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Abstract. A homomorphism from a graph G to a graph H is locally
bijective, surjective, or injective if its restriction to the neighborhood of
every vertex of G is bijective, surjective, or injective, respectively. We
prove that the problems of testing whether a given graph G allows a
homomorphism to a given graph H that is locally bijective, surjective,
or injective, respectively, are NP-complete, even when G has pathwidth
at most 5, 4 or 2, respectively, or when both G and H have maximum
degree 3. We complement these hardness results by showing that the
three problems are polynomial-time solvable if G has bounded treewidth
and in addition G or H has bounded maximum degree.

1 Introduction

All graphs considered in this paper are finite, undirected, and have neither self-
loops nor multiple edges. A graph homomorphism from a graph G = (VG, EG) to
a graph H = (VH , EH) is a mapping ϕ : VG → VH that maps adjacent vertices
of G to adjacent vertices of H, i.e., ϕ(u)ϕ(v) ∈ EH whenever uv ∈ EG. The
notion of a graph homomorphism is well studied in the literature due to its
many practical and theoretical applications; we refer to the textbook of Hell and
Nešetřil [20] for a survey.

We write G → H to indicate the existence of a homomorphism from G to
H. We call G the guest graph and H the host graph. We denote the vertices of
H by 1, . . . , |H| and call them colors. The reason for doing this is that graph
homomorphisms generalize graph colorings: there exists a homomorphism from
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a graph G to a complete graph on k vertices if and only if G is k-colorable. The
problem of testing whether G→ H for two given graphs G and H is called the
Hom problem. If only the guest graph is part of the input and the host graph
is fixed, i.e., not part of the input, then this problem is denoted as H-Hom. The
classical result in this area is the Hell-Nešetřil dichotomy theorem which states
that H-Hom is solvable in polynomial time if H is bipartite, and NP-complete
otherwise [19].

We consider so-called locally constrained homomorphisms. The neighborhood
of a vertex u in a graph G is denoted NG(u) = {v ∈ VG | uv ∈ EG}. If for
every u ∈ VG the restriction of ϕ to the neighborhood of u, i.e., the mapping
ϕu : NG(u)→ NH(ϕ(u)), is injective, bijective, or surjective, then ϕ is said to be
locally injective, locally bijective, or locally surjective, respectively. Locally bijec-
tive homomorphisms are also called graph coverings. They originate from topo-
logical graph theory [3,26] and have applications in distributed computing [1,2,5]
and in constructing highly transitive regular graphs [4]. Locally injective ho-
momorphisms are also called partial graph coverings. They have applications
in models of telecommunication [11] and in distance constrained labeling [12].
Moreover, they are used as indicators of the existence of homomorphisms of
derivative graphs [27]. Locally surjective homomorphisms are also called color
dominations [25]. In addition they are known as role assignments due to their
applications in social science [9,28,29]. Just like locally bijective homomorphisms
they also have applications in distributed computing [7].

If there exists a homomorphism from a graph G to a graph H that is locally
bijective, locally injective, or locally surjective, respectively, then we write G B−→
H, G I−→ H, and G S−→ H, respectively. We denote the decision problems that
are to test whether G B−→ H, G I−→ H, or G S−→ H for two given graphs G and
H by LBHom, LIHom and LSHom, respectively. All three problems are known
to be NP-complete when both guest and host graphs are given as input (see
below for details), and attempts have been made to classify their computational
complexity when only the guest graph belongs to the input and the host graph is
fixed. The corresponding problems are denoted by H-LBHom, H-LIHom, and
H-LSHom, respectively. The H-LSHom problem is polynomial-time solvable
either if H has no edge or if H is bipartite and has at least one connected
component isomorphic to an edge; in all other cases H-LSHom is NP-complete,
even for the class of bipartite graphs [13]. The complexity classification of H-
LBHom and H-LIHom is still open, although many partial results are known;
we refer to the papers [11,24] and to the survey by Fiala and Kratochv́ıl [10] for
both NP-complete and polynomially solvable cases.

