26 research outputs found

    Double Asynchronous Switching Control for Takagi–Sugeno Fuzzy Markov Jump Systems via Adaptive Event-Triggered Mechanism

    Get PDF
    This article addresses the issue of adaptive event- triggered H∞ control for Markov jump systems based on Takagi-Sugeno (T-S) fuzzy model. Firstly, a new double asynchronous switching controller is presented to deal with the problem of the mismatch of premise variables and modes between the controller and the plant, which is widespread in real network environment. To further reduce the power consumption of communication, a switching adaptive event-triggered mechanism is adopted to relieve the network transmission pressure while ensuring the control effect. In addition, a new Lyapunov-Krasovskii functional (LKF) is constructed to reduce conservatism by introducing the membership functions (MFs) and time-varying delays informa- tion. Meanwhile, the invariant set is estimated to ensure the stability of the system. And the disturbance rejection ability is measured by the optimal H∞ performance index. Finally, two examples are presented to demonstrate the effectiveness of the proposed approach

    Extended Dissipative Filter for Delayed T-S Fuzzy Network of Stochastic System with Packet Loss

    Get PDF
    This research investigates a time-varying delay-based adaptive event-triggered dissipative filtering problem for the interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy networked stochastic system. The concept of extended dissipativity is used to solve the ,  and dissipative performances for (IT-2) T-S fuzzy stochastic systems in a unified manner. Data packet failures and latency difficulties are taken into account while designing fuzzy filters. An adaptive event-triggered mechanism is presented to efficiently control network resources and minimise excessive continuous monitoring while assuring the system’s efficiency with extended dissipativity. A new adaptive event triggering scheme is proposed which depends on the dynamic error rather than pre-determined constant threshold. A new fuzzy stochastic Lyapunov-Krasovskii Functional (LKF) using fuzzy matrices with higher order integrals is built based on the Lyapunov stability principle for mode-dependent filters. Solvability of such LKF leads to the formation of appropriate conditions in the form of linear matrix inequalities, ensuring that the resulting error mechanism is stable. In order to highlight the utility and perfection of the proposed technique, an example is presented

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Active Fault Tolerant Control of Livestock Stable Ventilation System

    Get PDF

    Fault detection and isolation in a networked multi-vehicle unmanned system

    Get PDF
    Recent years have witnessed a strong interest and intensive research activities in the area of networks of autonomous unmanned vehicles such as spacecraft formation flight, unmanned aerial vehicles, autonomous underwater vehicles, automated highway systems and multiple mobile robots. The envisaged networked architecture can provide surpassing performance capabilities and enhanced reliability; however, it requires extending the traditional theories of control, estimation and Fault Detection and Isolation (FDI). One of the many challenges for these systems is development of autonomous cooperative control which can maintain the group behavior and mission performance in the presence of undesirable events such as failures in the vehicles. In order to achieve this goal, the team should have the capability to detect and isolate vehicles faults and reconfigure the cooperative control algorithms to compensate for them. This dissertation deals with the design and development of fault detection and isolation algorithms for a network of unmanned vehicles. Addressing this problem is the main step towards the design of autonomous fault tolerant cooperative control of network of unmanned systems. We first formulate the FDI problem by considering ideal communication channels among the vehicles and solve this problem corresponding to three different architectures, namely centralized, decentralized, and semi-decentralized. The necessary and sufficient solvability conditions for each architecture are also derived based on geometric FDI approach. The effects of large environmental disturbances are subsequently taken into account in the design of FDI algorithms and robust hybrid FDI schemes for both linear and nonlinear systems are developed. Our proposed robust FDI algorithms are applied to a network of unmanned vehicles as well as Almost-Lighter-Than-Air-Vehicle (ALTAV). The effects of communication channels on fault detection and isolation performance are then investigated. A packet erasure channel model is considered for incorporating stochastic packet dropout of communication channels. Combining vehicle dynamics and communication links yields a discrete-time Markovian Jump System (MJS) mathematical model representation. This motivates development of a geometric FDI framework for both discrete-time and continuous-time Markovian jump systems. Our proposed FDI algorithm is then applied to a formation flight of satellites and a Vertical Take-Off and Landing (VTOL) helicopter problem. Finally, we investigate the problem of fault detection and isolation for time-delay systems as well as linear impulsive systems. The main motivation behind considering these two problems is that our developed geometric framework for Markovian jump systems can readily be applied to other class of systems. Broad classes of time-delay systems, namely, retarded, neutral, distributed and stochastic time-delay systems are investigated in this dissertation and a robust FDI algorithm is developed for each class of these systems. Moreover, it is shown that our proposed FDI algorithms for retarded and stochastic time-delay systems can potentially be applied in an integrated design of FDI/controller for a network of unmanned vehicles. Necessary and sufficient conditions for solvability of the fundamental problem of residual generation for linear impulsive systems are derived to conclude this dissertation
    corecore