470 research outputs found

    Pruning based Distance Sketches with Provable Guarantees on Random Graphs

    Full text link
    Measuring the distances between vertices on graphs is one of the most fundamental components in network analysis. Since finding shortest paths requires traversing the graph, it is challenging to obtain distance information on large graphs very quickly. In this work, we present a preprocessing algorithm that is able to create landmark based distance sketches efficiently, with strong theoretical guarantees. When evaluated on a diverse set of social and information networks, our algorithm significantly improves over existing approaches by reducing the number of landmarks stored, preprocessing time, or stretch of the estimated distances. On Erd\"{o}s-R\'{e}nyi graphs and random power law graphs with degree distribution exponent 2<β<32 < \beta < 3, our algorithm outputs an exact distance data structure with space between Θ(n5/4)\Theta(n^{5/4}) and Θ(n3/2)\Theta(n^{3/2}) depending on the value of β\beta, where nn is the number of vertices. We complement the algorithm with tight lower bounds for Erdos-Renyi graphs and the case when β\beta is close to two.Comment: Full version for the conference paper to appear in The Web Conference'1

    Causal and homogeneous networks

    Full text link
    Growing networks have a causal structure. We show that the causality strongly influences the scaling and geometrical properties of the network. In particular the average distance between nodes is smaller for causal networks than for corresponding homogeneous networks. We explain the origin of this effect and illustrate it using as an example a solvable model of random trees. We also discuss the issue of stability of the scale-free node degree distribution. We show that a surplus of links may lead to the emergence of a singular node with the degree proportional to the total number of links. This effect is closely related to the backgammon condensation known from the balls-in-boxes model.Comment: short review submitted to AIP proceedings, CNET2004 conference; changes in the discussion of the distance distribution for growing trees, Fig. 6-right change

    Properties of stochastic Kronecker graphs

    Full text link
    The stochastic Kronecker graph model introduced by Leskovec et al. is a random graph with vertex set Z2n\mathbb Z_2^n, where two vertices uu and vv are connected with probability αu⋅vγ(1−u)⋅(1−v)βn−u⋅v−(1−u)⋅(1−v)\alpha^{{u}\cdot{v}}\gamma^{(1-{u})\cdot(1-{v})}\beta^{n-{u}\cdot{v}-(1-{u})\cdot(1-{v})} independently of the presence or absence of any other edge, for fixed parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. They have shown empirically that the degree sequence resembles a power law degree distribution. In this paper we show that the stochastic Kronecker graph a.a.s. does not feature a power law degree distribution for any parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. In addition, we analyze the number of subgraphs present in the stochastic Kronecker graph and study the typical neighborhood of any given vertex.Comment: 37 pages, 2 figure

    Combinatorial Hopf algebraic description of the multiscale renormalization in quantum field theory

    Full text link
    We define in this paper several Hopf algebras describing the combinatorics of the so-called multi-scale renormalization in quantum field theory. After a brief recall of the main mathematical features of multi-scale renormalization, we define assigned graphs, that are graphs with appropriate decorations for the multi-scale framework. We then define Hopf algebras on these assigned graphs and on the Gallavotti-Nicol\`o trees, particular class of trees encoding the supplementary informations of the assigned graphs. Several morphisms between these combinatorial Hopf algebras and the Connes-Kreimer algebra are given. Finally, scale dependent couplings are analyzed via this combinatorial algebraic setting.Comment: 26 pages, 3 figures; the presentation of the results has been reorganized. Several details of various proofs are given and some references have been adde
    • …
    corecore