduction holds and mu = Õ(m2−ε). Consequently, the total space for
solving SetDisjointness with bounded universe using our reduction to the range mode problem
is Õ(m2−ε) and the query time is Õ(u1/2−ε/4). This contradicts the Strong SetDisjointness
Conjecture according to Corollary 5. J

Using Theorem 7 and the same idea from the proof of Theorem 8, we obtain the following
result regarding the preprocessing and query time tradeoff for solving the range mode
problem:

I Corollary 9. Any data structure that answers Range Mode Queries in T time on a string
of length n must have P = Ω̃(n2/T 4) preprocessing time, unless the 3SUM Conjecture is
false.

ISAAC 2019

7:14 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

4.2 Distance Oracles
Agarwal [6] presented space-time tradeoffs for distance oracles for undirected graph G = (V,E)
with average degree µ (that is, µ = 2|E|

|V |): (i) (1 + 1
k)-stretch distance oracles that use

Õ(|E| + |V |2
α) space and have O((αµ)k) query time, for any 1 ≤ α ≤ |V | (ii) (1+ 1

k+0.5)-
stretch distance oracles that use Õ(|E|+ |V |

2

α) space and have O(α(αµ)k) query time, for any
1 ≤ α ≤ |V |. (iii) (1 + 2

3)-stretch distance oracle that uses Õ(|E|+ |V |
2

α) space and has O(αµ)
query time for any 1 ≤ α ≤ (|V |

2

|E|) 1
3 . In the last result ((iii)) Agarwal managed to shave an α

factor of the query time in (ii) (for k = 1). Therefore, both 5
3 -stretch distance oracle and

2-stretch distance oracle (by setting k = 1 in (i)) have the same space-time tradeoff. It is
known that 3-stretch distance oracle has a better tradeoff (see [8]). Moreover, by (i) and (ii)
the tradeoff for stretch less than 5/3 gets worse as the stretch guarantee is better. Thus, it
seems natural to expect a better tradeoff for stretch more than 5/3 and less-than-equal to 2.

In the following theorem we prove that improving the tradeoff of Agarwal [6] is impossible
for any stretch t ∈ [2

3 , 2), unless the Strong SetDisjointness Conjecture is false:

I Theorem 10. Any distance oracle for undirected graph G = (V,E) with stretch less than
2 must either use Ω(|V |2−o(1)) space or have Ω(µ1−o(1)) query time, where µ is the average
degree of a vertex in G, unless Strong SetDisjointness Conjecture is false.

Proof. We use the idea of Cohen and Porat [16] with our hardness results for SetDisjointness
with bounded universe. Given an instance of SetDisjointness with sets S1, S2, ..., Sm ⊆ [u]
such that u ∈ [Nδ, N], N =

∑m
i=1 |Si| and δ > 0, we construct a bipartite graph G = (V,E)

as follows: In one side, we create a vertex vi for each set Si. In the other side, we create
a vertex uj for each element j ∈ [u]. For each element x in some set Si we create an edge
(vi, ux). Formally, V = {vi|1 ≤ i ≤ m} ∪ {uj |j ∈ [u]} and E = {(vi, ux)|x ∈ Si}. For any
i, j ∈ [m], if Si ∩ Sj 6= ∅ then it is clear that the distance between vi and vj is exactly 2.
Otherwise, the distance is at least 4. A stretch less-than 2 distance oracle can distinguish
between these two possibilities and therefore a SetDisjointness query can be answered by one
query to a stretch less-than 2 distance oracle for G.

It is clear that |V | = m + u and |E| = N . We assume to the contradiction that
there is a stretch less than two distance oracle that uses Õ(|V |2−ε1) space and answers
queries in Õ(µ1−ε2) = Õ((|E||V |)

1−ε2) time, for some ε1, ε2 > 0. Therefore, SetDisjointness
with bounded universe can be solved using Õ((m + u)2−ε1) space and queries can be
answered using Õ((N

m+u)1−ε2) time. According to Corollary 5 the reduction from general
SetDisjointness to SetDisjointness with bounded universe holds for N/

√
u ≤ m. Therefore,

for any value of u ≤ N2/3 we have that the reduction holds and u ≤ m (see the full
details in the proof of Theorem 8). Moreover, we have that N/(m + u) ≤ N/m ≤

√
u.

