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Double asynchronous switching control for
Takagi-Sugeno fuzzy Markov jump systems via

adaptive event-triggered mechanism
Yinghong Zhao, Likui Wang, Xiangpeng Xie, Jiayue Hou, and Hak-Keung Lam

Abstract—This article addresses the issue of adaptive event-
triggered H∞ control for Markov jump systems based on Takagi-
Sugeno (T-S) fuzzy model. Firstly, a new double asynchronous
switching controller is presented to deal with the problem of the
mismatch of premise variables and modes between the controller
and the plant, which is widespread in real network environment.
To further reduce the power consumption of communication,
a switching adaptive event-triggered mechanism is adopted to
relieve the network transmission pressure while ensuring the
control effect. In addition, a new Lyapunov-Krasovskii functional
(LKF) is constructed to reduce conservatism by introducing the
membership functions (MFs) and time-varying delays informa-
tion. Meanwhile, the invariant set is estimated to ensure the
stability of the system. And the disturbance rejection ability is
measured by the optimal H∞ performance index. Finally, two
examples are presented to demonstrate the effectiveness of the
proposed approach.

Index Terms—Adaptive event-triggered mechanism, member-
ship functions, double asynchronous switching control, invariant
set.

I. INTRODUCTION

IN most practical systems, such as aerospace, economic,
and power systems, nonlinearities are prevalent, rendering

the challenges of stability analysis and control synthesis. As
a crucial tool to investigate nonlinear issues, T-S fuzzy model
has attracted increasing attention for its unique advantages
[1]. Different from the precise mathematical model required
by traditional control theory, T-S fuzzy model is equipped
with universal approximate property and can approximate the
nonlinear systems effectively [2]–[4]. Recently, the study on
T-S fuzzy system has become a hot topic and the relevant
achievements mainly focus on sliding mode control [5], ob-
server design [6], stability analysis [7]–[9], etc.

On the other hand, nonlinear systems are frequently subject
to unpredictable mutations in their structure and parameters
due to environmental degradation, component failures, subsys-
tem interconnection modifications, and other reasons. Markov
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jump systems (MJSs) provide a suitable framework for mod-
eling these variations, and have wide applications in the fields
of communication, robotic manipulators, and aircraft control
[10]–[12]. By utilizing the T-S fuzzy approach, nonlinear MJSs
can be partitioned into a composite of local linear subsystems,
thus effectively addressing nonlinear problems. Consequently,
it is significant to further research fuzzy MJSs (FMJSs), and
many meaningful topics have been addressed. For instance,
the problem of asynchronous sliding mode control for FMJSs
with matched uncertainties and external noise was considered
in [13]. The finite-time asynchronous control issue for positive
hidden FMJSs was addressed in [14]. The problem of event-
based asynchronous security control for FMJSs against multi-
cyber attacks was investigated in [15].

It is worth mentioning that the transmission of data among
sensors, controllers, and actuators via a shared communication
network has become an inexorable trend in control theory
[16]–[19]. However, the limited communication bandwidth of
the network presents challenges to the analysis of FMJSs.
In the time-triggered mechanism, the state of the controlled
object requires to be transmitted periodically, resulting in an
inefficient utilization of communication network resources. To
address this issue, the event-triggered mechanism (ETM) is
proposed to alleviate the transmission burden [20]–[23]. It
should be pointed out that the aforementioned ETM employs
a constant threshold, potentially leading to an underutilization
of communication resources. To further optimize the transmis-
sion bandwidth, a new adaptive ETM (AETM) has attracted
significant attention in academic, allowing for the dynamic
adjustment of the threshold to adapt system changes [24]–[26].
Hence, it is necessary to research the adaptive event-triggered
control for FMJSs, which motivates the present work.

However, due to the influence of sampling behavior and
network environment, the premise variables between the con-
troller and the plant are often mismatched, which is usually
ignored in the previous work. Thus, it is meaningful to
consider the asynchronous premise variables when modeling,
analyzing, and controlling FMJSs in the network environment
[27]–[29]. On the other hand, the system modes in MJSs
are difficult to accurately measure in practical engineering
operations since certain technical and financial restrictions.
To crack this nut, considerable efforts have been dedicated to
study the issue of mode asynchronous, and abundant achieve-
ments have been achieved. For example, the asynchronous
tracking control issue for discrete time FMJSs was researched
in [30]. The problem of asynchronous control for MJSs with
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actuator saturation was discussed in [31]. Utilizing the hid-
den Markov model (HMM), the event-triggered-based control
for stochastic networked MJSs was considered in [32]. The
asynchronous control issue for MJSs under aperiodic denial-
of-service attacks was investigated in [33]. Nevertheless, the
double asynchronous of modes and premise variables between
the controller and the plant in network environments has not
been well considered, which is another motivation of this
paper.

Note that most of the existing works on FMJSs are based
on MFs-independent LKF, which inevitably leads to conser-
vatism. As a unique feature of fuzzy systems, the consideration
of MFs in LKF is essential, but the processing of the time
derivative of MFs is a challenging subject. For this problem,
the bounded time derivative of MFs was proposed in [34]–
[36], but it is actually difficult to get. In [7], [8], a switching
method was introduced to address the time derivative of MFs
and this method relies on the assumption of a finite number
of switches. Furthermore, the issue of double asynchronous
switching control for FMJSs under network environments has
not been researched, and this is a gap we intend to address.

In light of the preceding discussion, we are motivated to
investigate the issue of double asynchronous switching control
for FMJSs based on AETM. The primary contributions can be
stated as follows:

1) Unlike the synchronous or single-asynchronous phe-
nomenon described in the past results, the modes and
premise variables between the controller and the plant
are mismatched simultaneously. Employing the switch-
ing approach, a more general double asynchronous
switching controller is presented for the first time.

2) A new mode-dependent switching AETM is designed
to economize more transmission resources. Besides, a
MFs-dependent LKF containing time delay information
is constructed to reduce conservatism. This yields a
stability criterion that is more practical and less con-
servative, as demonstrated in Example 2.

3) The estimation of invariant set is used to ensure the
stability and two sets are designed such that any system
trajectories starting from the smaller set will remain in
the larger set.