Instead of fixing the host graph, another natural restriction is to only take
guest graphs from a special graph class. Heggernes et al. [21] proved that LB-
Hom is Graph Isomorphism-complete when the guest graph is chordal, and
polynomial-time solvable when the guest graph is interval. In contrast, LSHom
is NP-complete when the guest graph is chordal and polynomial-time solvable
when the guest graph is proper interval, whereas LIHom is NP-complete even
for guest graphs that are proper interval [21]. It is also known that the problems



LBHom and LSHom are polynomial-time solvable when the guest graph is a
tree [14].

In this paper we focus on the following line of research. The core of a graph
G is a minimum subgraph F of G such that there exists a homomorphism
from G to F . Dalmau, Kolaitis and Vardi [8] proved that the Hom problem
is polynomial-time solvable when the guest graph belongs to any fixed class
of graphs whose cores have bounded treewidth. In particular, this result im-
plies that Hom is polynomial-time solvable when the guest graph has bounded
treewidth. Grohe [17] strengthened the result of Dalmau et al. [8] by proving
that under a certain complexity assumption (namely FPT 6= W[1]) the Hom
problem can be solved in polynomial time if and only if this condition holds.

Our Contribution. We investigate whether the aforementioned results of Dal-
mau et al. [8] and Grohe [17] remain true when we consider locally constrained
homomorphisms instead of general homomorphisms. In Section 2, we provide a
negative answer to this question by showing that the problems LBHom, LSHom
and LIHom are NP-complete already in the restricted case where the guest graph
has pathwidth at most 5, 4 or 2, respectively. We also show that the three prob-
lems are NP-complete even if both the guest graph and the host graph have
maximum degree 3. The latter result shows that locally constrained homomor-
phisms problems behave more like unconstrained homomorphisms on graphs of
bounded degree than on graphs of bounded treewidth, as it is known that, for
example, C5-Hom is NP-complete on subcubic graphs [15].

On the positive side, in Section 3, we show that all three problems can be
solved in polynomial time if we bound the treewidth of the guest graph and at
the same time bound the maximum degree of the guest graph or the host graph.
Because a graph class of bounded maximum degree has bounded treewidth if and
only if it has bounded clique-width [18], all three problems are also polynomial-
time solvable when we bound the clique-width and the maximum degree of the
guest graph.

Preliminaries. Let G be a graph. The degree of a vertex v in G is denoted by
dG(v) = |NG(v)|, and ∆(G) = maxv∈VG

dG(v) denotes the maximum degree of
G. Let ϕ be a homomorphism from G to a graph H. Moreover, let G′ be an
induced subgraph of G, and let ϕ′ be a homomorphism from G′ to H. We say
that ϕ extends (or, equivalently, is an extension of) ϕ′ if ϕ(v) = ϕ′(v) for every
v ∈ VG′ .

A tree decomposition of G is a tree T = (VT , ET ), where the elements of VT ,
called the nodes of T , are subsets of VG such that the following three conditions
are satisfied:

1. for each vertex v ∈ VG, there is a node X ∈ VT with v ∈ X,
2. for each edge uv ∈ EG, there is a node X ∈ VT with {u, v} ⊆ X,
3. for each vertex v ∈ VG, the set of nodes {X | v ∈ X} induces a connected

subtree of T .

The width of a tree decomposition T is the size of a largest node X minus one.
The treewidth of G, denoted by tw(G), is the minimum width over all possible



tree decompositions of G. A path decomposition of G is a tree decomposition
T of G where T is a path. The pathwidth of G is the minimum width over all
possible path decompositions of G. By definition, the pathwidth of G is at least
as high as its treewidth. A tree decomposition T is nice [22] if T is a binary tree,
rooted in a root R such that the nodes of T belong to one of the following four
types:

1. a leaf node X is a leaf of T ,
2. an introduce node X has one child Y and X = Y ∪ {v} for some vertex
v ∈ VG \ Y ,

3. a forget node X has one child Y and X = Y \ {v} for some vertex v ∈ Y ,
4. a join node X has two children Y,Z satisfying X = Y = Z.

2 NP-Completeness Results

For the NP-hardness results in Theorem 1 below we use a reduction from the
3-Partition problem. This problem takes as input a multiset A of 3m integers,
denoted in the sequel by {a1, a2, . . . , a3m}, and a positive integer b, such that
b
4 < ai <

b
2 for all i ∈ {1, . . . , 3m} and

∑
1≤i≤3m ai = mb. The task is to

determine whether A can be partitioned into m disjoint sets A1, . . . , Am such
that

∑
a∈Ai

a = b for all i ∈ {1, . . . ,m}. Note that the restrictions on the size of
each element in A implies that each set Ai in the desired partition must contain
exactly three elements, which is why such a partition A1, . . . , Am is called a
3-partition of A. The 3-Partition problem is strongly NP-complete [16], i.e., it
remains NP-complete even if the problem is encoded in unary.