Consequently, for any u ≤ N2/3 we have a solution to SetDisjointness with bounded
universe that uses Õ((m+ u)2−ε1) = Õ(m2−ε1) space and answers queries in Õ(N

m+u
1−ε2) =

Õ((
√
u)1−ε2) = Õ(u1/2−ε2/2) time. This contradicts Strong SetDisjointness Conjecture

according to Corollary 5. J

The previous theorem can be stated in a different way that makes it clear that the
space-time tradeoff of Agarwal [6] is tight for distance oracles with stretch t such that
5/3 ≤ t < 2.

I Corollary 11. There is no stretch less-than-2 distance oracle for undirected graph G = (V,E)
that uses Õ(|V |

2

α) space and have Õ(α1−εµ) query time for any |V |δ ≤ α and any δ, ε > 0,
unless conjecture 1 is false.

I. Goldstein, M. Lewenstein, and E. Porat 7:15

Using Theorem 7 and the same idea from the proof of Theorem 10, we obtain the following
result regarding the preprocessing and query time tradeoff for distance oracles with stretch
less-than-2:

I Theorem 12. Any distance oracle for undirected graph G = (V,E) with stretch less than 2
must either be constructed in Ω(|V |2−o(1)) preprocessing time or have Ω(µ1−o(1)) query time,
where µ is the average degree of a vertex in G, unless the 3SUM Conjecture is false.

4.3 3SUM-Indexing with Small Universe
In the following theorem we prove a conditional lower bound on the space-time tradeoff for
solving 3SUM-Indexing with universe size that is [n2+ε] for any ε > 0 (n is the size of the
input arrays).

I Theorem 13. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing with arrays
A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε] must
either use Ω(n2−δ−o(1)) space or have Ω(n δ2−o(1)) query time, unless Strong SetDisjointness
Conjecture is false.

Proof. We use the idea of Goldstein et al. [21] with our hardness for SetDisjointness with
bounded universe. We begin with an instance of SetDisjointness with sets S1, S2, ..., Sm ⊆ [u]
such that u = Nδ, m ∈ [N

u1/2 ,
N

u1/2−ε′], N =
∑m
i=1 |Si|, ε′ = ε/2 and δ > 0.

For every element x in some set Si we create two numbers x1,i and x2,i. The number x1,i
consists of 3 blocks of bits (ordered from the least significant bit toward the most significant
bit): (i) A block of logm bits that contains the value of the index i. (ii) A block of logm
padding zero bits. (iii) A block of log u bits that contains the value of x−1. The number x2,i
consists of 3 blocks of bits (ordered from the least significant bit toward the most significant
bit): (i) A block of logm padding zero bits. (ii) A block of logm bits that contains the
value of the index i. (iii) A block of log u bits that contains the value of u − x. We place
the number x1,i in array A and the number x2,i in array B. The number of elements in
each of these arrays is N , as we add a number to each array for every element in the input
sets. These two arrays form an instance of 3SUM-Indexing which is preprocessed in order to
answer queries.

Given a query asking whether Si ∩ Sj = ∅ or not, we can answer it by creating a query
number z to the 3SUM-Indexing instance as follows: The number z consists of 3 blocks of
bits (ordered from the least significant bit toward the most significant bit): (i) A block of
logm bits that contain the value of the index i. (ii) A block of logm that contain the value
of the index j. (iii) A block of log u bits that contains the value of u− 1. It straightforward
to see that we get a positive answer to the query number z iff Si ∩ Sj 6= ∅: (i) If we have
x1,k1 ∈ A and y2,k2 ∈ B such that x1,k1 + y2,k2 = z, then we must have that: (1) k1 = i

which means that x is in Si. (2) k2 = j which means that y is in Sj . (3) x− 1 +u− y = u− 1
which means that x = y. (ii) If Si ∩ Sj 6= ∅ then there is an element x such that x ∈ Si and
x ∈ Sj . From our construction it is clear that indeed x1,i + x2,j = z.