Notation: Rn stands for the n-dimensional Euclidean space;
G > 0 (< 0) signifies that G is symmetric positive (negative);
E {·} represents the mathematical expectation; ∥·∥ indicates
the Euclidean norm; “∗” denotes symmetry; sym(H) refers
to H + HT ; L represents the weak infinitesimal operator;
diag {· · · } represents a block-diagonal matrix; kh indicates
that only the element in (1, h) is 1, and the others are 0.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following FMJSs:
Plant Rule i: IF ℘1(t) is Ni1, . . ., ℘g(t) is Nig, THEN{

ẋ(t) = Aθ(t)ix(t) +B1θ(t)iu(t) +Dθ(t)iw(t),

y(t) = Cθ(t)ix(t) +B2θ(t)iu(t) + Eθ(t)iw(t),
(1)

where x(t) ∈ Rn, y(t) ∈ Rs, u(t) ∈ Rl, and w(t) ∈ Rw de-
note the system state, controlled output, controlled input, and

external disturbance, respectively. ℘†(t) are the premise vari-
ables in compact set C, Ni†(i = 1, 2, . . . , r, † = 1, 2, . . . , g)
represent the fuzzy sets with r rules. The matrices within
system (1) are predefined and real. θ(t) ∈ N = {1, 2, . . . , N}
is a continuous Markov chain. The transition probability (TP)
matrix Π1 = [πpq] can be expressed as:

Pr {θt+∆t = q |θt = p} =

{
πpq∆t+ o(∆t), p ̸= q,
1 + πpp∆t+ o(∆t), p = q,

(2)

with ∆t > 0 and lim
∆t→0

o(∆t)
∆t = 0, πpq satisfies πpq ≥ 0 with

p ̸= q and πpp = −
∑N

q=1,q ̸=p πpq .
Employing the product-fuzzy inference, we can get the MF

is hi(℘(t)) =
∏g

†=1 ℜi†(℘†(t))∑r
i=1

∏g
†=1 ℜi†(℘†(t))

, and ℜi†(℘†(t)) is the
grade of membership of ℘†(t) in ℜi†. Evidently, hi(℘(t)) ≥ 0,∑r

i=1 hi(℘(t)) = 1.
For conciseness, when θ(t) = p, we denote

∑r
i=1 hiQpi as

Qph, where hi = hi(℘(t)). The system (1) can be represented
as follows:{

ẋ(t) = Aphx(t) +B1phu(t) +Dphw(t),

y(t) = Cphx(t) +B2phu(t) + Ephw(t).
(3)

Assumption 1: The disturbance input w(t) is energy bound-
ed, i.e.

∫ t

0
wT (t)w(t)dt ≤θ, where θ > 0 is a given constant.

In this paper, an AETM is established to reduce unneces-
sary communication consumption and save network resources.
Denote ikT (ik ∈ N, i0 = 0) as the latest triggered instant
with sampling period T , the event-triggering condition can be
represented as:

(x(ikT +lT )−x(ikT ))TΩp(x(ikT +lT )−x(ikT ))

≥ δ(t)xT (ikT )Ωpx(ikT ),
(4)

where Ωp are positive matrices to be designed. If (4) holds,
the present sampled data x(ikT + lT ) will be sent to the
controller as the latest triggered instant x(ik+1T ). Define
eik(t) = x(ikT )− x(ikT + lT ), δ(t) is a function satisfying

δ̇(t) =
1

δ(t)

(
1

δ(t)
− δ

)
eTik(t)Ωpeik(t), (5)

where δ > 0 is a pregiven value, δ(0) ∈ (0, 1).
Remark 1: Ωp depends on the system mode, so that the

event-triggering condition (4) can be switched accordingly
for each Markov jump subsystem, increasing the degree of
freedom of feasible solutions. Moreover, unlike the constant
threshold employed in [20]–[22], the threshold δ(t) is dynam-
ically adjusted. When δ = 1

δ(0) (i.e. δ̇(t) = 0), the AETM
will be converted to the traditional event triggering mechanism
(TETM) that satisfies the following triggered condition

(x(ikT +lT )−x(ikT ))TΩp(x(ikT +lT )−x(ikT ))

≥ δ∗xT (ikT )Ωpx(ikT ),
(6)

where δ∗ ∈ [0, 1) is a preset constant.
Assuming the delay of the kth triggering instant is dk,

the data packet will reach the zero-order hold (ZOH) at
instants tk = ikT + dk. Therefore, the time interval
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[ikT + dk, ik+1T + dk+1) can be decomposed into the subin-
tervals as follows:

[ikT + dk, ik+1T + dk+1) =

jk∪
M=0

AM, (7)

with 
A0 =

[
ikT + dk, ikT + T + d̄

)
,

Aj =
[
ikT + jT + d̄, ikT + (j+ 1)T + d̄

)
,

Ajk =
[
ikT + jkT + d̄, ik+1T + dk+1

)
,

(8)

where j = 1, 2, . . . , jk − 1. Defining d(t) = t− ikT − lT with
ḋ(t) = 1, we have 0 ≤ d(t) ≤ d̄ + T = d. The transmitted
state x(ikT ) is estimated as:

x(ikT ) = x(t− d(t)) + eik(t). (9)

For simplicity, we replace u(t) with u, and the following
double asynchronous controller is applied:

Controller Rule j: IF ℘1(ikT ) is Nj1, . . ., ℘g(ikT ) is Njg ,
THEN

u = Ko(t)jx(ikT ), (10)

where o(t) ∈ O = {1, 2, . . . , O} is a stochastic variable
to represent the controller mode, which is governed by a
conditional probability (CP) matrix Π2 = [σpϑ] with

Pr {o(t) = ϑ |θ(t) = p} = σpϑ, (11)

where σpϑ ∈ [0, 1],
∑O

ϑ=1 σpϑ = 1.
Remark 2: Due to various adverse factors such as time

delays, information loss, and financial constraints, system-
controller asynchrony is inevitable in practical engineering.
For this problem, HMM (θ(t), o(t),Π1,Π2) is used in this
paper to express the asynchrony between the controller and
the plant. Suppose the signals of the HMM are not completely
observable. In such cases, the observable ones can be applied
to estimate the hidden modes of the system, which can be
obtained from the TP matrix Π1 and the CP matrix Π2.

