121,571 research outputs found

    Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal

    Get PDF
    Surface glacier debris samples and field spectra were collected from the ablation zones of Nepal Himalaya Ngozumpa and Khumbu glaciers in November and December 2009. Geochemical and mineral compositions of supraglacial debris were determined by X-ray diffraction and X-ray fluorescence spectroscopy. This composition data was used as ground truth in evaluating field spectra and satellite supraglacial debris composition and mapping methods. Satellite remote sensing methods for characterizing glacial surface debris include visible to thermal infrared hyper- and multispectral reflectance and emission signature identification, semi-quantitative mineral abundance indicies and spectral image composites. Satellite derived supraglacial debris mineral maps displayed the predominance of layered silicates, hydroxyl-bearing and calcite minerals on Khumbu Himalayan glaciers. Supraglacial mineral maps compared with satellite thermal data revealed correlations between glacier surface composition and glacier surface temperature. Glacier velocity displacement fields and shortwave, thermal infrared false color composites indicated the magnitude of mass flux at glacier confluences. The supraglacial debris mapping methods presented in this study can be used on a broader scale to improve, supplement and potentially reduce errors associated with glacier debris radiative property, composition, areal extent and mass flux quantifications

    Rock Joint Surfaces Measurement and Analysis of Aperture Distribution under Different Normal and Shear Loading Using GIS

    Full text link
    Geometry of the rock joint is a governing factor for joint mechanical and hydraulic behavior. A new method of evaluating aperture distribution based on measurement of joint surfaces and three dimensional characteristics of each surface is developed. Artificial joint of granite surfaces are measured,processed, analyzed and three dimensional approaches are carried out for surface characterization. Parameters such as asperity's heights, slope angles, and aspects distribution at micro scale,local concentration of elements and their spatial localization at local scale are determined by Geographic Information System (GIS). Changes of aperture distribution at different normal stresses and various shear displacements are visualized and interpreted. Increasing normal load causes negative changes in aperture frequency distribution which indicates high joint matching. However, increasing shear displacement causes a rapid increase in the aperture and positive changes in the aperture frequency distribution which could be due to unmatching, surface anisotropy and spatial localization of contact points with proceeding shear

    Bayesian Identification of Elastic Constants in Multi-Directional Laminate from Moir\'e Interferometry Displacement Fields

    Get PDF
    The ply elastic constants needed for classical lamination theory analysis of multi-directional laminates may differ from those obtained from unidirectional laminates because of three dimensional effects. In addition, the unidirectional laminates may not be available for testing. In such cases, full-field displacement measurements offer the potential of identifying several material properties simultaneously. For that, it is desirable to create complex displacement fields that are strongly influenced by all the elastic constants. In this work, we explore the potential of using a laminated plate with an open-hole under traction loading to achieve that and identify all four ply elastic constants (E 1, E 2, 12, G 12) at once. However, the accuracy of the identified properties may not be as good as properties measured from individual tests due to the complexity of the experiment, the relative insensitivity of the measured quantities to some of the properties and the various possible sources of uncertainty. It is thus important to quantify the uncertainty (or confidence) with which these properties are identified. Here, Bayesian identification is used for this purpose, because it can readily model all the uncertainties in the analysis and measurements, and because it provides the full coupled probability distribution of the identified material properties. In addition, it offers the potential to combine properties identified based on substantially different experiments. The full-field measurement is obtained by moir\'e interferometry. For computational efficiency the Bayesian approach was applied to a proper orthogonal decomposition (POD) of the displacement fields. The analysis showed that the four orthotropic elastic constants are determined with quite different confidence levels as well as with significant correlation. Comparison with manufacturing specifications showed substantial difference in one constant, and this conclusion agreed with earlier measurement of that constant by a traditional four-point bending test. It is possible that the POD approach did not take full advantage of the copious data provided by the full field measurements, and for that reason that data is provided for others to use (as on line material attached to the article)

    Deconvolving the information from an imperfect spherical gravitational wave antenna

    Get PDF
    We have studied the effects of imperfections in spherical gravitational wave antenna on our ability to properly interpret the data it will produce. The results of a numerical simulation are reported that quantitatively describe the systematic errors resulting from imperfections in various components of the antenna. In addition, the results of measurements on a room-temperature prototype are presented that verify it is possible to accurately deconvolve the data in practice.Comment: 5 pages, 2 figures, to be published in Europhysics Letter

    Computation of a combined spherical-elastic and viscous-half-space earth model for ice sheet simulation

    Get PDF
    This report starts by describing the continuum model used by Lingle & Clark (1985) to approximate the deformation of the earth under changing ice sheet and ocean loads. That source considers a single ice stream, but we apply their underlying model to continent-scale ice sheet simulation. Their model combines Farrell's (1972) elastic spherical earth with a viscous half-space overlain by an elastic plate lithosphere. The latter half-space model is derivable from calculations by Cathles (1975). For the elastic spherical earth we use Farrell's tabulated Green's function, as do Lingle & Clark. For the half-space model, however, we propose and implement a significantly faster numerical strategy, a spectral collocation method (Trefethen 2000) based directly on the Fast Fourier Transform. To verify this method we compare to an integral formula for a disc load. To compare earth models we build an accumulation history from a growing similarity solution from (Bueler, et al.~2005) and and simulate the coupled (ice flow)-(earth deformation) system. In the case of simple isostasy the exact solution to this system is known. We demonstrate that the magnitudes of numerical errors made in approximating the ice-earth system are significantly smaller than pairwise differences between several earth models, namely, simple isostasy, the current standard model used in ice sheet simulation (Greve 2001, Hagdorn 2003, Zweck & Huybrechts 2005), and the Lingle & Clark model. Therefore further efforts to validate different earth models used in ice sheet simulations are, not surprisingly, worthwhile.Comment: 36 pages, 16 figures, 3 Matlab program

    Discontinuities without discontinuity: The Weakly-enforced Slip Method

    Full text link
    Tectonic faults are commonly modelled as Volterra or Somigliana dislocations in an elastic medium. Various solution methods exist for this problem. However, the methods used in practice are often limiting, motivated by reasons of computational efficiency rather than geophysical accuracy. A typical geophysical application involves inverse problems for which many different fault configurations need to be examined, each adding to the computational load. In practice, this precludes conventional finite-element methods, which suffer a large computational overhead on account of geometric changes. This paper presents a new non-conforming finite-element method based on weak imposition of the displacement discontinuity. The weak imposition of the discontinuity enables the application of approximation spaces that are independent of the dislocation geometry, thus enabling optimal reuse of computational components. Such reuse of computational components renders finite-element modeling a viable option for inverse problems in geophysical applications. A detailed analysis of the approximation properties of the new formulation is provided. The analysis is supported by numerical experiments in 2D and 3D.Comment: Submitted for publication in CMAM
    • …
    corecore