Thus, we have reduced our SetDisjointness instance to an instance of 3SUM-Indexing such
that each query to the SetDisjointness instance can be answered by a query to the 3SUM-
Indexing instance. The size of each array in the 3SUM-Indexing instance isN . All the numbers
in these arrays have 2 logm + log u bits. Let u = Nδ and m ∈ [N

u1/2 ,
N

u1/2−ε′], for ε′ ≤ ε
2 ,

then the number of bits in each number of A and B is bounded by 2 log N
u1/2−ε′ + logNδ =

2 logN1−δ/2+ε′δ + logNδ = 2(1− δ/2 + ε′δ) logN + δ logN = (2 + 2ε′δ) logN ≤ (2 + ε) logN .
By setting n = N we have that both A and B have n elements and all the numbers
are in [n2+ε].

ISAAC 2019

7:16 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

We assume to the contradiction that 3SUM-Indexing with universe [n2+ε] can be solved
using Õ(n2−δ−γ1) space, while answering queries in Õ(n δ2−γ2) time, for some γ1, γ2 > 0.
Following our reduction this means that we can solve SetDisjointness with m from universe
[u] using S = Õ(n2−δ−γ1) space, while answering queries in T = Õ(n δ2−γ2) time. We
have that u = nδ, so n = u1/δ. Moreover, m ≥ n1−δ/2, so n ≤ m1/(1−δ/2). Therefore,
S = Õ(m(2−δ−γ1)/(1−δ/2)) = Õ(m

2− γ1
1− δ2) and T = Õ(u(δ2−γ2)/δ) = Õ(u1/2−γ2/δ). This

contradicts Corollary 5. J

Using Theorem 7 and the same idea from the proof of Theorem 13, we obtain the following
result regarding the preprocessing and query time tradeoff for distance oracles with stretch
less-than-2:

I Theorem 14. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing with arrays
A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε] must
either have Ω(n2−δ−o(1)) preprocessing time or have Ω(n δ2−o(1)) query time, unless the 3SUM
Conjecture is false.

References
1 Amir Abboud and Kevin Lewi. Exact Weight Subgraphs and the k-Sum Conjecture. In

International Colloquium on Automata, Languages and Programming, ICALP 2013, pages
1–12, 2013.

2 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower
Bounds for Dynamic Problems. In Foundations of Computer Science, FOCS 2014, pages
434–443, 2014.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of Faster
Alignment of Sequences. In International Colloquium on Automata, Languages and Program-
ming, ICALP 2014, pages 39–51, 2014.

4 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching Triangles and
Basing Hardness on an Extremely Popular Conjecture. In Symposium on Theory of Computing,
STOC 2015, pages 41–50, 2015.

5 Peyman Afshani and Jesper Sindahl Nielsen. Data Structure Lower Bounds for Document
Indexing Problems. In International Colloquium on Automata, Languages, and Programming,
ICALP 2016, pages 93:1–93:15, 2016.

6 Rachit Agarwal. The Space-Stretch-Time Tradeoff in Distance Oracles. In Algorithms - ESA
2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
pages 49–60, 2014.

7 Rachit Agarwal and Philip Brighten Godfrey. Distance Oracles for Stretch Less Than 2. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 526–538, 2013.

8 Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. Approximate distance queries
and compact routing in sparse graphs. In INFOCOM 2011. 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 10-15 April 2011, Shanghai, China, pages 1754–1762, 2011.

9 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On Hardness of
Jumbled Indexing. In International Colloquium on Automata, Languages and Programming,
ICALP 2014, pages 114–125, 2014.