Overall, the controller can be represented as

u =
r∑

j=1

hj(℘(ikT ))Kϑjx(ikT ). (12)

Inspired by [27], the asynchronous constraints of the MFs
are expressed as{

hj(℘(ikT )) = φjhj(℘(t)),
|hj(℘(ikT ))− hj(℘(t))| ≤ λj ,

(13)

where φj > 0, λj ≥ 0, j = 1, 2, ..., r.
From (13), we have the following inequality:

κj
1 = 1− λj

hj(℘(t))
≤ φj ≤ 1 +

λj

hj(℘(t))
= κj

2, (14)

where κj
1 and κj

2 are the lower and upper bounds of φj . Then,
we have

1

κ
≤ φi

φj
≤ κ, κ ≥ 1, (15)

with κ = κ2

κ1
, κ2 = max

{
κj
2

}
, κ1 = min

{
κj
1

}
.

Remark 3: Obviously, the consideration of AETM leads
to a mismatch of premise variables between system (3) and
controller (12). Hence, the asynchronous constraint (13) is
introduced in this paper to address this issue. In particular,
when κ = 1, we have max

{
κj
2

}
= min

{
κj
1

}
, i.e. φj = 1,

the synchronous premise variables are obtained, which is
generally considered in the existing results [7]–[9].

Combining (9), (12), and (13), the system (3) is rewritten
as follows:

ẋ(t) = Aphx(t) +B1pϑhhx(t− d(t))

+B1pϑhheik(t) +Dphw(t),

y(t) = Cphx(t) +B2pϑhhx(t− d(t))

+B2pϑhheik(t) + Ephw(t),

x(t) = ϕ(t), t ∈ [−d, 0] ,

(16)

with Bιpϑhh =
∑r

i=1

∑r
j=1 φjhihjBιpiKϑj , ι = 1, 2.

Consider a new LKF that depends on both MFs and modes:
V (xt) = xT (t)Qphx(t). A switching method is applied to
ensure Q̇ph < 0. Based on (13), the time derivative of Qph in
mode p is

Q̇ph =
r∑

j=1

ḣjQpj =
r−1∑
k=1

ḣk(Qpk −Qpr), (17)

where ḣk represents the time derivative of MFs, which are
negative or positive. The switching method is designed as
follows: {

if ḣk < 0, then Qpk−Qpr>0,

if ḣk ≥ 0, then Qpk−Qpr≤0.
(18)

There are 2r−1 constraints for each mode in (18). Define Hχ

as the potential permutations of ḣk, Gχ(p) as the potential
constraints of Qpj , χ = 1, 2, . . . , 2r−1, p ∈ N , then (18) can
be presented as

if Hχ, then Gχ(p). (19)

Remark 4: The overall structural illustration of FMJSs is
depicted in Figure 1. Synthesizing the above two asynchronous
phenomena, according to (19), a fuzzy-model-based double
asynchronous switching controller is firstly presented in this
paper. For different Hχ and Gχ(p), the corresponding con-
troller is:

uχ =

r∑
j=1

hj(℘(ikT ))Kχ
ϑjx(ikT ). (20)

And the adapt event-triggering condition (4) is also changed
to the following switching form:

(x(ikT +lT )−x(ikT ))TΩχ
p (x(ikT +lT )−x(ikT ))

≥ δ(t)xT (ikT )Ωχ
px(ikT ).

(21)

Definition 1: [37] The system (16) is stochastically stable,
if the following inequality holds for any initial condition
x(0) ∈ Rn and mode θ(0) ∈ N :

E

{∫ ∞

0

∥x(α)∥2dα |x(0), θ(0)
}

< ∞.
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Fig. 1. The framework of FMJSs under double asynchronous switching
controller based on AETM.

III. MAIN RESULTS

To facilitate convenient analysis, the notations are presented
as follows:

ς1(t) =
1

d

∫ t

t−d

x(α)dα, ς2(t) =
1

d− d(t)

∫ t−d(t)

t−d

x(α)dα,

ς3(t) =
1

d(t)

∫ t

t−d(t)

x(α)dα, ς4(t) =
1

d2

∫ t

t−d

∫ t

β

x(α)dαdβ,

ς(t) =
[
x(t) ẋ(t) x(t− d) x(t− d(t))

]
,

ξ(t) = col {ς(t), ς1(t), ς2(t), ς3(t), ς4(t), eik(t), w(t)} ,
ρ(t) = col {x(t), dς1(t)} , η1(t) = col {x(t), ς2(t)} ,
η2(t) = col {x(t), ς3(t)} ,Γ1 = col {e1, de5} ,

Γ2 = col {e2, e1 − e3} ,Γ3 = col {ℵ1,ℵ2,ℵ3,ℵ4} ,
Γ4 = col {ℵ5,ℵ6} ,Γ5 = col {e1, e6} ,
Γ6 = col {(d− d(t))e2, e6 − e3} ,Γ7 = col {e1, e7} ,
Γ8 = col {d(t)e2, e1 − e7} ,ℵ1 = e4 − e3,

ℵ2 = e4 + e3 − 2e6,ℵ3 = e1 − e4,ℵ4 = e1 + e4 − 2e7,

ℵ5 = e1 − e5,ℵ6 = e1 + 2e5 − 6e8,

ex =
[
0n×(x−1)n, In, 0n×((9−x)n+w)

]
,

e10 = [0w×9n, Iw] , x = 1, 2, . . . , 9.

Theorem 1: Giving constants κ ≥ 1, d ≥ 0, δ > 0, γ > 0,
and θ > 0, the trajectories of system (16) starting from D1

will stay in D2 for time t > d

D1 :=

{
ϕ(t) :

5∑
ϖ=1

Vϖ(xt) |t=0 ≤ 1

}
,

D2 :=

{
x(t) :

5∑
ϖ=1

Vϖ(xt) ≤ 1 + θγ2

}
,

if there exist positive definite matrices Qpj , Sbj ∈ R2n×2n,
R1pj , Rcj , Ωp ∈ Rn×n, matrices Ugj , F ∈ Rn×n, such that
(19) and the following inequalities hold for p ∈ N , ϑ ∈ O,
K ∈

{
κ, 1

κ

}
, b = 1, 2, c = 1, 2, 3, g = 1, 2, 3, 4[

Θ2
pϑii Θ4T

pϑii

∗ −I

]
< 0, (22)

 Θ2
pϑij +KΘ2

pϑji Θ4T
pϑij

√
κΘ4T

pϑji

∗ −I 0
∗ ∗ −I

 < 0, (23)

N∑
q=1

πpqR1qj −R1j ≤ 0, (24)

