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QUASI-OPTIMAL NONCONFORMING METHODS FOR
SYMMETRIC ELLIPTIC PROBLEMS. I—ABSTRACT THEORY∗
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Abstract. We consider nonconforming methods for symmetric elliptic problems and characterize
their quasi-optimality in terms of suitable notions of stability and consistency. The quasi-optimality
constant is determined, and the possible impact of nonconformity on its size is quantified by means
of two alternative consistency measures. Identifying the structure of quasi-optimal methods, we show
that their construction reduces to the choice of suitable linear operators mapping discrete functions
to conforming ones. Such smoothing operators are devised in the forthcoming parts of this work for
various finite element spaces.
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1. Introduction. Consider an elliptic boundary value problem, which can be
cast in the abstract form

(1.1) find u ∈ V such that ∀v ∈ V a(u, v) = 〈`, v〉,

where the bilinear form a is a scalar product on the linear function space V . The
Ritz–Galerkin method defines an approximation to u as the solution U of the problem
where the infinite-dimensional space V is replaced by a finite-dimensional subspace
S ⊆ V . Céa’s lemma [13] reveals that U is the best approximation to u in S with
respect to the norm induced by a. Remarkably, this holds regardless of the regularity
of the exact solution u. In other words, the Ritz–Galerkin method is always optimal
in S with respect to the energy norm.

There are various generalizations of Céa’s lemma. For Petrov–Galerkin methods
applied to well-posed problems, Babuška [4] has shown the quasi-optimality property

(1.2) ∀u solutions ‖u− U‖ ≤ Cqopt inf
s∈S
‖u− s‖,

and, recently, Tantardini and Veeser [18] have shown that the best constant is

Cqopt = sup
σ∈Σ

sup‖v‖=1 b(v, σ)

sup‖s‖=1 b(s, σ)
,

where b is the underlying bilinear form and v, s, and σ vary, respectively, in the
continuous trial space, the discrete trial space, and the discrete test space. This
provides a rather general but still very strong result when the discrete spaces are
conforming, that is, are subspaces of their continuous counterparts.
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For classical nonconforming finite element methods (NCFEM) like the Crouzeix–
Raviart or the Morley method and for discontinuous Galerkin (DG) methods, such a
strong result is not available, to our best knowledge. Here the so-called second Strang
lemma [7] or variants serve as a replacement for Céa’s lemma, and the bound of the
term associated with the consistency error is problematic. It involves extra regularity,
• either of the solution u, which has to be taken from a strict compact subset of V ;

see, e.g., Brenner and Scott [9] and Di Pietro and Ern [15],
• or, in the medius analysis initiated by Gudi [16], of the load term `, which has to

be taken from a strict compact subset of V ′; see Brenner [8].
This extra regularity then obstructs a further bound by the best approximation error
with respect to the energy norm in order to conclude quasi-optimality.

However, nonconforming discrete spaces are of interest because the “rigidity”
of their conforming counterparts may cause problems in approximation (see, e.g.,
de Boor and DeVore [14] and Babuška and Suri [5]) and stability (see Scott and
Vogelius [17]) or complicates accommodating structural properties like conservation.

This article is the first in a project to close the gap of missing quasi-optimality
for nonconforming methods. Here we consider continuous problems of the form (1.1),
together with a rather big class of nonconforming methods. This class contains in
particular classical NCFEM, DG, and other interior penalty methods.

Our first main result states that quasi-optimality as in (1.2) is equivalent to
full algebraic consistency and full stability. Full algebraic consistency means that,
whenever the exact solution happens to be in the discrete space, it is also the discrete
solution. Notice that this is a quite weak property if the conforming part S∩V of the
discrete space is small. Full stability means that the discrete problem is stable for all
loads regardless of their regularity. Moreover, we show that full stability holds if and
only if the discrete problem reads

find U ∈ S such that ∀σ ∈ S b(U, σ) = 〈`, Eσ〉,

where b is the discrete bilinear form and E : S → V is a linear map, called smoother,
and defined on the whole discrete space S. Notice that, usually, nonconforming
methods are used without a smoother, and so full stability does not hold. It is
thus not a surprise that previous results did not establish quasi-optimality with re-
spect to the energy norm. Nonconforming methods with smoothing can be found
in Arnold and Brezzi [2], which observes increased stability; Brenner and Sung [10],
which presents fully stable methods; and Badia et al. [6], which contains also a partial
quasi-optimality result.

As a second main result, we determine the quasi-optimality constant, i.e., the
best constant in (1.2), for a quasi-optimal nonconforming method:

Cqopt = sup
σ∈S

sup‖v+s‖=1 a(v,Eσ) + b(s, σ)

sup‖s‖=1 b(s, σ)
.

Notice that the enumerator handles the nonconformity by an extension interweaving
data from the continuous and the discrete problem. Moreover, we can determine Cqopt

by two consistency measures generalizing algebraic consistency: one incorporating
stability and one essentially independent of stability.

These results reduce the construction of quasi-optimal nonconforming methods for
(1.1) to devising suitable smoothers E. This is established for various nonconforming
finite element spaces in our forthcoming works [20, 21].
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2. Setting, stability, and consistency. This section sets up the notations and
notions for our analysis, individuating concepts of stability and consistency that are
necessary for quasi-optimality.

2.1. Symmetric elliptic problems and nonconforming methods. We in-
troduce the abstract boundary value problem and then a class of nonconforming
methods, sufficiently large to host our discussion.

Let V be an infinite-dimensional Hilbert space with scalar product a(·, ·) and
energy norm ‖ · ‖ =

√
a(·, ·). Moreover, let V ′ be the topological dual space of V ,

denote by 〈·, ·〉 the pairing of V and V ′, and endow V ′ with the dual energy norm
‖`‖V ′ := supv∈V,‖v‖=1〈`, v〉. We consider the following “continuous” problem: Given
` ∈ V ′, find u ∈ V such that

(2.1) ∀v ∈ V a(u, v) = 〈`, v〉.

In view of the Riesz representation theorem, this problem is well posed in the sense
of Hadamard and well conditioned. In fact, if A : V → V ′, v 7→ a(v, ·) is the Riesz
isometry of V , we have u = A−1` with

(2.2) ‖u‖ = ‖`‖V ′ .

Given a generic functional ` ∈ V ′, we are interested in “computable” approxima-
tions of the solution u in (2.1). In other words, we are interested in approximating the
linear operator A−1 suitably. Since A−1 is bounded, one may want to approximate it
by linear operators that are bounded, too. However, in order to embed also existing
methods in our setting, we consider more general linear operators M , possibly un-
bounded, with finite-dimensional range R(M) and domain D(M) that is dense in V ′.
We say that M is entire whenever it can be directly applied to every instance of the
continuous problem: D(M) = V ′.

We shall analyze methods that build upon the variational structure of (2.1) in
the following manner. Let S be a nontrivial, finite-dimensional linear space, which
will play the role of V . We write 〈·, ·〉 also for the pairing of S and S′. Notice that
we do not require S ⊆ V . As a consequence, 〈`, σ〉 and a(s, σ) may be not defined for
some ` ∈ V ′ and s, σ ∈ S. We therefore introduce an operator L : D(L) ⊆ V ′ → S′

and a counterpart b : S × S → R of a and require the following:
• L is linear, (possibly) unbounded, and densely defined.
• b is bilinear and nondegenerate in that, for any s ∈ S, the property b(s, σ) = 0

for all σ ∈ S entails s = 0.
A method M with domain D(M) = D(L) is then defined by the following discrete
problem: Given ` ∈ D(M), find M` ∈ S such that

(2.3) ∀σ ∈ S b(M`, σ) = 〈L`, σ〉.