10 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the Gap: Essentially Optimal Algorithms for Online Dictionary Matching with One Gap.
In International Symposium on Algorithms and Computation, ISAAC 2016, pages 12:1–12:12,
2016.

I. Goldstein, M. Lewenstein, and E. Porat 7:17

11 Gill Barequet and Sariel Har-Peled. Polygon-containment and Translational min-Hausdorff-
Distance between segment Sets are 3SUM-hard. In Symposium on Discrete Algorithms, SODA
1999, pages 862–863, 1999.

12 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-Space Data Structures for Range Mode Query in Arrays. Theory Comput.
Syst., 55(4):719–741, 2014.

13 Shiri Chechik. Approximate distance oracles with constant query time. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
654–663, 2014.

14 Hagai Cohen. Fast Set Intersection and Two-Patterns Matching. Master’s thesis, Bar-Ilan
University, Ramat-Gan, Israel, 2010.

15 Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching. Theor. Comput.
Sci., 411(40-42):3795–3800, 2010.

16 Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse graph. CoRR,
abs/1006.1117, 2010. arXiv:1006.1117.

17 Pooya Davoodi, Michiel H. M. Smid, and Freek van Walderveen. Two-Dimensional Range
Diameter Queries. In LATIN 2012: Theoretical Informatics - 10th Latin American Symposium,
Arequipa, Peru, April 16-20, 2012. Proceedings, pages 219–230, 2012.

18 Paul F. Dietz, Kurt Mehlhorn, Rajeev Raman, and Christian Uhrig. Lower Bounds for Set
Intersection Queries. Algorithmica, 14(2):154–168, 1995.

19 Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational
Geometry. Comput. Geom., 5:165–185, 1995.

20 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How Hard is it to Find
(Honest) Witnesses? In European Symposium on Algorithms, ESA 2016, pages 45:1–45:16,
2016.

21 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional Lower
Bounds for Space/Time Tradeoffs. In Algorithms and Data Structures Symposium, WADS
2017, pages 421–436, 2017.

22 Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.
3SUM with Preprocessing: Algorithms, Lower Bounds and Cryptographic Applications. arXiv,
2019. arXiv:1907.08355.

23 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic Set Intersection. In Algorithms and
Data Structures - 14th International Symposium, WADS 2015, Victoria, BC, Canada, August
5-7, 2015. Proceedings, pages 470–481, 2015.

24 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher Lower Bounds from the 3SUM Conjecture.
In Symposium on Discrete Algorithms, SODA 2016, pages 1272–1287, 2016.

25 Tsvi Kopelowitz and Ely Porat. The Strong 3SUM-INDEXING Conjecture is False. arXiv,
2019. arXiv:1907.11206.

26 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range Mode and Range Median Queries
on Lists and Trees. Nord. J. Comput., 12(1):1–17, 2005.

27 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Symposium on
Theory of Computing, STOC 2010, pages 603–610, 2010.

28 Mihai Patrascu and Liam Roditty. Distance Oracles beyond the Thorup-Zwick Bound. SIAM
J. Comput., 43(1):300–311, 2014.

29 Mihai Patrascu, Liam Roditty, and Mikkel Thorup. A New Infinity of Distance Oracles for
Sparse Graphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 738–747, 2012.

30 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
31 Joshua R. Wang. Space-Efficient Randomized Algorithms for K-SUM. In European Symposium

on Algorithms, ESA 2014, pages 810–829, 2014.
32 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In International Congress of Mathematicians, ICM 2018, 2018.
33 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting

Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

ISAAC 2019

http://arxiv.org/abs/1006.1117
http://arxiv.org/abs/1907.08355
http://arxiv.org/abs/1907.11206