Theorem 1. The following three statements hold:

(i) LBHom is NP-complete on input pairs (G,H) where G has pathwidth at
most 5 and H has pathwidth at most 3;

(ii) LSHom is NP-complete on input pairs (G,H) where G has pathwidth at
most 4 and H has pathwidth at most 3;

(iii) LIHom is NP-complete on input pairs (G,H) where G has pathwidth at most
2 and H has pathwidth at most 2.

Proof. We only prove statement (i) here; the similar but easier proofs of state-
ments (ii) and (iii) have been omitted.

Note that LBHom is in NP. Given an instance (A, b) of 3-Partition, we con-
struct two graphs G and H as follows; see Figures 1 and 2 for some helpful illus-
trations. The construction of G starts by taking 3m disjoint cycles C1, . . . , C3m

of length b, one for each element of A. For each i ∈ {1, . . . , 3m}, the vertices of
Ci are labeled ui1, . . . , u

i
b and we add, for each j ∈ {1, . . . , b}, two new vertices pij

and qij as well as two new edges uijp
i
j and uijq

i
j . We then add three new vertices

x, y and z. Vertex x is made adjacent to vertices pi1, p
i
2 . . . , p

i
ai and qi1, q

i
2 . . . , q

i
ai

for every i ∈ {1, . . . , 3m}. Finally, the vertex y is made adjacent to every vertex
pij that is not adjacent to x, and the vertex z is made adjacent to every vertex

qij that is not adjacent to x. This finishes the construction of G.
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Fig. 1. A schematic illustration of the graphs G and H that are constructed from
a given instance (A, b) of 3-Partition in the proof of statement (i) in Theorem 1.
See also Figure 2 for a more detailed illustration of the “leftmost” part of G and the
“rightmost” part of H, including more labels.

To construct H, we take m disjoint cycles C̃1, . . . , C̃m of length b, where the
vertices of each cycle C̃i are labeled ũi1, . . . , ũ

i
b. For each i ∈ {1, . . . ,m} and

j ∈ {1, . . . , b}, we add two vertices p̃ij and q̃ij and make both of them adjacent

to ũij . Finally, we add a vertex x̃ and make it adjacent to each of the vertices p̃ij
and q̃ij . This finishes the construction of H.
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Fig. 2. More detailed illustration of parts of the graphs G and H in Figure 1.

We now show that there exists a locally bijective homomorphism from G to
H if and only if (A, b) is a yes-instance of 3-Partition.



Let us first assume that there exists a locally bijective homomorphism ϕ
from G to H. Since ϕ is a degree-preserving mapping, we must have ϕ(x) = x̃.
Moreover, since ϕ is locally bijective, the restriction of ϕ to NG(x) is a bijection
from NG(x) to NH(x̃). Again using the definition of a locally bijective mapping,
this time considering the neighborhoods of the vertices in NH(x̃), we deduce
that there is a bijection from the set N2

G(x) := {uij | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai},
i.e., from the set of vertices in G at distance 2 from x, to the set N2

H(x̃) :=
{ũkj | 1 ≤ k ≤ m, 1 ≤ j ≤ b} of vertices that are at distance 2 from x̃ in H. For
every k ∈ {1, . . . ,m}, we define a set Ak ⊆ A such that Ak contains element
ai ∈ A if and only if ϕ(ui1) ∈ {ũk1 , . . . , ũkb}. Since ϕ is a bijection from N2

G(x)
to N2

H(x̃), the sets A1, . . . , Am are disjoint; moreover each element ai ∈ A is
contained in exactly one of them. Observe that the subgraph of G induced by
N2
G(x) is a disjoint union of 3m paths of lengths a1, a2, . . . , a3m, respectively,

while the subgraph of H induced by N2
H(x̃) is a disjoint union of m cycles of

length b each. The fact that ϕ is a homomorphism and therefore never maps
adjacent vertices of G to non-adjacent vertices in H implies that

∑
a∈Ai

a = b
for all i ∈ {1, . . . ,m}. Hence A1, . . . , Am is a 3-partition of A.