Remark 2.1 (computing discrete solutions). If ϕ1, . . . , ϕn is some basis of S,
(2.3) can be reformulated as a uniquely solvable linear system for the coefficients of
M` with respect to ϕ1, . . . , ϕn. Consequently, M` is computable whenever b(ϕj , ϕi)
and 〈L`, ϕi〉 can be evaluated for i, j = 1, . . . , n. Of course, it is desirable that the
number of operations to compute M` is of optimal order O(n). A necessary condition
for this is that the total number of operations for the aforementioned evaluations is
of order O(n).

Methods M with the discrete problem (2.3) are given by the triplet (S, b, L),
whence we shall write also M = (S, b, L). They may be called nonconforming linear
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V ′

L

��

A−1
//

M

��

V

P

��

S′
B−1

// S

Fig. 1. Commutative diagram with solution operator A−1; entire nonconforming variational
method M given by S, B, and L; and induced approximation operator P .

variational methods or, shortly, nonconforming methods. An important subclass are
the conforming ones, where the discrete space is contained in the continuous one:
S ⊆ V . (As for the common usage of “unbounded” and “bounded” in operator
theory, our usage of “nonconforming” and “conforming” is slightly inconsistent in
that a conforming method is also nonconforming.) Conformity allows choosing b and
L by means of simple restriction:

(2.4) b = a|S×S and ∀` ∈ V ′ L` = `|S .

In this case (2.3) is a (conforming) Galerkin method. Truly nonconforming examples
are DG methods and classical NCFEM.

Introducing the invertible map B : S → S′, s 7→ b(s, ·), the method M is repre-
sented by the composition

(2.5) M = B−1L.

Although the target function u is usually unknown, the approximation operator

(2.6) P := MA = B−1LA

with domain D(P ) := A−1D(M) in V will turn out to be a useful tool. Figure 1 illus-
trates our setting in a commutative diagram for the special case of an entire method.

Remark 2.2 (S and surjectivity of L). If L is a linear, unbounded, densely
defined operator from V ′ to S′, we have R(M) ⊆ S, with equality if and only if
L is surjective. In addition, if R(M) is a proper subset of S, elementary linear
algebra allows reformulating M as a method over R(M). Consequently, there is some
ambiguity in the choice of S if L is not surjective and a slight abuse of notation in
writing M = (S, b, L).

2.2. Defining quasi-optimality, stability, and consistency. We now define
the key notions of our analysis for nonconforming methods.

For each ` ∈ V ′, a nonconforming variational method M = (S, b, L) chooses an
element of S in order to approximate u = A−1`. To assess the quality of this choice,
we assume that a can be extended to a scalar product ã on Ṽ := V + S and consider
the extended energy norm

‖ · ‖ :=
√
ã(·, ·) on Ṽ

with the same notation as for the original one. Observe that V and S are closed
subspaces of Ṽ .
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The best approximation error within S to some function v ∈ V is then given
by infs∈S ‖v − s‖. Of course, it is desirable that a method is uniformly close to this
benchmark; i.e., there holds an inequality that essentially reverses

∀u ∈ D(P ) inf
s∈S
‖u− s‖ ≤ ‖u− Pu‖.

Definition 2.3 (quasi-optimality). A nonconforming variational method M
with discrete space S and approximation operator P is quasi-optimal whenever there
exists a constant C ≥ 1 such that

∀u ∈ D(P ) ‖u− Pu‖ ≤ C inf
s∈S
‖u− s‖.

The quasi-optimality constant Cqopt of M is then the smallest constant with this prop-
erty.

Céa’s lemma [13] shows that conforming Galerkin methods for (2.1) are quasi-
optimal with Cqopt = 1 and that the associated approximation operator P = MA is
the bounded linear a-orthogonal projection (or idempotent) onto S: In fact, we have
the celebrated Galerkin orthogonality

(2.7) ∀u ∈ V, σ ∈ S ⊆ V a(u− Pu, σ) = 0.

Before analyzing which of these properties still hold in the general case, let us discuss
some necessary conditions for quasi-optimality and their consequences.

Remark 2.4 (quasi-optimal needs entire). Let P be the approximation operator
of a quasi-optimal method M . Observe that the best error infs∈S ‖·−s‖ is a Lipschitz
continuous function on V . Therefore, quasi-optimality implies that also IdV − P and
P are Lipschitz continuous. Since D(P ) is dense in V and S complete, the operator P
thus extends to V in a continuous and unique manner. As a consequence, M extends
to V ′ in a continuous and unique manner. In other words, ignoring the aspect of
computability, only entire methods can be quasi-optimal.

Notice that most classical NCFEM and DG methods are not defined as entire.
Consequently, the simple observation in Remark 2.4 questions that these methods can
be quasi-optimal. This doubt will be confirmed in Remark 4.9 below.

Generally speaking, stability is associated with the property that small input
perturbations result in small output perturbations. The form of the discrete problem
(2.3) suggests adopting the viewpoint that input is taken from a subset of V ′. Since
(2.3) is linear, stability then amounts to some operator norm of M . Notice that
this differs from the common viewpoint that stability is connected solely with an
operator norm of B−1, i.e., taking input from S′. In the following definition, we
consider perturbations and measure them as suggested by the setting of the continuous
problem.

Definition 2.5 (full stability). We say that M is fully stable whenever D(M) =
V ′ and, for some constant C ≥ 0, we have

∀` ∈ V ′ ‖M`‖ ≤ C‖`‖V ′ .

The smallest such constant is the stability constant Cstab of M .

Full stability may go beyond the need for practical computations, but it relates
to the previous notions in the following manner.
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Remark 2.6 (fully stable, quasi-optimal, and entire). The approximation opera-
tor P of a quasi-optimal method satisfies

‖Pu‖ ≤ ‖u‖+ ‖Pu− u‖ ≤ (1 + Cqopt)‖u‖ = (1 + Cqopt)‖Au‖V ′

for all u ∈ V , using 0 ∈ S, (2.2) and Remark 2.4. In view of (2.6), full stability is
thus necessary for quasi-optimality. Furthermore, full stability itself requires that the
method is entire in the vein of Remark 2.4.

Roughly speaking, consistency measures to what extent the exact solution verifies
the discrete problem. To this end, one usually substitutes in the discrete problem the
discrete solution by the exact one and investigates a possible defect. Here nonconfor-
mity entails that the forms b and L cannot be defined by simple restriction and so
creates the following issues concerning trial and test space:
• In which sense can we plug a generic exact solution u into the discrete problem?

Does this require an extension of b or a representative of u in S?
• How do we relate the condition associated with a nonconforming test function
σ ∈ S \ V in (2.3) to the conditions given by the continuous test functions in
(2.1)?

These issues are usually tackled with the help of regularity assumptions on the exact
solution (see, e.g., Arnold et al. [3]) or only on data (see Gudi [16]). The following
definition takes a different approach within our nonasymptotic setting.

Definition 2.7 (full algebraic consistency). The method M is fully algebraically
consistent whenever D(M) = V ′ and

(2.8) ∀u ∈ V ∩ S, σ ∈ S b(u, σ) = 〈LAu, σ〉.

Conforming Galerkin (2.4) methods are fully algebraically consistent. Let us discuss
further aspects of full algebraic consistency.

Remark 2.8 (full algebraic consistency and approximation operator). In view of
the discrete problem (2.3) and the definition (2.6) of the approximation operator, (2.8)
is equivalent to b(u − Pu, σ) = 0 for all u ∈ V ∩ S, σ ∈ S. Since b is nondegenerate,
the consistency condition (2.8) is therefore equivalent to

(2.9) ∀u ∈ V ∩ S Pu = u.