7:18 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

A Conditional Lower Bounds for SetIntersection

In the following theorem we prove a conditional lower bound on SetIntersection with bounded
universe based on the Strong SetDisjointness Conjecture by generalizing the ideas from
Theorem 4. Specifically, we demonstrate that for SetIntersection we either have the same
space lower bound as for SetDisjointness or we have a Ω̃(u1−o(1) + out) bound on the query
time. The query time bound is stronger than the Ω(u1/2−o(1)) bound that we have for
SetDisjointness. However, we argue that this lower bound for SetIntersection holds only
when the output is large. If we have an upper bound on the size of the output we still have
a lower bound on the query time, but this lower bound gets closer to Ω̃(u1/2−o(1) + out) as
the size of the output gets smaller. Eventually, this coincides with the lower bound we have
for SetDisjointness (notice that in order to answer SetDisjointness queries we just need to
output a single element from the intersection if there is any).

I Theorem 15. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω(m2−o(1)) space or

have Ω̃(uα−o(1) + out) query time, for any 1/2 ≤ α ≤ 1 and any output size out such that
out = Ω(u2α−1−δ) and δ > 0 ,unless Strong SetDisjointness Conjecture is false.

Proof. We use the same idea as in the proof of Theorem 4. Let us assume to the contradiction
that Strong SetDisjointness Conjecture is true but there is an algorithm A′ that solves
SetIntersection on m sets from a universe [u] and creates a data structure D, such that the
space complexity of the data structure D is O(m2−ε1) for some ε1 > 0 and the query time of
algorithm A′ is O(uα−ε2) for some 0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

In the proof, we call those sets with at least uα−3/4ε elements large sets and those sets
with at most O(uα−ε) elements small sets. All other sets are called medium sets.

SetIntersection (for general universe) can be solved in the following way:
The preprocessing phase is similar to the one that is done in the proof of Theorem 4 with

the following changes: 1. In step (5) we check for each pair of medium sets Si and Sj such
that Si ∩ Sj = ∅ that the size of hk(Si) ∩ hk(Sj) is no more than u2α−1−3/2ε for at least
one hk : U → [8u] that we pick in step (4). This is done instead of just checking for the
emptiness of hk(Si) ∩ hk(Sj). 2. In step (6.2) we use algorithm A′ to create a data structure
Dk that solves the SetIntersection problem instead of the SetDisjointness problem.

The query phase is also very similar to the one from Theorem 4 with the following change:
In step (3), for each k, we get one by one the elements in the intersection of hk(Si) and
hk(Sj) by querying the data structure Dk. For each element e in that intersection we verify
that it is contained in both Si and Sj using the tables Ti and Tj . If this is the case, then
we return that the sets are not disjoint. Otherwise, we add one to a counter of the number
of elements in (hk(Si) ∩ hk(Sj)) \ (Si ∩ Sj). If this counter exceeds u2α−1−3/2ε we stop the
query immediately and continue to the next value of k.

The correctness of this reduction follows from the same arguments as in the proof of
Theorem 4. The difference is in analysing the hash functions and their properties. For any
two unequal elements x1 ∈ Si and x2 ∈ Sj , where both Si and Sj are medium sets, and for
any hash function hk : N → [8u] we have that Pr[hk(x1) = hk(x2)] ≤ 1/(8u). We call two
unequal elements x1 ∈ Si and x2 ∈ Sj such that hk(x1) = hk(x2) a false-positive of hk. The
number of elements in the medium sets is no more than uα−3/4ε. Consequently, the expected
number of false-positives in hk(Si) ∩ hk(Sj) is no more than (uα−3/4ε)2/8u = u2α−1−3/2ε/8.
By Markov inequality the probability that the number of false-positives for a specific hk is
more than u2α−1−3/2ε is no more than 1/8. Therefore, the probability that a pair of medium
sets Si and Sj has more than u2α−1−3/2ε false-positives when applying hk for all k ∈ [logn]