Ψj ≥ 0, (25)

where

Ψj =

[
R̄2j Ūj

∗ R̄2j

]
, Ūj =

[
U1j U2j

U3j U4j

]
,

Θ2
pϑij = Θ1

pϑij − γ2eT10e10,

Θ1
pϑij = sym(ΓT

1 QpjΓ2 + FT
0 ℑpϑij) + ΓT

1

N∑
q=1

πpqQqjΓ1

+ eT1 (R1pj + dR1j)e1 − eT3 R1pje3 + eT2 (d
2R2j

+
1

2
d2R3j)e2 − ΓT

5 S1jΓ5 + 2ΓT
5 S1jΓ6 + ΓT

7 S2jΓ7

+ 2ΓT
7 S2jΓ8 + eT4 Ωpe4 + eT9 (Ωp − δΩp)e9

+ 2eT4 Ωpe9 − ΓT
3 ΨjΓ3 − ΓT

4 R̄3jΓ4,

F0 = FT e1 + FT e2,ℑpϑij = −e2 +Apie1

+

O∑
ϑ=1

σpϑB1piKϑj(e4 + e9) +Dpie10,

Θ4
pϑij = col

{√
σp1Yp1ij ,

√
σp2Yp2ij , . . . ,

√
σpOYpOij

}
,

Ypϑij = Cpie1 +B2piKϑj(e4 + e9) + Epie10,

R̄2j = diag {R2j , 3R2j} , R̄3j = diag {2R3j , 4R3j} .

Proof: The MFs-dependent LKF is chosen as:

V (xt) =

5∑
ϖ=1

Vϖ(xt), (26)

where

V1(xt) = ρT (t)Qphρ(t),

V2(xt) =

∫ t

t−d

xT (α)R1phx(α)dα

+

∫ 0

−d

∫ t

t+β

xT (α)R1hx(α)dαdβ,

V3(xt) = d

∫ 0

−d

∫ t

t+β

ẋT (α)R2hẋ(α)dαdβ

+

∫ t

t−d

∫ t

γ

∫ t

β

ẋT (α)R3hẋ(α)dαdβdγ,

V4(xt) = (d− d(t))ηT1 (t)S1hη1(t) + d(t)ηT2 (t)S2hη2(t),

V5(xt) =
1

2
δ2(t),

Qph =

[
Q1ph Q2ph

∗ Q4ph

]
, Sbh =

[
S1
bh S2

bh

∗ S4
bh

]
.

Then, we have

LV (xt) = LV 1(xt) + LV 2(xt), (27)
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where

LV 1(xt) = ξT (t) {2 ΓT
1 QphΓ2 + ΓT

1

N∑
q=1

πpqQqhΓ1

+ eT1 (R1ph + dR1h)e1 − eT3 R1phe3 + eT2 (d
2R2h

+
1

2
d2R3h)e2 − ΓT

5 S1hΓ5 + 2ΓT
5 S1hΓ6

+ΓT
7 S2hΓ7 + 2ΓT

7 S2hΓ8

}
ξ(t)+

(
1

δ(t)
− δ

)
× eTik(t)Ωpeik(t) +

∫ t

t−d

xT (α)(
N∑
q=1

πpqR1qh

−R1h)x(α)dα− d

∫ t

t−d

ẋT (α)R2hẋ(α)dα

−
∫ t

t−d

∫ t

β

ẋT (α)R3hẋ(α)dαdβ,

LV 2(xt) = ρT (t)Q̇phρ(t) + (d− d(t))ηT1 (t)Ṡ1hη1(t)

+ d(t)ηT2 (t)Ṡ2hη2(t) +

∫ t

t−d

xT (α)Ṙ1phx(α)dα

+

∫ 0

−d

∫ t

t+β

xT (α)Ṙ1hx(α)dαdβ

+ d

∫ 0

−d

∫ t

t+β

ẋT (α)Ṙ2hẋ(α)dαdβ

+

∫ t

t−d

∫ t

γ

∫ t

β

ẋT (α)Ṙ3hẋ(α)dαdβdγ.

According to (4) and (5), it has(
1

δ(t)
− δ

)
eTik(t)Ωpeik(t)

≤ ξT (t)(eT4 Ωpe4 + eT9 (Ωp − δΩp)e9 + 2eT4 Ωpe9)ξ(t).

(28)

Based on (13) and system (16), for any invertible matrix F ∈
Rn×n, since

∑O
ϑ=1 σpϑ = 1, we have

0 = 2ξT (t)
{
(eT1 F + eT2 F )

O∑
ϑ=1

σpϑ(−e2 +Aphe1

+ B1pϑhh(e4 + e9) +Dphe10)} ξ(t)

= ξT (t)

r∑
i=1

r∑
j=1

φjhihjsym(FT
0 ℑpϑij)ξ(t),

(29)

where F0 and ℑpϑij are defined in Theorem 1.
Combining (19), (27)-(29), and applying the methods in

[39] and [40] to address terms −d
∫ t

t−d
ẋT (α)R2hẋ(α)dα and

−
∫ t

t−d

∫ t

β
ẋT (α)R3hẋ(α)dαdβ, we can obtain

LV (xt) ≤ ξT (t)
r∑

i=1

r∑
j=1

φjhihjΘ
1
pϑijξ(t). (30)

The subsequent H∞ performance function J is considered:

J = LV (xt) + yT (t)y(t)− γ2wT (t)w(t)

≤ ξT (t)


r∑

i=1

φih
2
i (Θ

2
pϑii +Θ3

pϑii) +
r−1∑
i=1

r∑
j>i

φjhihj

× (Θ2
pϑij +

φi

φj
Θ2

pϑji +Θ3
pϑij +

φi

φj
Θ3

pϑji)

}
ξ(t),

with Θ3
pϑij =

∑O
ϑ=1 σpϑYT

pϑijYpϑij .
On account of Schur complement, (22) and (23) imply that

Θ2
pϑii +Θ3

pϑii < 0, (31)

Θ2
pϑij + κΘ2

pϑji +Θ3
pϑij + κΘ3

pϑji < 0, (32)

Θ2
pϑij +

1

κ
Θ2

pϑji +Θ3
pϑij + κΘ3

pϑji < 0. (33)

Defining β1 = (κ− φi

φj
)
/
(κ− 1

κ ), β2 = (φi

φj
− 1

κ )
/
(κ− 1

κ ),
from (κ− φi

φj
)Θ3

pϑji > 0, (32) and (33) can be rewritten as

0 > β1(Θ
2
pϑij +

1

κ
Θ2

pϑji +Θ3
pϑij +

φi

φj
Θ3

pϑji)