In other words, full algebraic consistency means that whenever the exact solution
is discrete, it is the discrete solution. The advantage of (2.8) is that it is directly
formulated in terms of the originally given data A, S, b, and L. In Lemma 2.10 and
Theorem 4.14 below, we will present further equivalent formulations.

Remark 2.9 (quasi-optimal needs fully algebraically consistent). In light of Re-
mark 2.4, a quasi-optimal method M is entire, and so its approximation operator P
is defined on all V . For any u ∈ V ∩ S, the best error in S vanishes, and so Pu = u.
Consequently, M is fully algebraically consistent.

Definition 2.7 involves only exact solutions from the discrete space S, which may
be a quite small set. Indeed, for example, when applying the Morley method to the
biharmonic problem, the intersection S ∩ V has poor approximation properties for
certain mesh families; see [14, Theorem 3] and [20, Remark 3.11]. Other consistency
notions of algebraic type involving more exact solutions may thus appear stronger
than Definition 2.7. The following lemma sheds a different light on this.
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Lemma 2.10 (full algebraic consistency with extension). Let the method M be

fully algebraically consistent and set Ṽ := V + S. Then there exists a unique bilinear
form b̃ that extends b as well as 〈LA·, ·〉 on Ṽ × S.

Proof. Observe that the left-hand side of (2.8) is defined for all u ∈ S, while its
right-hand side is defined in particular for all u ∈ V . We exploit this in order to
extend b. Given ṽ ∈ Ṽ and σ ∈ S, we write ṽ = v + s with v ∈ V and s ∈ S and set

(2.10) b̃(ṽ, σ) := 〈LAv, σ〉+ b(s, σ).

Thanks to (2.8), b̃ is well-defined. Indeed, if v1 + s1 = v2 + s2 with v1, v2 ∈ V
and s1, s2 ∈ S, we have v1 − v2 = s2 − s1 ∈ V ∩ S, and therefore (2.8) yields
〈LA(v1 − v2), σ〉 = −b(s1 − s2, σ), which in turn ensures

〈LAv1, σ〉+ b(s1, σ) = 〈LAv2, σ〉+ b(s2, σ).

To show uniqueness of the extension, let β̃ be another common extension of b and
〈LA·, ·〉. Given ṽ ∈ Ṽ and σ ∈ S, we write ṽ = v + s with v ∈ V and s ∈ S as before
and infer

β̃(ṽ, σ) = β̃(v, σ) + β̃(s, σ) = 〈LAv, σ〉+ b(s, σ) = b̃(ṽ, σ),

and the proof is complete.

Notice that full algebraic consistency differs from the usual consistency, as, e.g.,
in Arnold [1] also for the following aspects: On the one hand, it is stronger in that it
requires an algebraic identity instead of a limit. On the other hand, it does not involve
approximation properties of the underlying discrete space. In fact, our purpose here
is to identify the part of consistency that is necessary for quasi-optimality. As a con-
sequence, algebraic consistency and stability alone are not sufficient for convergence.

Let us conclude this section by introducing a subclass of natural candidates for
fully algebraically consistent methods. A method M = (S, b, L) is a nonconforming
Galerkin method whenever

(2.11) b|SC×SC
= a|SC×SC

and ∀` ∈ D(L) L`|SC
= `|SC

,

where SC = S ∩ V is the conforming subspace of the discrete space S. Thus, a
nonconforming Galerkin method is constrained by restriction where applicable. Notice
the following:
• In contrast to conforming Galerkin methods, nonconforming ones are not com-

pletely determined by the continuous problem and the discrete space.
• The condition (2.11) readily yields

∀u, σ ∈ S ∩ V b(u, σ) = 〈LAu, σ〉,

which is weaker than full algebraic consistency in that fewer test functions are
involved.

For example, classical NCFEM, DG, and C0 interior penalty methods are noncon-
forming Galerkin methods.

3. Characterizing quasi-optimality. The purpose of this section is twofold.
First, we show that full algebraic consistency and full stability are not only necessary
but also sufficient for quasi-optimality. Second, we assess the possible impact of
nonconformity on the quasi-optimality constant.
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3.1. Quasi-optimality and extended approximation operator. To show
that full algebraic consistency and full stability imply quasi-optimality, we start with
the following short proof of a “partial” quasi-optimality, which motivates a new tool
for the analysis of nonconforming methods.

Assume that P is the approximation operator of a fully algebraically consistent
and a fully stable method. Rewriting (2.9) as

(3.1) ∀v ∈ V, s ∈ S ∩ V v − Pv = (IdV − P )(v − s)

and exploiting that full stability entails the boundedness of P , we can deduce quasi-
optimality with respect to the conforming part S ∩ V of the discrete space S:

‖v − Pv‖ ≤ ‖IdV − P‖L(V,Ṽ ) inf
s∈S∩V

‖v − s‖.

Note that we do not obtain quasi-optimality with respect to the whole discrete space,
just because Ps = s is not available for general s ∈ S. In particular, Ps is not defined
for general s ∈ S. We therefore explore an appropriate extension of P .

For this purpose, we use the following facts on linear projections; cf., e.g., Buck-
holtz [12]. Let K and R be subspaces of a Hilbert space H with scalar product (·, ·)H
and induced norm ‖ · ‖H . The spaces K and R provide a direct decomposition of H,
H = K ⊕R, if and only if there exists a unique linear projection Q on H with kernel
N(Q) = K and range R(Q) = R. Then IdH −Q is the linear projection with kernel
R and range K. As a consequence of the closed graph theorem, R and K are closed
if and only if Q is bounded if and only if IdH −Q is bounded.

Lemma 3.1 (extended approximation operator). Assume that the approximation
operator P verifies P|S∩V = IdS∩V and is bounded. Then there exists a unique bounded

linear projection P̃ from Ṽ onto S satisfying P̃|V = P .

Proof. First, we observe that P̃ has to satisfy

(3.2) P̃ : Ṽ → S linear, P̃|V = P and P̃|S = IdS .

Since Ṽ = V +S, linear extension entails that there is at most one operator satisfying
(3.2), and we are thus led to consider the following definition: Given ṽ ∈ Ṽ , choose
v ∈ V and s ∈ S such that ṽ = v + s, and set

(3.3) P̃ ṽ := Pv + s.

The assumption P|S∩V = IdS∩V means that the two identities in (3.2) are compatible

and so guarantees that P̃ is well-defined; compare with the definition of b̃ in the proof
of Lemma 2.10.

In order to show the boundedness of P̃ , we represent it in terms of P and the
following operators, corresponding to an appropriate choice of v and s in (3.3). Let
ΠY be the ã-orthogonal projection onto Y := (S ∩ V )⊥, and let Q be the linear
projection on Y with range V ∩ Y and kernel S ∩ Y . We then have

P̃ = PQΠY + (IdY −Q)ΠY + (IdṼ −ΠY ) = PQΠY + IdṼ −QΠY .

Since the subspaces S, V , and Y are closed, the projections ΠY and Q are bounded.
Consequently, the boundedness of P implies the boundedness of its extension P̃ .
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Using the extended approximation operator P̃ , the proof of the announced charac-
terization of quasi-optimality is quite simple. Notice also that the quantitative aspect
of our first main result highlights the importance of P̃ .

Theorem 3.2 (characterization of quasi-optimality). A nonconforming method
is quasi-optimal if and only if it is fully algebraically consistent and fully stable.

