24,585 research outputs found

    Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

    Get PDF
    We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space BB endowed with a quadratic norm \|\cdot\|, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of uBu\in B, given partial measurements [ϕi,u][\phi_i, u] with ϕiB\phi_i\in B^*, using relative error in \|\cdot\|-norm as a loss) is a centered Gaussian field ξ\xi solely determined by the norm \|\cdot\|, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm \|\cdot\| and induce a multi-resolution decomposition of BB that is adapted to the eigensubspaces of the operator defining the norm \|\cdot\|. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from H0sH^s_0 to HsH^{-s} or to L2L^2) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to O(NpolylogN)\mathcal{O}(N \operatorname{polylog} N) solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).Comment: 142 pages. 14 Figures. Presented at AFOSR (Aug 2016), DARPA (Sep 2016), IPAM (Apr 3, 2017), Hausdorff (April 13, 2017) and ICERM (June 5, 2017

    Spectral geometry with a cut-off: topological and metric aspects

    Full text link
    Inspired by regularization in quantum field theory, we study topological and metric properties of spaces in which a cut-off is introduced. We work in the framework of noncommutative geometry, and focus on Connes distance associated to a spectral triple (A, H, D). A high momentum (short distance) cut-off is implemented by the action of a projection P on the Dirac operator D and/or on the algebra A. This action induces two new distances. We individuate conditions making them equivalent to the original distance. We also study the Gromov-Hausdorff limit of the set of truncated states, first for compact quantum metric spaces in the sense of Rieffel, then for arbitrary spectral triples. To this aim, we introduce a notion of "state with finite moment of order 1" for noncommutative algebras. We then focus on the commutative case, and show that the cut-off induces a minimal length between points, which is infinite if P has finite rank. When P is a spectral projection of DD, we work out an approximation of points by non-pure states that are at finite distance from each other. On the circle, such approximations are given by Fejer probability distributions. Finally we apply the results to Moyal plane and the fuzzy sphere, obtained as Berezin quantization of the plane and the sphere respectively.Comment: Reference added. Minor corrections. Published version. 38 pages, 2 figures. Journal of Geometry and Physics 201

    Large-Scale Kernel Methods for Independence Testing

    Get PDF
    Representations of probability measures in reproducing kernel Hilbert spaces provide a flexible framework for fully nonparametric hypothesis tests of independence, which can capture any type of departure from independence, including nonlinear associations and multivariate interactions. However, these approaches come with an at least quadratic computational cost in the number of observations, which can be prohibitive in many applications. Arguably, it is exactly in such large-scale datasets that capturing any type of dependence is of interest, so striking a favourable tradeoff between computational efficiency and test performance for kernel independence tests would have a direct impact on their applicability in practice. In this contribution, we provide an extensive study of the use of large-scale kernel approximations in the context of independence testing, contrasting block-based, Nystrom and random Fourier feature approaches. Through a variety of synthetic data experiments, it is demonstrated that our novel large scale methods give comparable performance with existing methods whilst using significantly less computation time and memory.Comment: 29 pages, 6 figure

    Quasi-optimal nonconforming methods for symmetric elliptic problems. I -- Abstract theory

    Get PDF
    We consider nonconforming methods for symmetric elliptic problems and characterize their quasi-optimality in terms of suitable notions of stability and consistency. The quasi-optimality constant is determined and the possible impact of nonconformity on its size is quantified by means of two alternative consistency measures. Identifying the structure of quasi-optimal methods, we show that their construction reduces to the choice of suitable linear operators mapping discrete functions to conforming ones. Such smoothing operators are devised in the forthcoming parts of this work for various finite element spaces

    Modular frames for Hilbert C*-modules and symmetric approximation of frames

    Full text link
    We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. L\"owdin orthogonalization).Comment: SPIE's Annual Meeting, Session 4119: Wavelets in Signal and Image Processing; San Diego, CA, U.S.A., July 30 - August 4, 2000. to appear in: Proceedings of SPIE v. 4119(2000), 12 p

    A Riemannian-Stein Kernel Method

    Full text link
    This paper presents a theoretical analysis of numerical integration based on interpolation with a Stein kernel. In particular, the case of integrals with respect to a posterior distribution supported on a general Riemannian manifold is considered and the asymptotic convergence of the estimator in this context is established. Our results are considerably stronger than those previously reported, in that the optimal rate of convergence is established under a basic Sobolev-type assumption on the integrand. The theoretical results are empirically verified on S2\mathbb{S}^2
    corecore