+ β2(Θ
2
pϑij + κΘ2

pϑji +Θ3
pϑij +

φi

φj
Θ3

pϑji),
(34)

which yields

Θ2
pϑij +

φi

φj
Θ2

pϑji +Θ3
pϑij +

φi

φj
Θ3

pϑji < 0. (35)

According to (31) and (35), it follows that J < 0, i.e. V (xt) <
V (x0) + γ2

∫ t

0
wT (t)w(t)dt. From Assumption 1, we have

V (xt) < 1 + θγ2. Moreover, when w(t) = 0, we can easily
get LV (xt) ≤ −ηxT (t)x(t). Based on Definition 1, system
(16) is stochastically stable with H∞ performance level γ,
and the trajectories will start from D1 and stay in D2 for time
t > d. �

Remark 5: A MFs-dependent LKF with two delay-product-
type (DPT) terms is designed in this paper. Unlike the LKF
proposed in [22], [24], [25], this LKF has a more general form,
and the information of modes, MFs, and time-varying delays
are included simultaneously, which is more in line with the
model of FMJSs. Besides, the introduction of DPT terms will
relax the constraints in some locations and include more time-
varying delay information. Therefore, the LKF presented in
this paper provides a comprehensive framework for analyzing
the stochastic stability and H∞ performance of FMJSs, which
is less conservative than other methods.

The set D1 is highly complex and difficult to measure
precisely because of the presence of integral terms and the
derivative of the initial state (ϕ̇(t)). To estimate the local
stabilization region, we assume that ϕ(t) and ϕ̇(t) are smooth
within the interval [−d, 0], and for any t1, t2 ∈ [−d, 0],
we have ϕ(t1) ≤ ϕ̇(t) ≤ ϕ(t2). Thus, we can obtain
ϕ̇(t) =

∑2
ι=1 λ̄ι(t)ϕ(tι) with 0 ≤ λ̄ι(t) ≤ 1,

∑2
ι=1 λ̄ι(t) = 1.

Then, it follows that ϕ̇T (α)Rsh(0)ϕ̇(α) ≤
∑2

ι=1 λ̄ι(α)ϕ
ιι
s ,

where ϕιι
s = ϕT (tι)Rsh(0)ϕ(tι), ι = 1, 2, s = 2, 3.

Letting ϕT (w)R1ph(0)ϕ(w)= ℜ̄1ph(0), ϕT (w)Rch(0)ϕ(w)=
ℜ̄ch(0) (c = 1, 2, 3), we can obtain

V2(xt) |t=0 ≤ d max
−d≤w≤0

(ℜ̄1ph(0)) +
1

2
d2 max

−d≤w≤0
(ℜ̄1h(0)),

V3(xt) |t=0 ≤ d

∫ 0

−d

∫ 0

β

2∑
ι=1

λ̄ι(α)ϕ
ιι
2 dαdβ

+

∫ 0

−d

∫ 0

γ

∫ 0

β

2∑
ι=1

λ̄ι(α)ϕ
ιι
3 dαdβdγ

≤ 1

2
d3 max

−d≤w≤0
(ℜ̄2h(0)) +

1

6
d3 max

−d≤w≤0
(ℜ̄3h(0)).
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Supposing Q2ph(0) = QT
2ph(0) ≥ 0, S2

bh(0) = S2T
bh(0) ≥ 0 (b =

1, 2), letting F1 =
∫ 0

−d
ϕ(α)dα, F2 = 1

d−d(0)

∫ −d(0)

−d
ϕ(α)dα,

F3 = 1
d(0)

∫ 0

−d(0)
ϕ(α)dα, we have

V1(xt) |t=0 ≤ ϕT (0)Z1ph(0)ϕ(0) + FT
1 Z2ph(0)F1

≤ max
−d≤w≤0

(P1ph(0)) + d2 max
−d≤w≤0

(P2ph(0)),

V4(xt) |t=0 ≤ d
{
ϕT (0)Z3h(0)ϕ(0)+FT

2 Z4h(0)F2

+FT
3 Z5h(0)F3

}
≤ d max

−d≤w≤0
(P3h(0)) + d max

−d≤w≤0
(P4h(0))

+ d max
−d≤w≤0

(P5h(0)),

Pe(p)h(0) = ϕT (w)Ze(p)h(0)ϕ(w), e = 1, 2, 3, 4, 5,

where

Z1ph(0) = Q1ph(0) +Q2ph(0),Z2ph(0) = Q2ph(0) +Q4ph(0),

Z3h(0) = S1
1h(0) + S2

1h(0) + S1
2h(0) + S2

2h(0),

Z4h(0) = S2
1h(0) + S4

1h(0),Z5h(0) = S2
2h(0) + S4

2h(0).

From δ(0) ∈ (0, 1), we have V5(xt) |t=0 = 1
2δ

2(0) ≤ 1
2 .

Therefore, combining the above calculations of V1(xt) −
V5(xt), for positive definite matrix Spj , consider the following
constraint such that the sum of all partial matrices is less than
Spj , i.e.

Spj ≥
1

2
(d3R2j+d2R1j+1)+

1

6
d3R3j+dR1pj+d2(Q2pj

+Q4pj)+
2∑

b=1

Qbpj+d
2∑

b=1

(S1
bj+2S2

bj+S4
bj), (36)

we can obtain the estimation of D1

D̄1 :=
{
ϕ(t) : ϕT (w)Sph(0)ϕ(w) ≤ 1, ∀w ∈ [−d, 0]

}
. (37)

Similarly, the estimation of D2 is

D̄2 :=
{
x(t) : xT (t)Sph(0)x(t) ≤ 1 + θγ2

}
. (38)

Remark 6: It should be pointed out that D̄2 must be con-
tained in the compact set C = ∩

h
{x(t) : |khx(t)| ≤ βh} , h =

1, 2, . . . , n. According to the Lagrange multiplier method, this
constraint means, any t satisfying khx(t) = ±βh, we have
xT (t)Spjx(t) ≥ 1 + θγ2, i.e.

min
{
xT (t)Spjx(t) |khx(t) = ±βh

}
≥ 1 + θγ2. (39)

Define the Lagrange function L(x(t)) = xT (t)Spjx(t) +
ε(khx(t)∓ βh) with Lagrange factor ε, it has

∂L(x(t))

∂x(t)
= 2xT (t)Spj + εkh = 0,

khx(t)∓ βh = 0.