Moreover, for any quasi-optimal method, we have

Cqopt = ‖P̃‖L(Ṽ )

where P̃ is the extended approximation operator from Lemma 3.1.

Proof. Remarks 2.6 and 2.9 show that quasi-optimality implies full algebraic con-
sistency and full stability.

To show the converse, consider any fully algebraically consistent and fully stable
nonconforming method. We simply follow the lines of the corresponding part of the
proof of Tantardini and Veeser [18, Theorem 2.1], replacing P by P̃ and exploiting
the following generalization of (3.1):

(3.4) ∀v ∈ V, s ∈ S (IdṼ − P̃ )(v − s) = (IdV − P )v.

Given arbitrary v ∈ V and s ∈ S, we thus derive

‖v − Pv‖ = ‖(v − s)− P̃ (v − s)‖ ≤ ‖IdṼ − P̃‖L(Ṽ )‖v − s‖.

Taking the infimum over all s ∈ S and then the supremum over all v ∈ V , we obtain

(3.5) Cqopt ≤ ‖IdṼ − P̃‖L(Ṽ )

and see that M is quasi-optimal because P̃ is bounded.
To verify the identity for Cqopt, let us first see that (3.5) is actually an equality.

In fact, for v ∈ V and s ∈ S, we derive

‖(IdṼ − P̃ )(v + s)‖ = ‖v − Pv‖ ≤ Cqopt inf
ŝ∈S
‖v − ŝ‖ ≤ Cqopt‖v + s‖

using (3.4) again. We thus obtain the converse to (3.5) by taking the supremum over
all v ∈ V and s ∈ S.

Moreover, since {0} ( S ( Ṽ , the extended approximation operator P̃ is a

bounded linear idempotent with 0 6= P̃ = P̃ 2 6= IdṼ on the Hilbert space Ṽ . We
therefore can apply Buckholtz [12, Theorem 2] or Xu and Zikatanov [22, Lemma 5]
and conclude

(3.6) Cqopt = ‖IdṼ − P̃‖L(Ṽ ) = ‖P̃‖L(Ṽ ).

Formula (3.6) allows for the following geometric interpretation of the quasi-
optimality constant.

Remark 3.3 (geometry of quasi-optimality constant). Buckholtz [12] shows that
the operator norm of a bounded projection Q on a Hilbert space H satisfies

‖Q‖L(H) =
1

sin θ
= ‖IdH −Q‖L(H),

where θ is the angle between K = N(Q) and R = R(Q), that is, θ ∈ (0, π/2] and its

cosine equals sup{|〈k, r〉H | | k ∈ K, r ∈ R, ‖k‖H = 1, ‖r‖H = 1}. Notice that N(P̃ ) =
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R(IdṼ − P̃ ) = R(IdV − P ), where the last identity follows from (3.4). Combining
these two facts, we deduce

(3.7) Cqopt = ‖P̃‖L(Ṽ ) =
1

sinα
,

where α is the angle between the discrete space S and the range R(IdV − P ).

Theorem 4.19 reveals that the possibly weak full algebraic consistency is still
enough consistency to ensure, together with stability, quasi-optimality. However, it
does not control the size of the quasi-optimality constant.

3.2. The quasi-optimality constant and two consistency measures. Let
P be the approximation operator of a quasi-optimal method. The fact that P̃ is an
extension of P readily yields

Cqopt = ‖P̃‖L(Ṽ ) ≥ ‖P‖L(V,S) = Cstab,

where the last identity is due to isometry (2.2) of A. The possible enlargement of
Cqopt with respect to Cstab is a new feature triggered by nonconformity. It is the
purpose of the section to quantify this phenomenon.

Our key tool will be the following elementary lemma.

Lemma 3.4 (operator norm and restrictions). Let T ∈ L(H) be a bounded linear
operator on a Hilbert space H with scalar product 〈·, ·〉H and induced norm ‖ · ‖H . If
Y is a linear closed subspace of H and Y ⊥ is its orthogonal complement, we have

max{C, δ} ≤ ‖T‖L(H) ≤
√
C2 + δ2

with

C = ‖T|Y ‖L(Y,H) and δ = ‖T|Y ⊥‖L(Y ⊥,H).

Proof. The lower bound immediately follows from the definition of the opera-
tor norm ‖T‖L(H) = sup‖x‖H=1 ‖Tx‖H . To verify the upper bound, let x ∈ H be
arbitrary, and denote by πY the orthogonal projection onto Y . We have

(3.8)
‖Tx‖2H = ‖TπY x‖2H + 2

〈
TπY x, T (x− πY x)

〉
H

+ ‖T (x− πY x)‖2H
≤ C2‖πY x‖2H + 2Cδ‖πY x‖H‖x− πY x‖H + δ2‖x− πY x‖2H

in view of the bilinearity of the scalar product, the Cauchy–Schwarz inequality, and
the definitions of C and δ. Notice that

‖πY x‖2H + ‖x− πY x‖2H = ‖x‖2H

thanks to the orthogonality of πY . Thus, if we write α = ‖πY x‖, (3.8) becomes

‖Tx‖2H ≤ h(α)2 with h(α) := Cα+ δ
√

1− α2,

which implies

‖T‖L(H) ≤ max
[0,1]

h.

A straightforward discussion of the function h yields max[0,1] h =
√
C2 + δ2, and the

upper bound is established, too.
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Remark 3.5 (sharpness of bounds via restrictions). Since

max{C, δ} ≤
√
C2 + δ2 ≤

√
2 max{C, δ},

the bounds in Lemma 3.4 miss an equality at most by the factor
√

2. Let us see with
two simple examples that, without additional information on T and Y , we cannot
improve on this.

First, consider H = R2, T1 = IdR2 , and let Y be any 1-dimensional subspace of
R2. Obviously, we then have ‖T1‖L(H) = ‖T1|Y ‖L(Y,H) = ‖T1|Y ⊥‖L(Y ⊥,H) = 1, and
so the lower bound becomes an equality, while the upper bound is strict.

Second, consider H = R2, and let T2 be the linear operator which is represented
in the canonical basis of R2 by the Matlab matrix 1/2*ones(2). The operator T2 is
the orthogonal projection onto the diagonal {(t, t) | t ∈ R}, whence ‖T2‖L(H) = 1.
Finally, let Y = {(0, t) | t ∈ R} be the ordinate. Then the operator norms of T2

restricted to Y and Y ⊥ correspond to the Euclidean norms of the columns of the
aforementioned matrix: ‖T2|Y ‖L(Y,H) = ‖T2|Y ⊥‖L(Y ⊥,H) = 1/

√
2. Consequently,

here the upper bound is an equality, while the lower bound is strict.

The fact that the extended approximation operator P̃ is given on S by the identity
and on V by P suggests two options for applying Lemma 3.4: Y = S and Y = V .
We start with the first option, which leads to a consistency measure in the spirit of
the second Strang lemma.

Proposition 3.6 (consistency mixed with stability). Let ΠS be the ã-orthogonal
projection onto S and δV ≥ 0 be the smallest constant such that

∀v ∈ V ‖ΠSv − Pv‖ ≤ δV ‖v −ΠSv‖.

Then the quasi-optimality constant is given by Cqopt =
√

1 + δ2
V .

Proof. Owing to Theorem 3.2, we may show the claimed identity by verifying
‖P̃‖L(Ṽ ) =

√
1 + δ2

V . Applying Lemma 3.4 with H = Ṽ , T = P̃ , and Y = S, we

obtain

‖P̃‖L(Ṽ ) ≤
√

1 + δ2

with δ = ‖P̃‖L(S⊥,Ṽ ). Given s⊥ ∈ S⊥, we write s⊥ = v + s with v ∈ V and s ∈ S
and observe that

s⊥ = s⊥ −ΠSs
⊥ = v −ΠSv and P̃ s⊥ = Pv −ΠSv.

