87 research outputs found

    Parameterized complexity of coloring problems: Treewidth versus vertex cover

    Get PDF
    AbstractWe compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    A general framework for coloring problems: old results, new results, and open problems

    Get PDF
    In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    Locally Constrained Homomorphisms on Graphs of Bounded Treewidth and Bounded Degree

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree
    corecore