For the reverse direction, suppose there exists a 3-partition A1, . . . , Am of
A. We define a mapping ϕ as follows. We first set ϕ(x) = ϕ(y) = ϕ(z) = x̃.
Let Ai = {ar, as, at} be any set of the 3-partition. We map the vertices of the
cycles Cr, Cs, Ct that are at distance 2 from x to the vertices of the cycle C̃i in
the following way: ϕ(urj) = ũij for each j ∈ {1, . . . , ar}, ϕ(usj) = ũiar+j for each

j ∈ {1, . . . , as}, and ϕ(utj) = ũiar+as+j for each j ∈ {1, . . . , at}. The vertices
of Cr, Cs and Ct that are at distance more than 2 from x in G are mapped to
vertices of C̃i such that the vertices of Cr, Cs and Ct appear in the same order as
their images on C̃i. In particular, we set ϕ(urj) = ũij for each j ∈ {ar + 1, . . . , b};
the vertices of the cycles Cs and Ct that are at distance more than 2 from x are
mapped to vertices of C̃i analogously. After the vertices of the cycles C1, . . . , C3m

have been mapped in the way described above, it remains to map the vertices
pij and qij for each i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}.

Let pij , q
i
j be a pair of vertices in G that are adjacent to x, and let uij be

the second common neighbor of pij and qij . Suppose ũk` is the image of uij , i.e.,

suppose that ϕ(uij) = ũk` . Then we map pij and qij to p̃k` and q̃k` , respectively. We
now consider the neighbors of y and z in G. By construction, the neighborhood
of y consists of the 2mb vertices in the set {pij | ai+1 ≤ j ≤ b}, while NG(z) =

{qij | ai+1 ≤ j ≤ b}.
Observe that x̃, the image of y and z, is adjacent to two sets of mb vertices:

one of the form p̃k` , the other of the form q̃k` . Hence, we need to map half the
neighbors of y to vertices of the form p̃k` and half the neighbors of y to vertices
of the form q̃k` in order to make ϕ a locally bijective homomorphism. The same
should be done with the neighbors of z. For every vertex ũk` in H, we do as
follows. By construction, exactly three vertices of G are mapped to ũk` , and
exactly two of those vertices, say uij and ugh, are at distance 2 from y in G. We

set ϕ(pij) = p̃k` and ϕ(pgh) = q̃k` . We also set ϕ(qij) = q̃k` and ϕ(qgh) = p̃k` . This
completes the definition of the mapping ϕ.



Since the mapping ϕ preserves adjacencies, it clearly is a homomorphism.
In order to show that ϕ is locally bijective, we first observe that the degree
of every vertex in G is equal to the degree of its image in H; in particular,
dG(x) = dG(y) = dG(z) = dH(x̃) = mb. From the above description of ϕ we
get a bijection between the vertices of NH(x̃) and the vertices of NG(v) for each
v ∈ {x, y, z}. For every vertex pij that is adjacent to x and uij in G, its image

p̃k` is adjacent to the images x̃ of x and ũk` of uij . For every vertex pij that is

adjacent to y (respectively z) and uij in G, its image p̃k` or q̃k` is adjacent to

x̃ of y (respectively z) and ũk` of uij . Hence the restriction of ϕ to NG(pij) is
bijective for every i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}, and the same clearly holds
for the restriction of ϕ to NG(qij). The vertices of each cycle Ci are mapped to

the vertices of some cycle C̃k in such a way that the vertices and their images
appear in the same order on the cycles. This, together with the fact that the
image ũk` of every vertex uij is adjacent to the images p̃k` and q̃k` of the neighbors

pij and qij of uij , shows that the restriction of ϕ to NG(uij) is bijective for every
i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}. We conclude that ϕ is a locally bijective
homomorphism from G to H.

