3 research outputs found

    Robustness and Stability in Constraint Programming under Dynamism and Uncertainty

    Full text link
    [EN] Many real life problems that can be solved by constraint programming, come from uncertain and dynamic environments. Because of the dynamism, the original problem may change over time, and thus the solution found for the original problem may become invalid. For this reason, dealing with such problems has become an important issue in the fields of constraint programming. In some cases, there is extant knowledge about the uncertain and dynamic environment. In other cases, this information is fragmentary or unknown. In this paper, we extend the concept of robustness and stability for Constraint Satisfaction Problems (CSPs) with ordered domains, where only limited assumptions need to be made as to possible changes. We present a search algorithm that searches for both robust and stable solutions for CSPs of this nature. It is well-known that meeting both criteria simultaneously is a desirable objective for constraint solving in uncertain and dynamic environments. We also present compelling evidence that our search algorithm outperforms other general-purpose algorithms for dynamic CSPs using random instances and benchmarks derived from real life problems.This work has been partially supported by the research project TIN2010-20976-C02-01 and FPU program fellowship (Min. de Ciencia e Innovacion, Spain). We wish to thank Dr. Christophe Lecoutre and Dr. Diarmuid Grimes for their assistance.Climent Aunés, LI.; Wallace, R.; Salido Gregorio, MA.; Barber Sanchís, F. (2014). Robustness and Stability in Constraint Programming under Dynamism and Uncertainty. Journal of Artificial Intelligence Research. 49(1):49-78. https://doi.org/10.1613/jair.4126S497849

    Leprechauns on the chessboard

    Get PDF
    We introduce in this paper leprechauns, fairy chess pieces that can move either like the standard queen, or to any tile within k king moves. We then study the problem of placing n leprechauns on an n×n chessboard. When k=1, this is equivalent to the standard n-Queens Problem. We solve the problem for k=2, as well as for k>2 and n≤(k+1)2, giving in the process an upper bound on the lowest non-trivial value of n such that the (k,n)-Leprechauns Problem is satisfiable. Solving this problem for all k would be equivalent to solving the diverse n-Queens Problem, the variant of the n-Queens Problem where the distance between the two closest queens is maximized. While diversity has been a popular topic in other constraint problems, this is not the case for the n-Queens Problem, making our results the first major ones in the domain

    Robustness and stability in dynamic constraint satisfaction problems

    Full text link
    Constraint programming is a paradigm wherein relations between variables are stated in the form of constraints. It is well-known that many real life problems can be modeled as Constraint Satisfaction Problems (CSPs). Much effort has been spent to increase the efficiency of algorithms for solving CSPs. However, many of these techniques assume that the set of variables, domains and constraints involved in the CSP are known and fixed when the problem is modeled. This is a strong limitation because many problems come from uncertain and dynamic environments, where both the original problem may evolve because of the environment, the user or other agents. In such situations, a solution that holds for the original problem can become invalid after changes. There are two main approaches for dealing with these situations: reactive and proactive approaches. Using reactive approaches entails re-solving the CSP after each solution loss, which is a time consuming. That is a clear disadvantage, especially when we deal with short-term changes, where solution loss is frequent. In addition, in many applications, such as on-line planning and scheduling, the delivery time of a new solution may be too long for actions to be taken on time, so a solution loss can produce several negative effects in the modeled problem. For a task assignment production system with several machines, it could cause the shutdown of the production system, the breakage of machines, the loss of the material/object in production, etc. In a transport timetabling problem, the solution loss, due to some disruption at a point, may produce a delay that propagates through the entire schedule. In addition, all the negative effects stated above will probably entail an economic loss. In this thesis we develop several proactive approaches. Proactive approaches use knowledge about possible future changes in order to avoid or minimize their effects. These approaches are applied before the changes occur. Thus, our approaches search for robust solutions, which have a high probability to remain valid after changes. Furthermore, some of our approaches also consider that the solutions can be easily adapted when they did not resist the changes in the original problem. Thus, these approaches search for stable solutions, which have an alternative solution that is similar to the previous one and therefore can be used in case of a value breakage. In this context, sometimes there exists knowledge about the uncertain and dynamic environment. However in many cases, this information is unknown or hard to obtain. For this reason, for the majority of our approaches (specifically 3 of the 4 developed approaches), the only assumptions made about changes are those inherent in the structure of problems with ordered domains. Given this framework and therefore the existence of a significant order over domain values, it is reasonable to assume that the original bounds of the solution space may undergo restrictive or relaxed modifications. Note that the possibility of solution loss only exists when changes over the original bounds of the solution space are restrictive. Therefore, the main objective for searching robust solutions in this framework is to find solutions located as far away as possible from the bounds of the solution space. In order to meet this criterion, we propose several approaches that can be divided in enumeration-based techniques and a search algorithm.Climent Aunés, LI. (2013). Robustness and stability in dynamic constraint satisfaction problems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34785TESI
    corecore