(40)

Solving (40), we obtain ε∗ = ∓2βh(khS
−1
pj k

T
h )

−1, x∗(t) =

±βhS
−1
pj k

T
h (khS

−1
pj k

T
h )

−1. Substituting x∗(t) into (39) and
applying Schur complement, we have[

β2
h

1+θγ2 kh
∗ Spj

]
≥ 0. (41)

Theorem 2: Giving constants κ ≥ 1, d ≥ 0, δ > 0, γ > 0,
θ > 0, and βh > 0, the trajectories of system (16) starting from
D̄1 will stay in D̄2 for time t > d, if there exist positive definite
matrices Q̃pj , S̃bj ∈ R2n×2n, R̃1pj , R̃cj , Ω̃p, S∗

pj ∈ Rn×n,
matrices Ũgj , G ∈ Rn×n, Zϑj ∈ Rl×n, such that (19) and the
following inequalities hold for p ∈ N , ϑ ∈ O, K ∈

{
κ, 1

κ

}
,

b = 1, 2, c = 1, 2, 3, f = 1, 2, 4, g = 1, 2, 3, 4, h = 1, 2, . . . , n[
Θ̃2

pϑii Θ̃4T
pϑii

∗ −I

]
< 0, (42)

 Θ̃2
pϑij +KΘ̃2

pϑji Θ̃4T
pϑij

√
κΘ̃4T

pϑji

∗ −I 0
∗ ∗ −I

 < 0, (43)

N∑
q=1

πpqR̃1qj − R̃1j ≤ 0, (44)

Ψ̃j ≥ 0, (45)[
Ξpj

√
2
2 G

∗ −I

]
≤ 0, (46)

[
β2
h

1+θγ2 khG
T

∗ S∗
pj

]
≥ 0, (47)

where

Ψ̃j =

[
R̂2j Ũj

∗ R̂2j

]
, Ũj =

[
Ũ1j Ũ2j

Ũ3j Ũ4j

]
,

Θ̃2
pϑij = Θ̃1

pϑij − γ2eT10e10,

Θ̃1
pϑij = Θ̃∗

pϑij + eT4 Ω̃pe4 + eT9 (Ω̃p − δΩ̃p)e9 + 2eT4 Ω̃pe9,

Θ̃∗
pϑij =sym(ΓT

1 Q̃pjΓ2 + F̃T
0 ℑ̃pϑij) + ΓT

1

N∑
q=1

πpqQ̃qjΓ1

+ eT1 (R̃1pj + dR̃1j)e1 − eT3 R̃1pje3 + eT2 (d
2R̃2j

+
1

2
d2R̃3j)e2 − ΓT

5 S̃1jΓ5 + 2ΓT
5 S̃1jΓ6 + ΓT

7 S̃2jΓ7

+ 2ΓT
7 S̃2jΓ8 − ΓT

3 Ψ̃jΓ3 − ΓT
4 R̂3jΓ4,

Θ̃4
pϑij = col

{√
σp1Ỹp1ij ,

√
σp2Ỹp2ij , . . . ,

√
σpOỸpOij

}
,

F̃0 = e1 + e2, ℑ̃pϑij = −GT e2 +ApiG
T e1

+

O∑
ϑ=1

σpϑB1piZϑj(e4 + e9) +Dpie10,

Ỹpϑij = CpiG
T e1 +B2piZϑj(e4 + e9) + Epie10,

Ξpj =
1

2
d3R̃2j +

1

6
d3R̃3j + dR̃1pj +

1

2
d2R̃1j + Q̃1pj

+ Q̃2pj + d2(Q̃2pj + Q̃4pj) + d
2∑

b=1

(S̃1
bj

+ 2S̃2
bj + S̃4

bj)−S∗
pj ,

R̂2j = diag
{
R̃2j , 3R̃2j

}
, R̂3j = diag

{
2R̃3j , 4̃R3j

}
,

Ḡ = diag {G,G} ,S∗
pj = GSpjG

T ,

Q̃pj = ḠQpjḠ
T , S̃bj = ḠSbjḠ

T , R̃1pj = GR1pjG
T ,
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R̃cj = GRcjG
T , Ũgj = GUgjG

T , Q̃fpj = GQfpjG
T ,

S̃f
bj = GSf

bjG
T , Ω̃p = GΩpG

T ,

and the controller gain is

Kϑj = ZϑjG
−T . (48)

Proof:Define

G1=diag
{
Ḡ, Ḡ, G, I, Ī

}
,G2=diag

{
Ḡ, Ḡ, G, I, Ī, Ī

}
,

Ḡ=diag {G,G,G,G} , Ī = diag

O︷ ︸︸ ︷
{I, I, ..., I},

Ĝ=diag {I,G} , G=F−1,

based on Schur complement, pre- and post- multiply (22)-(25),
(36), (41) by G1, G2, G, Ḡ, G, Ĝ and the transpositions, we
have (42)-(47). �

The number of decision variables in Theorem 2 can be cal-
culated as rn(3.5+9.5n+2p+3np+lϑ)+0.5pn2+0.5np+n2.
Hence, the computational complexity is contingent upon the
values of modes p, ϑ, orders n, l, and rules r.

According to Remark 1, the controller design approach
based on TETM (6) is presented in the corollary as follows.

Corollary 1: Giving constants κ ≥ 1, d ≥ 0, 0 ≤ δ∗ < 1,
γ > 0, θ > 0, and βh > 0, the trajectories of system (16)
starting from D̄1 will stay in D̄2 for time t > d, if there
exist positive definite matrices Q̃pj , S̃bj ∈ R2n×2n, R̃1pj , R̃cj ,
Ω̃p, S∗

pj ∈ Rn×n, matrices Ũgj , G ∈ Rn×n, Zϑj ∈ Rl×n,
such that (19), (44)-(47) and the following inequalities hold
for p ∈ N , ϑ ∈ O, K ∈

{
κ, 1

κ

}
, b = 1, 2, c = 1, 2, 3,

f = 1, 2, 4, g = 1, 2, 3, 4, h = 1, 2, . . . , n[
Θ̂2

pϑii Θ̃4T
pϑii

∗ −I

]
< 0, (49)

 Θ̂2
pϑij +KΘ̂2

pϑji Θ̃4T
pϑij

√
κΘ̃4T

pϑji

∗ −I 0
∗ ∗ −I

 < 0, (50)

where

Θ̂2
pϑij = Θ̂1

pϑij−γ2eT10e10,

Θ̂1
pϑij = Θ̃∗

pϑij+eT4 δ
∗Ω̃pe4+eT9 (δ

∗Ω̃p−Ω̃p)e9+2eT4 δ
∗Ω̃pe9.