In order to show that the pathwidth of G is at most 5, let us first consider
the subgraph of G depicted on the left-hand side of Figure 2; we denote this
subgraph by L1, and we say that the cycle C1 defines the subgraph L1. The
graph L′1 that is obtained from L1 by deleting vertices x, y, z and edge u11u

1
b is a

caterpillar, i.e., a tree in which there is a path containing all vertices of degree
more than 1. Since caterpillars are well-known to have pathwidth 1, graph L′1
has a path decomposition P ′1 of width 1. Starting with P ′1, we can now obtain
a path decomposition of the graph L1 by simply adding vertices x, y, z and
u11 to each node of P ′1; this path decomposition has width 5. Every cycle Ci
in G defines a subgraph Li of G in the same way C1 defines the subgraph L1.
Suppose we have constructed a path decomposition Pi of width 5 of the subgraph
Li for each i ∈ {1, . . . , 3m} in the way described above. Since any two subgraphs
Li and Lj with i 6= j have only the vertices x, y, z in common, and these three
vertices appear in all nodes of each of the path decompositions Pi, we can arrange
the 3m path decompositions P1, . . . , P3m in such a way that we obtain a path
decomposition P of G of width 5. Hence G has pathwidth at most 5. Similar but
easier arguments can be used to show that H has pathwidth at most 3. ut

We now consider the case where we bound the maximum degree of G instead
of the treewidth of G. An equitable partition of a connected graph G is a partition
of its vertex set in blocks B1, . . . , Bk such that any vertex in Bi has the same
number mi,j of neighbors in Bj . We call the matrix M = (mi,j) corresponding
to the coarsest equitable partition of G (in which the blocks are ordered in some
canonical way; cf. [1]) the degree refinement matrix of G, denoted as drm(G). We
will use the following lemma; a proof of the first statement in this lemma can be
found in the paper of Fiala and Kratochv́ıl [11], whereas the second statement
is due to Kristiansen and Telle [25].

Lemma 1. Let G and H be two graphs. Then the following two statements hold:



(i) if G I−→ H and drm(G) = drm(H), then G B−→ H;
(ii) if G S−→ H and drm(G) = drm(H), then G B−→ H.

Kratochv́ıl and Křivánek [23] showed thatK4-LBHom is NP-complete, where
K4 denotes the complete graph on four vertices. Since a graph G allows a locally
bijective homomorphism toK4 only ifG is 3-regular,K4-LBHom is NP-complete
on 3-regular graphs. The degree refinement matrix of a 3-regular graph is the
1× 1 matrix whose only entry is 3. Consequently, due to Lemma 1, K4-LBHom
is equivalent to K4-LIHom and to K4-LSHom on 3-regular graphs. This yields
the following result.

Theorem 2. The problems LBHom, LIHom and LSHom are NP-complete on
input pairs (G,K4) where G has maximum degree 3.

3 Polynomial-Time Results

In Section 2, we showed that LBHom, LIHom and LSHom are NP-complete
when either the treewidth or the maximum degree of the guest graph is bounded.
In this section, we show that all three problems become polynomial-time solvable
if we bound both the treewidth and the maximum degree of G. For the prob-
lems LBHom and LIHom, our polynomial-time result follows from reformulat-
ing these problems as constraint satisfaction problems and applying a result of
Dalmau et al. [8]; we omit the proof details.

Theorem 3. The problems LBHom and LIHom can be solved in polynomial
time when G has bounded treewidth and G or H has bounded maximum degree.

To our knowledge, locally surjective homomorphisms have not yet been ex-
pressed as homomorphisms between relational structures. Hence, in the proof of
Theorem 4 below, we present a polynomial-time algorithm for LSHom when G
has bounded treewidth and bounded maximum degree. We first introduce some
additional terminology.

Let ϕ be a locally surjective homomorphism from G to H. Let v ∈ VG and
p ∈ VH . If ϕ(v) = p, i.e., if ϕ maps vertex v to color p, then we say that p
is assigned to v. By definition, for every vertex v ∈ VG, the set of colors that
are assigned to the neighbors of v in G is exactly the neighborhood of ϕ(v) in
H. Now suppose we are given a homomorphism ϕ′ from an induced subgraph
G′ of G to H. For any vertex v ∈ VG′ , we say that v misses a color p ∈ VH if
p ∈ NH(ϕ′(v)) \ ϕ(NG′(v)), i.e., if ϕ′ does not assign p to any neighbor of v in
G′, but any locally surjective homomorphism ϕ from G to H that extends ϕ′

assigns p to some neighbor of v in G′.
Let T be a nice tree decomposition of G rooted in R. For every node X ∈ VT ,

we define GX to be the subgraph of G induced by the vertices of X together
with the vertices of all the nodes that are descendants of X. In particular, we
have GR = G.