Hence, δ = δV and

(3.9) ‖P̃‖L(Ṽ ) ≤
√

1 + δ2
V .

To show that this is actually an equality, note that, for any v ∈ V ,

(3.10) ‖v −ΠSv‖2 + ‖ΠSv − Pv‖2 = ‖v − Pv‖2 ≤ ‖P̃‖2L(Ṽ )
‖v −ΠSv‖2,

where we first combined the orthogonality of ΠS with ΠSv − Pv ∈ S and then used
Theorem 3.2. Rearranging terms, we see that δ2

V ≤ ‖P̃‖2L(Ṽ )
− 1, yielding the desired

inequality
√

1 + δ2
V ≤ ‖P̃‖L(Ṽ ).
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The following two remarks discuss the nature of δV .

Remark 3.7 (δV and (non)conforming consistency). In the conforming case
S ⊆ V , without assuming the quasi-optimality of the underlying method, the ex-
istence of δV is equivalent to full algebraic consistency. Therefore, δV can be seen as
a quantitative generalization of full algebraic consistency to the nonconforming case.
It measures, in relative manner, how much the method deviates from the best ap-
proximation ΠS . Thus, Proposition 3.6 is a specification of the second Strang lemma,
where the exploitation of the nonconforming direction is compared with the best ap-
proximation error. Let us illustrate this in the purely nonconforming case V ∩S = {0}.
The best case corresponds to P = ΠS , yielding δV = 0 and Cqopt = 1. Instead, P = 0
is quasi-optimal with δV = (inf‖s‖=1 infΠSv=s ‖s − v‖)−1, which becomes infinity as
the distance between S and V tends to 0.

Remark 3.8 (δV and stability). The size of δV is in general affected by stability.
Indeed, using (3.9), we readily derive

δ2
V ≥ ‖P̃‖2L(Ṽ )

− 1 ≥ ‖P‖2L(V,S) − 1 = C2
stab − 1

and notice in particular that, if a sequence of methods becomes unstable, the corre-
sponding δV ’s become unbounded.

We now turn to the second option of applying Lemma 3.4. Interestingly, it pro-
vides an alternative consistency measure which is essentially independent of
stability.

Proposition 3.9 (consistency without stability). Let ΠV be the ã-orthogonal
projection onto V and δS ≥ 0 be the smallest constant such that

∀s ∈ S ‖s− PΠV s‖ ≤ δS‖s−ΠV s‖.

Then the quasi-optimality constant satisfies

(3.11) max{Cstab, δS} ≤ Cqopt ≤
√
C2

stab + δ2
S .

Proof. Thanks to Theorem 3.2, it suffices to apply Lemma 3.4 with H = Ṽ ,
T = P̃ , and Y = V and to observe the following identities: Given v⊥ ∈ V ⊥, v ∈ V ,
s ∈ S such that v⊥ = v + s, we have

v⊥ = v⊥ −ΠV v
⊥ = s−ΠV s and P̃ v⊥ = s− PΠV s.

We now discuss also the nature of δS , elaborating its differences from the first
consistency measure δV .

Remark 3.10 (δS and (non)conforming consistency). As for δV , the existence
of δS is equivalent to full algebraic consistency in the conforming case S ⊆ V . Cor-
respondingly, it can be seen as an alternative, quantitative generalization of full al-
gebraic consistency to the nonconforming case. The alternative δS is, however, not
comparing with the best approximation ΠS . In particular, we have that δS = 0
implies

Cqopt = ‖P̃‖L(Ṽ ) = ‖P‖L(V,S) = Cstab,
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which is an interesting property not involving the best approximation ΠS . Let us
illustrate how the difference is expressed in measuring the exploitation of the non-
conforming directions by considering, as in Remark 3.7, the purely nonconforming
case V ∩ S = {0}. Here the best choice P = ΠS leads to δS < 1, while P = 0 gives
δS = (inf‖s‖=1 ‖s − ΠV s‖)−1. In the latter case, δS like δV becomes infinity as the
distance between S and V tends to 0, although in a (possibly) other manner.

Remark 3.11 (δS and stability). We illustrate that the quantities δS and Cstab

are essentially independent. In order to make sure that this is not affected by a
possible lack of approximability, we consider the following setting with a sequence of
discrete spaces:

Ṽ = `2(R) with canonical basis (ei)
∞
i=0, ã(v, w) =

∞∑
i=0

viwi,

where we identify v =
∑∞
i=0 viei with (vi)

∞
i=0, etc., and

V = span {ei | i ≥ 1}, Sn = span {ei | i = 1, . . . , n− 1}+ span {αne0 + en},

where n ≥ 1 and (αn)n ⊆ R+ is some sequence of positive reals. Here only αne0+en is
nonconforming and thus not involved in full algebraic consistency. If limn→∞ αn = 0,
this direction becomes a new conforming direction, while for limn→∞ αn =∞, it gets
orthogonal to V . In any case, we have

Sn ∩ V = span {ei | i = 1, . . . , n− 1} and V =
⋃
n≥1

Sn.

Moreover, straightforward computations reveal that the orthogonal projections onto
Sn and V are given by

ΠSn
v =

n−1∑
i=1

viei +
vn

1 + α2
n

(αne0 + en) for v ∈ V, ΠV s =

n∑
i=1

siei for s ∈ S.

One possibility to deal with the nonconforming direction αne0 + en is to ignore
it, e.g., by choosing methods with the approximation operators

P1,nv =

n−1∑
i=1

viei for v ∈ V.

Each approximation operator P1,n is fully algebraically consistent and fully stable
with ‖P1,n‖L(V,S) = 1. Furthermore, ΠV (αne0 + en) = en and P1,nen = 0 yield

δSn
≥ ‖sn − P1,nΠV sn‖

‖sn −ΠV sn‖
=
‖sn‖
αn‖e0‖

=

√
1 + α2

n

αn
≥ 1

αn

with sn := αne0 + en. Consequently, letting αn → 0 shows that δS can become
arbitrarily large, while the stability constant attains its minimal value for the case
Sn ∩ V 6= {0}.

Given a sequence (βn)n ⊆ R+ of positive reals, the approximation operators

P2,nv :=

n−1∑
i=1

viei +

(
vn +

βn
1 + α2

n

vn+1

)
(αne0 + en) for v ∈ V
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exploit the nonconforming direction αne0 + en. Again, each P2,n is fully algebraically
consistent and fully stable. Here, since P2,nΠV s = s for all s ∈ S, we have that
δS = 0, while

‖P2,n‖L(V,S) ≥
‖P2,nen+1‖
‖en+1‖

≥ βn√
1 + α2

n

.

Thus, βn/
√

1 + α2
n → ∞ shows that the stability constant can become arbitrarily

large, while δS attains its minimal value 0.

Remark 3.12 (asymptotic consistency). The preceding remark exemplifies that
the exploitation of the nonconforming direction measured by δV and δS is relevant also
“in the limit” for sequences of discrete spaces and can be controlled via the uniform
boundedness of the consistency measures.

We conclude this section with slight generalizations of Propositions 3.6 and 3.9.

Remark 3.13 (consistency measures and non–quasi-optimality). If the method
underlying P is not quasi-optimal, we may set Cqopt = ∞. Similarly, if δV (or δS)
does not exist, we set δV =∞ (or δS =∞). Then

δV =∞ ⇐⇒ Cqopt =∞ and δS =∞ =⇒ Cqopt =∞,

and, using standard conventions for ∞, the formulas in Propositions 3.6 and 3.9 hold
regardless of quasi-optimality.