Proof: The process is the same as Theorem 2, thus being
omitted.

IV. ILLUSTRATIVE EXAMPLES

Example 1: To prove the practicability of our method, a
mass-spring-damper mechanical system is considered as fol-
lows [2], [4], [38]:

M s̈(t) +Dṡ(t) + f(s(t)) = ϕ(ṡ(t))u(t) + w(t),

where M is the mass, D denotes the viscous damping,
u(t) is the force, w(t) is the disturbance, and s(t) is the
position. ϕ(ṡ(t)) and f(s(t)) are associated with the input and
spring. Assume that x(t) =

[
ṡT (t) sT (t)

]T
, ϕ(ṡ(t)) =

1 + g1ṡ
3(t), f(s(t)) = gs(t) (g ∈ [g2, g3]), s(t) ∈ [−1.5, 1.5],

ṡ(t) ∈ [−1.5, 1.5], M = 1, D = 1, g1 = 0.13, g2 = 0.5,
g3 = 1.81.

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

Fig. 2. The state responses (Example 1).

Considering the stochastic variations observed in system
parameters and structure, we assume two jump modes, ac-
companied by the following TP matrix:

Π1 =

[
−3 3
4 −4

]
.

Applying the method in [2] and [38], with h1 = 0.5+
x3
1(t)
6.75 ,

h2 = 0.5− x3
1(t)
6.75 , the nonlinear system can be represented by

the FMJSs with the following parameters:

A11 =

[
−1 −1.155
1 0

]
, A21 =

[
−1 −2.210
1 0

]
,

A12 =

[
−1 −1.155
1 0

]
, A22 =

[
−1 −2.210
1 0

]
,

B111 =

[
1.4387

0

]
, B121 =

[
0.5755

0

]
,

B112 =

[
0.5613

0

]
, B122 =

[
0.2245

0

]
,

B211 = B212 =

[
0
1

]
, B221 = B222 =

[
0
0.8

]
,

Dθ(t)1 = Dθ(t)2 =

[
1
0

]
, Cθ(t)1 = Cθ(t)2 =

[
0 1
0 0

]
.

Furthermore, the constraints related to MFs are as follows:
if ḣ1 < 0, we have

G1(p=1,2) =

{
Qp1 −Qp2 > 0, R1p1 −R1p2 > 0,
Rc1 −Rc2 > 0, Sb1 − Sb2 > 0,

}
,

if ḣ1 ≥ 0, we have

G2(p=1,2) =

{
Qp1 −Qp2 ≤ 0, R1p1 −R1p2 ≤ 0,
Rc1 −Rc2 ≤ 0, Sb1 − Sb2 ≤ 0,

}
,

with c = 1, 2, 3, b = 1, 2.
Letting d = 0.8, κ = 1.1, δ = 30, θ = 1/4,

T = 0.08, k1 =
[
1 0

]
, k2 =

[
0 1

]
, C =

{x(t) : |xh(t)| ≤ 1.5, h = 1, 2}, Table II illustrates the optimal
H∞ index γ obtained by different approaches. For example,
in case III, the optimal H∞ index γ is γ1 = 0.5548 under
G1(p=1,2) and γ2 = 0.5548 under G2(p=1,2). Hence, the final
optimal H∞ index γ is determined as γmin = min {γ1, γ2} =
0.5548, indicating that the approach presented in this article
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Fig. 3. The trajectories of θ(t) and o(t) (Example 1).
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Fig. 4. Variation of δ(t) (Example 1).

0
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0.5

0.6

0 2 4 6 8 10

Fig. 5. AETM triggering instants (Example 1).

is less conservative than [38]. Meanwhile, when applying
identical parameters, the value of γ obtained through the
switching method in [7], [8] is 0.5627, which means that the
method proposed in this paper offers a more comprehensive
theoretical framework with a relatively modest impact on
H∞ performance. Moreover, Table I presents the CP matrices
including synchronous case, partially asynchronous case, and
completely asynchronous case. From Table II, we can find
that the optimal H∞ index γ becomes bigger as asynchrony
intensifies.

Especially, in case III, take γ = 1.8, the corresponding

TABLE I
CONDITIONAL PROBABILITY Π2 (EXAMPLE 1)

case I case II case III

Π2

[
1 0
0 1

] [
1 0
0.4 0.6

] [
0.2 0.8
0.4 0.6

]

TABLE II
OPTIMAL γ FOR DIFFERENT CONDITIONAL PROBABILITIES (EXAMPLE 1)

γmin case I case II case III
Theorem 2 0.5536 0.5539 0.5548

[38] 0.9046 0.9074 0.9159

TABLE III
DATA TRANSMISSION RATE FOR DIFFERENT δ(0) (EXAMPLE 1)

δ(0) 0.1 0.2 0.4 0.6 0.8
Triggering times 57 52 37 25 19
Transmission rate 45.6% 41.6% 29.6% 20.0% 15.2%

controller matrices are

K1
11 =

[
−0.12 −0.03

]
,K1

12 =
[
−0.07 −0.02

]
,

K1
21 =

[
−0.13 −0.14

]
,K1

22 =
[
−0.09 −0.08

]
,

K2
11 =

[
−0.04 0.00

]
,K2

12 =
[
−0.12 −0.04

]
,

K2
21 =

[
−0.05 −0.04

]
,K2

22 =
[
−0.14 −0.11

]
.

Under the initial conditions x(0) =
[
0.2 0.4

]T
,

the disturbance w(t) =
√
te−t with bounded energy

(
∫ t

0
wT (t)w(t)dt ≤θ = 1/4), the triggering times and data

transmission rate for different δ(0) are illustrated in Table III.
It can be seen that the triggering times and data transmission
rate decrease as δ(0) increases. In particular, with δ(0) = 0.2,
Figure 2 and Figure 3 illustrate the state responses and
asynchronous Markov stochastic processes, demonstrating the
effectiveness of the proposed asynchronous controller design
approach. Figure 4 plots the trajectory of adaptive triggering
parameter δ(t), which is dynamically adjusted and eventually
approaches 0.0345. Based on AETM, the release instants are
shown in Figure 5. Furthermore, Figure 6 depicts the trajec-
tories of dh1/dt and control input u, with switching points
L1 (t = 0.8), L2 (t = 1), L3 (t = 1.6), and ḣ1(0.8) = 0.0011,
ḣ1(1) = −0.0026, ḣ1(1.6) = 0.0058. It can be observed that
the controller exhibits a pronounced switching behavior, where
it is u1 within the time interval [0, L1], switches to u2 during
the time interval [L1, L2], reverts back to u1 within the time
interval [L2, L3], and ultimately switches to u2 in the time
interval [L3,+∞]. Besides, Figure 7 shows the sets D̄1, D̄2,
and the responses of four initial states from the boundary. We
can observe that two trajectories leave D̄1 but stay in D̄2 and
return to D̄1 soon, which confirms our conclusion.