I. Goldstein, M. Lewenstein, and E. Porat 7:19

is no more than (1/8)logn = 1/n3. Thus, the probability that the number of false-positives
for any pair of medium sets is more than u2α−1−3/2ε when applying hk for all k ∈ [logn] is
no more than n2/n3 = 1/n by the union-bound. Using the probability method we get that
there must be logn hash functions such that for every pair of medium sets Si and Sj the
number of false-positives is no more than u2α−1−3/2ε after applying the hash functions by at
least one of the logn hash functions.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N) - linear in the total number of elements. The total number of large sets d is at
most O(N/uα−3/4ε). The total number of medium sets e is at most O(N/uα−ε). Therefore,
the size of the matrix M is at most O(N/uα−3/4ε · N/uα−ε) = O(N2/u2α−7/4ε). There
are logn data structures that are created in step (6). Each data structure uses at most
O((N/uα−ε)2−ε) = O(N2−ε/u2α−(2+α)ε+ε2) space. Consequently, the total space complexity
is S = Õ(N2/u2α−7/4ε +N2−ε/u2α−(2+α)ε+ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(uα−ε) as this is
the size of the largest small set. Step (2) is done in constant time by looking at the right
position in M . In step (3) we do logn queries using algorithm A′ and the data structures
Dk. the universe of the sets after applying any hash function hk is [8u], so the query time
for each query is O(uα−ε + out) (out is the size of the output we get from the query). We do
not allow the query to output more than u2α−1−3/2ε < uα−ε elements. Therefore, the total
query time is T = O(uα−ε).

Following our analysis we have that S · T 2 = Õ((N2/u2α−7/4ε +N2−ε/u2α−(2+α)ε+ε2) ·
(uα−ε)2) = Õ(N2u−1/4ε + N2−εuαε−ε

2). As α ≤ 1 and u ≤ N , we have that uαε ≤ N ε.
Therefore, S · T 2 = Õ(N2u−1/4ε + N2u−ε

2). This contradicts the Strong SetDisjointness
Conjecture and therefore our assumption is false. J

A better lower bound on the space complexity for solving SetIntersection can be obtained
based on the Strong SetIntersection Conjecture. This is demonstrated by the following
theorem:

I Theorem 16. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value
of u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either use Ω((m2uα)1−o(1)) space

or have Ω̃(uα−o(1) + out) query time for any 1/2 ≤ α ≤ 1 and any output size out such that
out = Ω(u2α−1−δ) and δ > 0, unless Strong SetIntersection Conjecture is false.

Proof. The proof is very similar to the proof of Theorem 4. Let us assume to the contradiction
that the Strong SetIntersection Conjecture is true but there is an algorithm A′ that solves
SetIntersection on m sets from a universe [u] and creates a data structure D, such that the
space complexity of the data structure D is O(m2uα)1−ε1) for some ε1 > 0 and the query
time of algorithm A′ is O(uα−ε2) for some 0 < ε2 ≤ 1/2. We define ε = min(ε1, ε2).

In order to solve SetIntersection for general universe we use almost the same preprocessing
and query procedures as in the the proof of Theorem 4 except for the following changes:
1. In the preprocessing phase, we do not save in matrix M in the entries M [p(i), p(j)] or
M [p(i), d+ q(j)] just the answer to the emptiness of the intersection of Si and Sj , but rather
we save in this location a list of all the elements within the intersection of Si and Sj . 2. In
the query phase, in step (2) we return a list of elements and not just a single bit. 3. In the
query phase, in step (3) for each k we get the intersection of hk(Si) and hk(Sj) by querying

ISAAC 2019

7:20 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

the data structure Dk. For each element e in that intersection we return it after verifying
that it is contained in both Si and Sj using the tables Ti and Tj . Moreover, we count the
number of elements in (hk(Si)∩hk(Sj)) \ (Si ∩Sj) as we get them from the query and if they
exceed u2α−1−3/2ε we stop the query immediately and continue with the next value of k.

The correctness of the above solution to set intersection follows from the same arguments
as in the proof of Theorem 15.