Definition 1. Let X ∈ VT , and let c : X → VH and µ : X → 2VH be two
mappings. The pair (c, µ) is feasible for GX if there exists a homomorphism ϕ
from GX to H satisfying the following three conditions:

(i) c(v) = ϕ(v) for every v ∈ X;
(ii) µ(v) = NH(ϕ(v)) \ ϕ(NGX

(v)) for every v ∈ X;
(iii) ϕ(NG(v)) = NH(ϕ(v)) for every v ∈ VGX

\X.

In other words, a pair (c, µ) consists of a coloring c of the vertices of X,
together with a collection of sets µ(v), one for each v ∈ X, consisting of exactly
those colors that v misses. Informally speaking, a pair (c, µ) is feasible for GX if
there is a homomorphism ϕ : GX → H such that ϕ “agrees” with the coloring
c on the set X, and such that none of the vertices in VGX

\X misses any color.
The idea is that if a pair (c, µ) is feasible, then such a homomorphism ϕ might
have an extension ϕ∗ that is a locally surjective homomorphism from G to H.
After all, for any vertex v ∈ X that misses a color when considering ϕ, this color
might be assigned by ϕ∗ to a neighbor of v in the set VG \ VGX

.
We now prove a result for LSHom similar to Theorem 3.

Theorem 4. The problem LSHom can be solved in polynomial time when G
has bounded treewidth and G or H has bounded maximum degree.

Proof. Let (G,H) be an instance of LSHom such that the treewidth of the
guest graph G is bounded. Throughout the proof, we assume that the maximum
degree of H is bounded, and show that the problem can be solved in polynomial
time under these restrictions. Since G S−→ H implies that ∆(G) ≥ ∆(H), our
polynomial-time result applies also if we bound the maximum degree ofG instead
of H.

We may assume without loss of generality that both G and H are connected,
as otherwise we just consider all pairs (Gi, Hj) separately, where Gi is a con-
nected component of G and Hj is a connected component of H. Because G has
bounded treewidth, we can compute a tree decomposition of G of width tw(G)
in linear time using Bodlaender’s algorithm [6]. We transform this tree decom-
position into a nice tree decomposition T of G with width tw(G) with at most
4|VG| nodes using the linear-time algorithm of Kloks [22]. Let R be the root of
T and let k = tw(G) + 1.

For each node X ∈ VT , let FX be the set of all feasible pairs (c, µ) for GX .
For every feasible pair (c, µ) ∈ FX and every v ∈ X, it holds that µ(v) is a subset
of NH(c(v)). Since |X| ≤ k and |NH(c(v))| ≤ ∆(H)k for every v ∈ X and every
mapping c : X → VH , this implies that |FX | ≤ |VH |k2∆(H)k for each X ∈ VT .
As we assumed that both k and ∆(H) are bounded by a constant, the set FX is
of polynomial size with respect to |VH |.

The algorithm considers the nodes of T in a bottom-up manner, starting with
the leaves of T and processing a node X ∈ VT only after its children have been
processed. For every node X, the algorithm computes the set FX in the way
described below. We distinguish between four different cases. The correctness
of each of the cases easily follows from the definition of a locally surjective
homomorphism and Definition 1.



1. X is a leaf node of T . We consider all mappings c : X → VH . For each
mapping c, we check whether c is a homomorphism from GX to H. If not,
then we discard c, as it can not belong to a feasible pair due to condition (i)
in Definition 1. For each mapping c that is not discarded, we compute the
unique mapping µ satisfying µ(v) = NH(c(v)) \ c(NGX

(v)) for each v ∈ X,
and we add the pair (c, µ) to FX . It follows from condition (ii) that the
obtained set FX indeed contains all feasible pairs for GX . As there is no
vertex in VGX

\ X, every pair (c, µ) trivially satisfies condition (iii). The
computation of FX can be done in O(|VH |kk(∆(H) + k)) time in this case.