4. The structure of quasi-optimal methods. As explained in the introduc-
tion, there is a great interest to devise quasi-optimal nonconforming methods. To
this end, it is useful to determine the structure of nonconforming methods that are
quasi-optimal. This is the task of this section, which, in light of Theorem 3.2, reduces
to determine the structure of full stability and full algebraic consistency.

4.1. Extended approximation operator and extended bilinear form.
Our analysis of quasi-optimality in section 3 has been centered around the extended
approximation operator P̃ . In this subsection we relate this key tool to the extended
bilinear form b̃ from Lemma 2.10 and, thus, more closely to the data (a, S, b, L) defin-
ing problem and method.

Lemma 4.1 (extensions of approximation operator and bilinear forms). The

approximation operator P extends to a bounded linear projection P̃ from Ṽ onto S if
and only if there exists a bounded common extension b̃ of b and 〈LA·, ·〉 to Ṽ × S.

If one of the two extensions exists, we have the following generalization of the
Galerkin orthogonality:

∀ṽ ∈ Ṽ , σ ∈ S b̃(ṽ − P̃ ṽ, σ) = 0.

Proof. Assume P̃ is a bounded linear projection from Ṽ onto S extending P .
Then

(4.1) b̃(ṽ, σ) := b(P̃ ṽ, σ)

defines a bounded bilinear form on Ṽ × S. Since P̃ is a projection onto S, b̃ is an
extension of b. Furthermore, if v ∈ V and σ ∈ S, then P̃|V = P yields b̃(v, σ) =

b(Pv, σ) = 〈LAv, σ〉. Consequently, b̃ is also an extension of 〈LA·, ·〉.
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Conversely, assume that b̃ is a bounded common extension of b and 〈LA·, ·〉 on

Ṽ × S. Given ṽ ∈ Ṽ , define P̃ ṽ by

(4.2) P̃ ṽ ∈ S such that ∀σ ∈ S b(P̃ ṽ, σ) = b̃(ṽ, σ).

Since b is a nondegenerate bilinear form on S × S, the element P̃ ṽ exists, is unique,
and depends on ṽ linearly. The uniqueness and b̃ = b on S ×S give P̃|S = IdS . Using

b̃ = 〈LA·, ·〉 = b(P ·, ·) on V × S, we obtain P̃|V = P . Finally, the boundedness of b̃

entails the boundedness of P̃ , and the claimed equivalence is verified.
It remains to verify the generalized Galerkin orthogonality. If one of the two

extensions exists, then the other one is given either by (4.1) or by (4.2), which both
just restate the claimed generalization.

The close relationship between the two extensions P̃ and b̃ suggests that the op-
erator norm ‖P̃‖L(Ṽ ) can be reformulated in terms of b̃. To this end, the following

lemma will be very useful, which in turn exploits the following fact from linear func-
tional analysis; see, e.g., Brezis [11]. If X and Y are normed linear spaces, T : X → Y
is a linear operator, and T ? stands for its adjoint, then

(4.3) T is bounded =⇒ D(T ?) = Y ′ with ‖T ?‖L(Y ′,X′) = ‖T‖L(X,Y ).

Lemma 4.2 (b-duality for energy norm on S). The nondegenerate bilinear form
b induces a norm on S by

‖σ‖b := ‖b(·, σ)‖S′ = sup
s∈S,‖s‖=1

b(s, σ), σ ∈ S,

satisfying

‖s‖ = sup
σ∈S

b(s, σ)

‖σ‖b
.

Proof. Obviously, ‖ · ‖b is a seminorm and definite thanks to the nondegeneracy
of b. To verify the claimed identity, we observe

(4.4) sup
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= sup
σ∈S

sup
s∈S

b(s, σ)

‖s‖‖σ‖b
= 1

and

(4.5) inf
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= inf
σ∈S

sup
s∈S

b(s, σ)

‖s‖‖σ‖b
= 1

where the =1’s follow from the definition of ‖ ·‖b and the first equality in (4.5) follows
from (4.3) applied to the inverse of B, the linear operator representing b. Combining
(4.4) and (4.5), we see that

sup
σ∈S

b(s, σ)

‖s‖‖σ‖b
= 1

for all s ∈ S, and the claimed identity is verified.

Lemma 4.3 (norms of extensions). If one of the extensions in Lemma 4.1 exists,
we have

‖P̃‖L(Ṽ ) = sup
σ∈S

‖b̃(·, σ)‖Ṽ ′
‖b(·, σ)‖S′

with the “extended” dual norm ‖`‖Ṽ ′ := supṽ∈Ṽ ,‖ṽ‖=1〈`, ṽ〉.
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Proof. Applying Lemma 4.2, the generalized Galerkin orthogonality of Lemma 4.1,
and the definition of the extended dual norm, we infer

‖P̃‖L(Ṽ ) = sup
ṽ∈Ṽ

‖P̃ ṽ‖
‖ṽ‖

= sup
ṽ∈Ṽ ,σ∈S

b(P̃ ṽ, σ)

‖ṽ‖‖σ‖b
= sup
ṽ∈Ṽ ,σ∈S

b̃(ṽ, σ)

‖ṽ‖‖σ‖b

= sup
σ∈S

‖b̃(·, σ)‖Ṽ ′
‖σ‖b

= sup
σ∈S

‖b̃(·, σ)‖Ṽ ′
‖b(·, σ)‖S′

.

Before closing this subsection, two remarks are in order.

Remark 4.4 (alternative proof and formula). An alternative proof of Lemma 4.3
may be based on a continuous counterpart of ‖ · ‖b from Lemma 4.2; see Tantardini
and Veeser [18, Theorem 2.1]. Using that approach, one derives also

‖P̃‖L(Ṽ ) = sup
s∈S,‖s‖=1

inf
σ∈S

‖b̃(·, σ)‖Ṽ ′
|b(s, σ)|

by duality.

Remark 4.5 (reformulations of quasi-optimality). Remarks 2.6 and 2.9, Lem-
mas 3.1 and 4.1, as well as Theorem 3.2 show that the following statements are equiv-
alent reformulations of quasi-optimality for a nonconforming method M = (S, b, L)
with approximation operator P :

M is fully algebraically consistent and fully stable.(4.6a)

Ps = s for all s ∈ S ∩ V and P is bounded.(4.6b)

P extends to a linear projection P̃ from Ṽ onto S that is bounded.(4.6c)

b and 〈LA·, ·〉 have a common extension b̃ that is bounded.(4.6d)

P is bounded and b, P have extensions b̃, P̃ such that b̃(ṽ − P̃ ṽ, σ) = 0(4.6e)

for all ṽ ∈ Ṽ and σ ∈ S.

It is worth observing that no additional regularity beyond the natural one in (2.1)
is involved. All this illustrates that extensions, as developed in our approach, are a
well-tuned tool in the analysis of the quasi-optimality of nonconforming methods.

4.2. The structure of full stability. In this subsection we determine the struc-
ture of nonconforming methods that are fully stable.

To this end, (4.3) and the following facts of linear functional analysis will be basic:
If X and Y are normed linear spaces and T : X → Y linear, then

dimX <∞ ⇐⇒ all linear operators X → Y are bounded(4.7)

if dimX <∞, then T ? surjective ⇐⇒ T injective(4.8)

(see, e.g., [11] and [12, p. 1418]).
Let M = (S, b, L) be a nonconforming method, and recall that M is fully stable

if and only if the operator M : V ′ → S is bounded, where V ′ and S are equipped,
respectively, with the dual and extended energy norm.