Complexity analysis

Space complexity. The space for the tables in step (1) of the preprocessing is clearly
O(N). Matrix M in this solution contains in each entry the complete list of elements
in the intersection of some pair of sets. The total number of large sets d is at most
O(N/uα−3/4ε). The total number of medium sets e is at most O(N/uα−ε). The total
number of elements in all sets is N . Therefore, the size of the matrix M is at most
O(N/uα−3/4ε ·N/uα−ε ·uα−ε) = O(N2/uα−3/4ε) (see the full details in the full version of this
paper). There are logn data structures that are created in step (6). Each data structure use
at most O(((N/uα−ε)2uα)1−ε) = O(N2−2ε/uα−(2+α)ε+2ε2) space. Consequently, the total
space complexity is S = Õ(N2/uα−3/4ε +N2−2ε/uα−(2+α)ε+2ε2).

Query time complexity. Step (1) of the query algorithm can be done in O(uα−ε) as this
is the size of the largest small set. Step (2) is done in constant time plus the output size
by looking at the right position in M . In step (3) we do logn queries using algorithm A′

and the data structures Dk. The universe of the sets after applying any hash function hk
is [u], so the query time for each query is O(uα−ε + out) (out is the size of the output we
get from the query). We do not allow the query to output more than u2α−1−3/2ε < uα−ε

false-positive elements. Therefore, the total query time is O(T + out), where T = O(uα−ε).
Following our analysis we have that S · T = Õ((N2/uα−3/4ε + N2−2ε/uα−(2+α)ε+2ε2) ·

(uα−ε)) = Õ(N2u−1/4ε +N2−2εu(1+α)ε−2ε2). As α ≤ 1 and u ≤ N , we have that u(1+α)ε ≤
N2ε. Therefore, S ·T = Õ(N2u−1/4ε+N2u−2ε2). This contradicts the Strong SetIntersection
Conjecture and therefore our assumption is false. J

The construction in the proof of Lemma 6 can be modified in order to obtain the following
reduction from 3SUM-Indexing to SetIntersection:

I Lemma 17. For any 0 < γ < δ ≤ 1, an instance of 3SUM-Indexing that contains 2 arrays
with n integers can be reduced to an instance SI of SetIntersection. The instance SI have
N = n

√
u elements from universe [u] and m = n1+γ−δ/2 sets that each one of them is of

size O(
√
u), where u = nδ and 0 < 2γ < δ ≤ 1. The time and space complexity of the

reduction is Õ(n2+2γ−δ). Each query to the 3SUM-Indexing instance can be answered by at
most O(n1+γ−δ) queries to SI plus some additional O(logn) time.

Proof. We follow the construction from the proof of Lemma 6. In each quad tree we construct
for some two buckets Ai and Bj , we save the convolution results of the corresponding sub-
vectors until the bottom level in which the size of each subvector is X. In this level, for each
pair of sub-vectors we create O(

√
X) sets (representing different shifts) in the same way we

construct the sets for the SetDisjointness instances in the proof of Lemma 6. These sets
form a SetIntersection instance that contains O(R · n/X ·

√
X) = O(nR/

√
X) sets. In the

query phase, whenever we search a quad tree and get to a leaf node we can immediately
report all pairs of elements that are witnesses for Ci,j [h2(z)]. This is easily done by a single
SetIntersection query. The number of sub-vectors in the bottom level is O(n/X) for both

I. Goldstein, M. Lewenstein, and E. Porat 7:21

vAi and vBj . For every sub-vector of vAi there are at most O(1) sub-vectors of vBj that
their convolution with vAi may contain a witness pair for Ci,j [h2(z)]. Consequently, we do
at most O(n/X) intersection queries within each quad tree.

