8 research outputs found

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t≄1t\geq 1

    A Note on Hadwiger's Conjecture

    Full text link
    Hadwiger's Conjecture states that every Kt+1K_{t+1}-minor-free graph is tt-colourable. It is widely considered to be one of the most important conjectures in graph theory. If every Kt+1K_{t+1}-minor-free graph has minimum degree at most ÎŽ\delta, then every Kt+1K_{t+1}-minor-free graph is (ÎŽ+1)(\delta+1)-colourable by a minimum-degree-greedy algorithm. The purpose of this note is to prove a slightly better upper bound

    Gråfszínezések és gråfok felbontåsai = Colorings and decompositions of graphs

    Get PDF
    A nem-ismĂ©tlƑ szĂ­nezĂ©seket a vĂ©letlen mĂłdszer alkalmazhatĂłsĂĄga miatt kezdtĂ©k el vizsgĂĄlni. FelsƑ korlĂĄtot adtunk a szĂ­nek szĂĄmĂĄra, amely a maximum fok Ă©s a favastagsĂĄg lineĂĄris fĂŒggvĂ©nye. Olyan szĂ­nezĂ©seket is vizsgĂĄltunk, amelyek egy sĂ­kgrĂĄf oldalain nem-ismĂ©tlƑk. SejtĂ©s volt, hogy vĂ©ges sok szĂ­n elĂ©g. Ezt bizonyĂ­tottuk 24 szĂ­nnel. A kromatikus szĂĄmot Ă©s a metszĂ©si szĂĄmot algoritmikusan nehĂ©z meghatĂĄrozni. EzĂ©rt meglepƑ Albertson egy friss sejtĂ©se, amely kapcsolatot ĂĄllĂ­t fel közöttĂŒk: ha egy grĂĄf kromatikus szĂĄma r, akkor metszĂ©si szĂĄma legalĂĄbb annyi, mint a teljes r csĂșcsĂș grĂĄfĂ©. BizonyĂ­tottuk a sejtĂ©st, ha r<3.57n, valamint ha 12<r<17. Ez utĂłbbi azĂ©rt Ă©rdekes, mert a teljes r csĂșcsĂș grĂĄf metszĂ©si szĂĄma csak r<13 esetĂ©n ismert. A tĂ©makör legfontosabb nyitott kĂ©rdĂ©se a Hadwiger-sejtĂ©s, mely szerint minden r-kromatikus grĂĄf tartalmazza a teljes r csĂșcsĂș grĂĄfot minorkĂ©nt. Ennek ĂĄltalĂĄnosĂ­tĂĄsakĂ©nt fogalmaztĂĄk meg a lista szĂ­nezĂ©si Hadwiger sejtĂ©st: ha egy grĂĄf nem tartalmaz teljes r csĂșcsĂș grĂĄfot minorkĂ©nt, akkor az r-lista szĂ­nezhetƑ. Megmutattuk, hogy ez a sejtĂ©s hamis. LegalĂĄbb cr szĂ­nre szĂŒksĂ©gĂŒnk van bizonyos grĂĄfokra, ahol c=4/3. Thomassennel vetettĂŒk fel azt a kĂ©rdĂ©st, hogy milyen feltĂ©tel garantĂĄlja, hogy G Ă©lei felbonthatĂłk egy adott T fa pĂ©ldĂĄnyaira. Legyen Y az a fa, melynek fokszĂĄmsorozata (1,1,1,2,3). Megmutattuk, hogy minden 287-szeresen Ă©lösszefĂŒggƑ fa felbomlik Y-okra, ha az Ă©lszĂĄm oszthatĂł 4-gyel. | Nonrepetitive colorings often use the probabilistic method. We gave an upper bound as a linear function of the maximum degree and the tree-width. We also investigated colorings, which are nonrepetitive on faces of plane graphs. As conjectured, a finite number of colors suffice. We proved it by 24 colors. The chromatic and crossing numbers are both difficult to compute. The recent Albertson's conjecture is a surprising relation between the two: if the chromatic number is r, then the crossing number is at least the crossing number of the complete graph on r vertices. We proved this claim, if r<3.57n, or 12<r<17. The latter is remarkable, since the crossing number of the complete graph is only known for r<13. The most important open question of the field is Hadwiger's conjecture: every r-chromatic graph contains as a minor the complete graph on r vertices. As a generalisation, the following is the list coloring Hadwiger conjecture: if a graph does not contain as a minor the complete graph on r vertices , then the graph is r-list colorable. We proved the falsity of this claim. In our examples, at least cr colors are necessary, where c=4/3. Decomposition of graphs is well-studied. Thomassen and I posed the question of a sufficient connectivity condition, which guaranties a T-decomposition. Let Y be the tree with degree sequence (1,1,1,2,3). We proved every 287-edge connected graph has a Y-decomposition, if the size is divisible by four