We claim that the full stability of M hinges on the boundedness of L. In light
of Remark 2.6, we may assume that D(M) = D(L) = V ′. The equivalence (4.7)
yields the following two consequences. First, the boundedness of M : V ′ → S is a
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true requirement because its domain V ′ has infinite dimension. Second, the critical
operator in the composition M = B−1L from (2.5) is L. In fact, its domain V ′ has
infinite dimension, while the domain S′ of B−1 has finite dimension. Consequently,
a method M is fully stable if and only if it is entire and the operator L : V ′ → S′ is
bounded.

Next, we characterize the class of bounded linear operators from V ′ to S′ and
derive first a necessary condition. Let L : V ′ → S′ be linear and bounded. Owing
to (4.3), its adjoint L? is a bounded linear operator from S′′ to V ′′. Since the spaces
S and V are reflexive, we thus deduce the existence of a linear operator E : S → V
such that

(4.9) ∀` ∈ V ′, σ ∈ S 〈L`, σ〉 = 〈`, Eσ〉 .

Conversely, if E : S → V is a linear operator satisfying (4.9), then L is bounded on
V ′ with ‖L‖L(V ′,S′) = ‖E‖L(S,V ) by (4.3) and (4.7).

Remark 4.6 (smoothing of E). Usually, the nonconformity S 6⊆ V arises from a
lack of smoothness, e.g., across interelement boundaries in the case of finite element
methods. The operator E : S → V may then be viewed as a smoothing operator.

The above observations prepare the following result, which is our first step towards
the structure of quasi-optimal methods.

Theorem 4.7 (full stability and smoothing). A nonconforming method M =
(S, b, L) for (2.1) is fully stable if and only if L is the adjoint of a linear smoothing
operator E : S → V .

The discrete problem for ` ∈ V ′ then reads

(4.10) ∀σ ∈ S b(M`, σ) = 〈`, Eσ〉 ,

and the stability constant satisfies

(4.11) Cstab = ‖M‖L(V ′,S) = sup
σ∈S

‖Eσ‖
‖b(·, σ)‖S′

.

Moreover, the range of M is S if and only if E is injective.

Proof. The observations preceding Theorem 4.7 show that M is fully stable if and
only if L is the adjoint of a linear smoothing operator E : S → V . Moreover, they
provide the claimed form of the discrete problem via (4.9). The second equivalence
readily follows from (4.8) and Remark 2.2.

To verify (4.11), we combine Lemma 4.2 with ‖v‖ = sup`∈V ′,‖`‖V ′=1〈`, v〉 (see,
e.g., Brezis [11, Corollary 1.4]):

Cstab = ‖M‖L(V ′,S) = sup
`∈V ′

‖M`‖
‖`‖V ′

= sup
`∈V ′,σ∈S

b(M`, σ)

‖`‖V ′‖σ‖b

= sup
σ∈S,`∈V ′

〈`, Eσ〉
‖`‖V ′‖σ‖b

= sup
σ∈S

‖Eσ‖
‖σ‖b

= sup
σ∈S

‖Eσ‖
‖b(·, σ)‖S′

.

Let us start the discussion of this result by considering a canonical choice for the
smoother E.

Remark 4.8 (trivial smoothing for conforming methods). Assume that the dis-
crete space S ⊆ V is conforming, and consider the simplest choice E = IdS . For this
classical case, (4.11) reduces to the well-known identity
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Cstab = sup
σ∈S

‖σ‖
‖b(·, σ)‖S′

=

(
inf
σ∈S

sup
s∈S

b(s, σ)

‖s‖‖σ‖

)−1

=

(
inf
s∈S

sup
σ∈S

b(s, σ)

‖s‖‖σ‖

)−1

.

Remark 4.9 (failure of IdS). Let S be a nonconforming discrete space with
S 6⊆ V . Then the choice E = IdS is not compatible with full stability and so, in view
of Theorem 3.2, not with quasi-optimality. Indeed, Theorem 4.7 shows that E(S) ⊆ V
is necessary for full stability. Consequently, the condition Es = s entails s ∈ S ∩ V
and thus produces a contradiction for any s ∈ S \ V . We therefore need to define
Es for s ∈ S \ V differently, which, in view of the nature of S and V in applications,
typically amounts to some kind of smoothing.

Most DG methods and classical NCFEM rely on the simple choice E = IdS , re-
quiring that the load term ` in (2.1) has some additional regularity. Remark 4.9 implies
that these methods are not fully stable and so, in view of Theorem 3.2, not quasi-
optimal. This provides an alternative to falsify quasi-optimality with Remark 2.4.

We end this subsection by considering first alternatives to E = IdS and illustrating
that the choice of E is in general a delicate matter.

Remark 4.10 (previous uses of smoothing). Advantages of suitable smoothing
have been previously observed. An obvious one is that the method can be made
entire, and this has been pointed out, e.g., in the DG context by Di Pietro and
Ern [15].

Comparing the Hellan–Hermann–Johnson method with the Morley method, Ar-
nold and Brezzi [2] showed that a particular smoothing in the Morley method leads to
an a priori error estimate requiring less regularity of the underlying load term. This
corresponds to an increased stability thanks to the employed smoothing.

Also in the context of fourth-order problems, Brenner and Sung [10] proposed C0

interior penalty methods and proved a priori error estimates also for nonsmooth loads.
Furthermore, the involved regularity is minimal from the viewpoint of approximation.

Finally, Badia et al. [6] used a rather involved smoother, which is related to our
construction in [20], to show a partial quasi-optimality result.

Remark 4.11 (smoothers into S ∩ V ). It may look natural to use smoothers E
that map into the conforming part S∩V of the discrete space. In view of Remark 2.2,
the range R(M) of the corresponding method is a proper subspace of S, whenever
S \ V 6= ∅. Quasi-optimality is then not ruled out, but it hinges on the validity of
results like Corollary 1 in Veeser [19] and requires in particular that S ∩ V is not
small.

Remark 4.12 (optimal smoothing). The structure of full stability does not prin-
cipally exclude methods that are optimal from the viewpoint of approximation. Con-
sequently, the variational crime of nonconformity does not necessarily result in some
consistency error. To see this, consider the discrete bilinear form b = ã|S×S . Since

∀v ∈ V, σ ∈ S ã(Pv − v, σ) = ã(v,Eσ − σ),

we have

P = ΠS ⇐⇒ E = ΠV .

In other words, a nonconforming method (S, ãS×S , E
?) provides the best approxi-

mation if and only if the smoother E is the ã-orthogonal projection onto V . This
smoother is, however, not feasible in the sense of the following remark.
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Remark 4.13 (feasible smoothing). Adopt the notation of Remark 2.1, and let
ϕ1, . . . , ϕn be a computionally convenient basis for the discrete bilinear form b. In
order to compute M` by (4.10) with optimal complexity, the total number of oper-
ations for evaluating 〈`, Eϕi〉 for all i = 1, . . . , n has to be of order O(n). A useful
condition for this is that, for each i = 1, . . . , n, the function Eϕi is locally supported
and can be computed at cost O(1).

4.3. The structure of quasi-optimality. We are finally ready for the main
results of our abstract analysis about the quasi-optimality of nonconforming methods.

Theorem 4.14 (quasi-optimality and smoothing). A nonconforming method
M = (S, b, L) for (2.1) is quasi-optimal if and only if there exists a linear smoothing
operator E : S → V such that the discrete problem reads

∀σ ∈ S b(M`, σ) = 〈`, Eσ〉

for any ` ∈ V ′ and

(4.12) ∀u ∈ S ∩ V, σ ∈ S b(u, σ) = a(u,Eσ).