Therefore, the total space for constructing the quad trees’ levels with explicit convolution
results is Õ(n2/X · R2) (see the full analysis in the proof of Lemma 6). This is also the
preprocessing time for constructing these quad trees as the convolution of two n-length
vectors can be calculated in Õ(n) time. It is clear that the space and preprocessing time
are truly subquadratic in n for any δ > 2γ > 0. Moreover, the query time overhead is no
more than O(logn) for every query (a search through a path from the root to a leaf in some
quad tree). J

I Theorem 18. Any solution to SetIntersection with sets S1, S2, ..., Sm ⊆ [u] for any value of
u ∈ [Nδ, N], such that N =

∑m
i=1 |Si| and δ > 0, must either have Ω(m2−o(1)) preprocessing

time or have Ω̃(u1−o(1) + out) query time, unless the 3SUM Conjecture is false.

Proof. Given an instance of the 3SUM problem that contains 3 arrays A,B and C with n
numbers in each of them, we can solve this instance simply by creating a 3SUM indexing
instance with arrays A and B and n queries - one for each number in C. Thus, using the
previous lemma the given 3SUM instance can be reduced to an instance of SetIntersection
with m = n1+γ−δ/2 sets from universe [u] using O(n2+2γ−δ) time for preprocessing, where
the total number of queries to these instances is O(n2+γ−δ).

We assume to the contradiction that there is an algorithm that solves SetIntersection onm
sets from a universe [u] with O(m2−ε1) preprocessing time for some ε1 > 0 and O(u1−ε2 +out)
query time for some 0 < ε2 ≤ 1. If we choose the value of δ such that δ > max 2, 1

ε2
, then we

have a solution to 3SUM with truly subquadratic running time. This contradicts the 3SUM
Conjecture. J

B Hardness of Reporting Problems

B.1 Range Mode Reporting
In the reporting variant of the Range Mode problem we are required to report all elements
in the query range that are the mode of this range. We have stronger lower bounds for this
variant using the same construction as in the proof of Theorem 8 with the conditional lower
bounds for SetIntersection with bounded universe. The results refer to both the interplay
between space and query time and the interplay between preprocessing and query time.

I Theorem 19. Any data structure that answers Range Mode Reporting in O(T + out) time
on a string of length n, where out is the output size, must use S = Ω̃(n2/T 2) space, unless
the Strong SetIntersection Conjecture is false.

I Theorem 20. Any data structure that answers Range Mode Reporting in O(T + out)
time on a string of length n, where out is the output size, must must have P = Ω̃(n2/T 2)
preprocessing time, unless the 3SUM Conjecture is false.

B.2 3SUM-Indexing Reporting
In the reporting variant of 3SUM-Indexing we are required to report all pairs of numbers
a ∈ A and b ∈ B such that their sum equals the query number. Using our hardness results
for SetIntersection with bounded universe we prove the following conditional lower bounds
on 3SUM-Indexing reporting. These results are obtained by applying the same techniques as
in the proof of Theorem 13.

ISAAC 2019

7:22 On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

I Theorem 21. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing reporting with
arrays A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε−δ]
must either use Ω(n2−δ−o(1)) space or have Ω̃(nδ−o(1) + out) query time, where out is the
output size, unless Strong SetIntersection Conjecture is false.

I Theorem 22. For any ε > 0 and 0 < δ ≤ 1, any solution to 3SUM-Indexing reporting with
arrays A = a1, a2, ..., an and B = b1, b2, ..., bn such that for every i ∈ [n] ai, bi ∈ [n2+ε−δ]
must either have Ω(n2−δ−o(1)) preprocessing time or have Ω̃(nδ−o(1) + out) query time, where
out is the output size, unless the 3SUM Conjecture is false.

	Introduction
	Hardness of Space-Time Tradeoff for SD and SI with Bounded Universe
	Hardness of Preprocessing-Query Time Tradeoff for SD and SI with Bounded Universe
	Applications
	Range Mode
	Distance Oracles
	3SUM-Indexing with Small Universe

	Conditional Lower Bounds for SetIntersection
	Hardness of Reporting Problems
	Range Mode Reporting
	3SUM-Indexing Reporting