Example 2: When N = {1}, consider the two-rule fuzzy
system with the following parameters [20], [22]:

A1 =

[
−2 0
0 −0.9

]
, A2 =

[
−1 0.5
0 −1

]
,

B11 =

[
−1 0
−1 −1

]
, B12 =

[
−1 0
0.1 −1

]
,
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Fig. 6. The trajectories of dh1/dt and control input u (Example 1).
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Fig. 7. The sets D̄1, D̄2 and four trajectories starting on the boundary of
D̄1 (Example 1).
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Fig. 8. The state responses (Example 2).

B21 =

[
0.4 0.2
0.1 0.7

]
, B22 =

[
0.3 0.5
0.2 0.6

]
,

D1 =

[
0.5 0.4
0.2 0.3

]
, D2 =

[
0.1 0.6
0.8 0.7

]
,

C1 =

[
0.1 0.3
0.4 0.6

]
, C2 =

[
0.5 0.1
0.4 0.1

]
,

h1 =
1− sin(x1(t))

2
, h2 = 1− h1.

Setting C =
{
x(t) : |xh(t)| ≤ π

2 , h = 1, 2
}

, d = 0.5, κ =

TABLE IV
THE MINIMUM VALUE OF γ FOR DIFFERENT δ∗ (EXAMPLE 2)

γmin δ∗ = 0 δ∗ = 0.10 δ∗ = 0.15 δ∗ = 0.25
[27] 1.2499 2.3560 2.8715 4.2290
[20] 1.0078 1.4009 1.5462 1.8615
[22] 0.5627 0.6503 0.6700 0.7005

Corollary 1 0.3836 0.3895 0.3904 0.3913

TABLE V
THE MAXIMUM VALUE OF d FOR DIFFERENT δ∗ (EXAMPLE 2)

dmax δ∗ = 0 δ∗ = 0.10 δ∗ = 0.15 δ∗ = 0.25
[20] 0.8755 0.6014 0.5583 0.4978

Corollary 1 1.4636 1.4175 1.4120 1.4067

TABLE VI
THE MINIMUM VALUE OF γ FOR DIFFERENT δ∗ AND κ (EXAMPLE 2)

γmin Methods δ∗ = 0 δ∗ = 0.10 δ∗ = 0.15 δ∗ = 0.25
κ = 1.0 [20] 0.8984 0.9543 0.9832 1.0453

Corollary 1 0.2425 0.2540 0.2557 0.2579
κ = 2.5 [20] 1.0181 1.2511 1.3201 1.4469

Corollary 1 0.2699 0.2838 0.2868 0.2909

1.5, θ = 1/3, Table IV lists the minimum H∞ performance
index γ for different values of δ∗. We can observe that under
the same δ∗, the minimum H∞ performance γ obtained by
Corollary 1 is smaller than that obtained by [20], [22], [27].

For simulation, assume δ = 2, γ = 1.5, T = 0.1,
initial conditions x(0) =

[
0.1 −0.1

]T
, energy-bounded

disturbance w(t) =
[
e−6t sin(t) e−2t cos(t)

]T , the state
responses is described in Figure 8. Figure 9 illustrates the
trajectories of dh1/dt and control input u, with switching
points J (t = 0.42), and ḣ1(0.42) = 0.0024. Observably,
the controller is u1 in the interval [0, J ] and then switches
to u2 in the interval [J,+∞]. Meanwhile, the trajectory of
δ(t) is shown in Figure 10, which is dynamically adjusted
and finally tends to 0.1356. Based on AETM, the release
instants are shown in Figure 11, and the data transmission
rate is 23%. On the premise that other parameters remain
unchanged, define δ∗ = 0.05, the TETM (6) is considered.
The corresponding release instants are given in Figure 12, and
the data transmission rate is 38%. Compared with Figure 11,
it can be deduced that the AETM presented in this paper can
save more communication resources than TETM.

Letting γ = 0.7, κ = 1, under the same parameters as
[20], the maximum value of d for different values of δ∗ are
presented in Table V. For example, when δ∗ = 0, the maximum
value of d is d1 = 2.1109 under the constraint G1 and d2 =
1.4636 under the constraint G2. Hence, the final maximum
value of d obtained by Corollary 1 is dmax = min {d1, d2} =
1.4636, which is larger than that obtained by [20].

Similar to [20], the relationship between γ, κ and δ∗ is
analyzed with d = 0.3, and the corresponding results are
listed in Table VI. From Table VI, it is evident that the index
γ increases as δ∗ or κ increases, which indirectly indicates
the importance of considering asynchronous premise variables.
Furthermore, under the same δ∗ and κ, Corollary 1 yields
smaller results compared to [20], implying that the method
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Fig. 9. The trajectories of dh1/dt and control input u (Example 2).
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Fig. 10. Variation of δ(t) (Example 2).
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Fig. 11. AETM triggering instants (Example 2).

presented in this article is less conservative than [20].

V. CONCLUSION

This article has considered the double asynchronous switch-
ing H∞ control problem for FMJSs based on AETM. A MFs-
dependent LKF has been constructed, and the DPT terms have
been introduced to further reduce conservatism. Furthermore,
a novel double asynchronous switching controller has been
presented, employing the time derivative of MFs, and a
switching AETM has been proposed to avoid the unnecessary
transmission. Ultimately, the validity of the presented work

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

Fig. 12. TETM triggering instants (Example 2).

has been demonstrated by two numerical examples. Notably,
the conservative reduction in this paper comes at the expense
of increased computational complexity, and the dynamic char-
acteristics of FMJSs may change over time and with variations
in external conditions. Hence, it is essential to extend our
approach to adaptive control and explore a technique that can
further reduce computational complexity.
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