Its quasi-optimality constant is given by

(4.13) Cqopt = sup
σ∈S

sup‖v+s‖=1 a(v,Eσ) + b(s, σ)

sup‖s‖=1 b(s, σ)
,

where v varies in V and s in S.

Proof. We first check the claimed equivalence. The form of the discrete problem
means that L is the adjoint of E and, in view of Theorem 4.7, that M is fully stable.
Moreover, since

(4.14) 〈LAu, σ〉 = 〈Au,Eσ〉 = a(u,Eσ)

for all u ∈ V and σ ∈ S, (4.12) is equivalent to (2.8), i.e., full algebraic consistency.
Consequently, the claimed equivalence follows from Theorem 3.2.

To show the identity for the quasi-optimality constant, we observe that the ex-
tension b̃ exists and satisfies, for ṽ ∈ Ṽ , v ∈ V , s, σ ∈ S such that ṽ = v + s,

b̃(ṽ, σ) = 〈LAv, σ〉+ b(s, σ) = a(v,Eσ) + b(s, σ)

thanks to (4.14). Therefore, the formula for Cqopt follows from Theorem 3.2 and
Lemma 4.3.

We start the discussion of Theorem 4.14 by a remark about the notion of Galerkin
methods.

Remark 4.15 (Galerkin methods). Assume first that the discrete space S ⊆ V
is conforming. Then trivial smoothing E = IdS in (4.12) yields b = a|S×S . In other
words, conforming Galerkin methods are the only quasi-optimal methods with the
simplest choice E = IdS for smoothing.

Next, consider a general nonconforming discrete space S, together with the sim-
plest choice for smoothing in the conforming part S ∩ V , i.e., with E|S∩V = IdS∩V .
Here (4.12) yields b|SC×SC

= a|SC×SC
with SC = S ∩ V . Thus, nonconforming

Galerkin methods are the only candidates for quasi-optimal methods with E|S∩V =
IdS∩V . In this context, the following observation if useful in constructing E with
E|S∩V = IdS∩V . If E maps some s ∈ S \ V in S ∩ V , then the injectivity of E is
broken, and, in view of Theorem 4.7, the range of the method is a strict subspace
of S.
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Remark 4.16 (comparison with second Strang lemma). For conforming Galerkin
methods, Theorem 4.14 reduces to the well-known Céa lemma, with Cqopt = 1. Céa’s
lemma is a basic building block in the analysis of the energy norm error for conforming
methods. In the context of nonconforming methods, the second Strang lemma is often
used as a replacement. Theorem 3.2 provides a specialization revealing the structure
of quasi-optimal methods and so lays the groundwork for their design.

Remark 4.17 (comparison with conforming Petrov–Galerkin methods). Our set-
ting of section 2.1 includes the application of Petrov–Galerkin methods to (2.1). It
is therefore of interest to compare formula (4.13) with its conforming counterpart in
Theorem 2.1 of Tantardini and Veeser [18]:

Cqopt = sup
σ∈S

sup‖v‖=1 b(v, σ)

sup‖s‖=1 b(s, σ)
,

where here b stands for the continuous (and discrete) bilinear form and v, s, and
σ vary, respectively, in the continuous trial space, in the discrete trial space, and
in the discrete test space. We see that (4.13) generalizes this formula, replacing
the continuous bilinear form by the extended one, which interweaves discrete and
continuous problems.

Remark 4.18 (“classical” bound for quasi-optimality constant). A consequence
of the formula for the quasi-optimality constant in Theorem 4.14 and (4.3) is the
upper bound

(4.15) Cqopt ≤
Cb̃
β

with the continuity and inf-sup constants

Cb̃ := sup
‖v+s‖=1,‖σ‖=1

a(v,Eσ) + b(s, σ), β := inf
‖s‖=1

sup
‖σ‖=1

b(s, σ),

where v varies in V and s and σ in S. This upper bound has the classical form of
constants appearing in quasi-optimality results, apart from the slight difference that
the continuity constant of the numerator involves the extended bilinear form; see also
Remark 4.17.

It is worth mentioning that the right-hand side of (4.15) can become arbitrarily
large, while its left-hand side remains bounded; see [20, Remark 2.7].

Let us now assess what determines the size of the quasi-optimality constant.

Theorem 4.19 (size of quasi-optimality constant). Assume M = (S, b, L) is a
quasi-optimal nonconforming method with linear smoother E : S → V and stability
constant Cstab. The consistency measure δV of Proposition 3.6 is finite and is

(4.16) δV = sup
v∈V,ΠSv 6=v

sup
σ∈S

b(ΠSv, σ)− a(v,Eσ)

‖ΠSv − v‖‖b(·, σ)‖S′
.

Similarly, the consistency measure δS of Proposition 3.9 is finite and the smallest
positive constant such that

∀s ∈ S sup
σ∈S

b(s, σ)− a(ΠV s, Eσ)

‖b(·, σ)‖S′
≤ δS‖s−ΠV s‖.

Then the quasi-optimality constant of M satisfies

max{Cstab, δS} ≤ Cqopt =
√

1 + δ2
V ≤

√
C2

stab + δ2
S .
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Proof. Lemma 4.2 readily yields the identities

‖ΠSv − Pv‖ = sup
σ∈S

b(ΠSv − Pv, σ)

‖σ‖b
and ‖s− PΠV s‖ = sup

σ∈S

b(s− PΠV s, σ)

‖σ‖b
.

Notice also b(Pv, σ) = b(MAv, σ) = 〈LAv, σ〉 = a(v,Eσ) and ‖σ‖b = ‖b(·, σ)‖S′ for
v ∈ V and σ ∈ S as well as V \ S 6= ∅. Therefore, δV and δS coincide with the
corresponding quantities in Propositions 3.6 and 3.9, and Theorem 4.19 just restates
their conclusions.

We refer to section 3.2 for a discussion of the relationship between Cqopt and
Cstab and in particular the consistency measures δV and δS . Let us further connect
the expression of δV in this theorem with classical consistency.

Remark 4.20 (δV and classical consistency error). The numerator of (4.16) rep-
resents the action of a linear functional on S, namely,

b(ΠSv, σ)− a(v,Eσ) = 〈BΠSv − LAv, σ〉 =: 〈ρ, σ〉 .

Let us recall that LAv is the discrete load associated to v in problem (2.3) and BΠSv
is the linear functional obtained from the representative ΠSv of v in S, through the
isomorphism B. Introducing the norm ‖ · ‖S′,b := sup‖b(·,σ)‖S′=1 〈·, σ〉, the quantity
‖ρ‖S′,b is a consistency error in the sense of Arnold [1]. The measure δV compares
this quantity with the natural benchmark in the context of quasi-optimality, i.e., the
best error ‖v −ΠSv‖.

Given S and b, Theorem 4.14 reduces the construction of quasi-optimal noncon-
forming methods to the choice of a computationally feasible linear smoother E, and
Theorem 4.19 shows how the smoother E affects the size of the quasi-optimality con-
stant. In the follow-ups [20, 21] of this work, we devise such smoothers for various
nonconforming finite element spaces. Modifying classical NCFEM (like the Crouzeix–
Raviart method), we can obtain δS = 0 and so Cqopt = Cstab, as for conforming
Galerkin methods. Also, DG and C0 interior penalty methods can be modified to be
quasi-optimal. Remarkably, additional terms not affecting full algebraic consistency
entail δS > 0 for the employed smoothing.
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