2. X is a forget node. Let Y be the child of X in T , and let {u} = Y \X. Observe
that (c, µ) ∈ FX if and only if there exists a feasible pair (c′, µ′) ∈ FY such
that c(v) = c′(v) and µ(v) = µ′(v) for every v ∈ X, and µ′(u) = ∅. Hence
we examine each (c′, µ′) ∈ FY and check whether µ′(u) = ∅ is satisfied. If so,
we first restrict (c′, µ′) on X to get (c, µ) and then we insert the obtained
feasible pair into FX . This procedure needs O(|FY |k∆(H)) time in total.

3. X is an introduce node. Let Y be the child of X in T , and let {u} = X \ Y .
Observe that (c, µ) ∈ FX if and only if there exists a feasible pair (c′, µ′) ∈ FY
such that, for every v ∈ Y , it holds that c(v) = c′(v), µ(v) = µ′(v) \ c(u)
if uv ∈ EG, and µ(v) = µ′(v) if uv /∈ EG. Hence, for each (c′, µ′) ∈ FY ,
we consider all |VH | mappings c : X → VH that extend c′. For each such
extension c, we test whether c is a homomorphism from GX to H by checking
the adjacencies of c(u) in H. If not, then we may safely discard c due to
condition (i) in Definition 1. Otherwise, we compute the unique mapping
µ : X → 2VH satisfying

µ(v) =


NH(c(u)) \ c(NGX

(u)) if v = u

µ′(v) \ c(u) if v 6= u and uv ∈ EG
µ′(v) if v 6= u and uv /∈ EG ,

and we add the pair (c, µ) to FX ; due to condition (ii), this pair (c, µ) is
the unique feasible pair containing c. Computing the set FX takes at most
O(|FY ||VH |k∆(H)) time in total.

4. X is a join node. Let Y and Z be the two children of X in T . Observe that
(c, µ) ∈ FX if and only if there exist feasible pairs (c1, µ1) ∈ FY and (c2, µ2) ∈
FZ such that, for every v ∈ X, c(v) = c1(v) = c2(v) and µ(v) = µ1(v) ∩
µ2(v). Hence the algorithm considers every combination of (c1, µ1) ∈ FY with
(c2, µ2) ∈ FZ and if they agree on the first component c, the other component
µ is determined uniquely by taking the intersection of µ1(v) and µ2(v) for
every v ∈ X. This procedure computes the set FX in O(|FY ||FZ |k∆(H))
time in total.

Finally, observe that a locally surjective homomorphism from G to H exists
if and only if there exists a feasible pair (c, µ) for GR such that µ(v) = ∅ for
all v ∈ R. Since T has at most 4|VG| nodes, we obtain a total running time
of O(|VG|(|VH |k2∆(H)k)2k∆(H)). As we assumed that both k = tw(G) + 1 and
∆(H) are bounded by a constant, our algorithm runs in polynomial time. ut



Note that Theorem 3 can be derived by solving LIHom using a dynamic
programming approach that strongly resembles the one for LSHom described
in the proof of Theorem 4, together with the fact that (G,H) is a yes-instance
of LBHom if and only if it is a yes-instance for both LIHom and LSHom. In
a dynamic programming algorithm for solving LIHom, instead of keeping track
of sets µ(v) of colors that a vertex v ∈ X is missing, we keep track of sets α(v)
of colors that have already been assigned to the neighbors of a vertex v ∈ X.
This is because in a locally injective homomorphism from G to H, no color
may be assigned to more than one neighbor of any vertex. In this way we can
adjust Definition 1 in such a way that it works for locally injective instead of
locally surjective homomorphisms. We omit further details, but we expect that a
dynamic programming algorithm of this kind will have smaller hidden constants
in the running time estimate than the more general method of Dalmau et al. [8].

We conclude this section with one more polynomial-time result, the proof of
which has been omitted. It is known that the problems LBHom and LSHom
are polynomial-time solvable when G is a tree [14], and consequently when G
has treewidth 1. We claim that the same holds for the LIHom problem.

Theorem 5. The LIHom problem can be solved in polynomial time when G has
treewidth 1.

4 Conclusion

Theorem 5 states that LIHom can be solved in polynomial time when the guest
graph has treewidth 1, while Theorem 1 implies that the problem is NP-complete
when the guest graph has treewidth 2. This shows that the bound on the path-
width in the third statement of Theorem 1 is best possible. We leave it as an
open problem to determine whether the bounds on the pathwidth in the other
two statements of Theorem 1 can be reduced further.
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