    Limits of degeneracy for colouring graphs with forbidden minors

    Full text link
    Motivated by Hadwiger's conjecture, Seymour asked which graphs HH have the property that every non-null graph GG with no HH minor has a vertex of degree at most ∣V(H)∣−2|V(H)|-2. We show that for every monotone graph family F\mathcal{F} with strongly sublinear separators, all sufficiently large bipartite graphs H∈FH \in \mathcal{F} with bounded maximum degree have this property. None of the conditions that HH belongs to F\mathcal{F}, that HH is bipartite and that HH has bounded maximum degree can be omitted.Comment: 22 page

    Bipartite graphs with no K6 minor

    Get PDF
    This publication is available at Elsevier via https://doi.org/10.1016/j.jctb.2023.08.005 © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC-BY license (http://creativecommons.org/licenses/by/4.0/).A theorem of Mader shows that every graph with average degree at least eight has a K6 minor, and this is false if we replace eight by any smaller constant. Replacing average degree by minimum degree seems to make little difference: we do not know whether all graphs with minimum degree at least seven have K6 minors, but minimum degree six is certainly not enough. For every Δ > 0 there are arbitrarily large graphs with average degree at least 8 − Δ and minimum degree at least six, with no K6 minor. But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every Δ > 0 there are arbitrarily large bipartite graphs with average degree at least 8 − Δ and no K6 minor. But surprisingly, going to minimum degree now makes a significant difference. We will show that every bipartite graph with minimum degree at least six has a K6 minor. Indeed, it is enough that every vertex in the larger part of the bipartition has degree at least six.NSF DMS-EPSRC, DMS-2120644 || EPSRC, EP/V007327/1 || NSF, DMS-2154169 || AFOSR, A9550-19-1-0187 || NSERC, RGPIN-2020-03912

    Rooted structures in graphs: a project on Hadwiger's conjecture, rooted minors, and Tutte cycles

    Get PDF
    Hadwigers Vermutung ist eine der anspruchsvollsten Vermutungen fĂŒr Graphentheoretiker und bietet eine weitreichende Verallgemeinerung des Vierfarbensatzes. Ausgehend von dieser offenen Frage der strukturellen Graphentheorie werden gewurzelte Strukturen in Graphen diskutiert. Eine Transversale einer Partition ist definiert als eine Menge, welche genau ein Element aus jeder Menge der Partition enthĂ€lt und sonst nichts. FĂŒr einen Graphen G und eine Teilmenge T seiner Knotenmenge ist ein gewurzelter Minor von G ein Minor, der T als Transversale seiner Taschen enthĂ€lt. Sei T eine Transversale einer FĂ€rbung eines Graphen, sodass es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T gibt; dann stellt sich die Frage, ob es möglich ist, die Existenz eines vollstĂ€ndigen, in T gewurzelten Minors zu gewĂ€hrleisten. Diese Frage ist eng mit Hadwigers Vermutung verwoben: Eine positive Antwort wĂŒrde Hadwigers Vermutung fĂŒr eindeutig fĂ€rbbare Graphen bestĂ€tigen. In dieser Arbeit wird ebendiese Fragestellung untersucht sowie weitere Konzepte vorgestellt, welche bekannte Ideen der strukturellen Graphentheorie um eine Verwurzelung erweitern. Beispielsweise wird diskutiert, inwiefern hoch zusammenhĂ€ngende Teilmengen der Knotenmenge einen hoch zusammenhĂ€ngenden, gewurzelten Minor erzwingen. Zudem werden verschiedene Ideen von HamiltonizitĂ€t in planaren und nicht-planaren Graphen behandelt.Hadwiger's Conjecture is one of the most tantalising conjectures for graph theorists and offers a far-reaching generalisation of the Four-Colour-Theorem. Based on this major issue in structural graph theory, this thesis explores rooted structures in graphs. A transversal of a partition is a set which contains exactly one element from each member of the partition and nothing else. Given a graph G and a subset T of its vertex set, a rooted minor of G is a minor such that T is a transversal of its branch set. Assume that a graph has a transversal T of one of its colourings such that there is a system of edge-disjoint paths between all vertices from T; it comes natural to ask whether such graphs contain a minor rooted at T. This question of containment is strongly related to Hadwiger's Conjecture; indeed, a positive answer would prove Hadwiger's Conjecture for uniquely colourable graphs. This thesis studies the aforementioned question and besides, presents several other concepts of attaching rooted relatedness to ideas in structural graph theory. For instance, whether a highly connected subset of the vertex set forces a highly connected rooted minor. Moreover, several ideas of Hamiltonicity in planar and non-planar graphs are discussed
    corecore