12,363 research outputs found

    Towards the Automatic Classification of Documents in User-generated Classifications

    Get PDF
    There is a huge amount of information scattered on the World Wide Web. As the information flow occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it very easily. Previously the organization of information was generally done manually, by matching the document contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and automatic. In the manual approach, a human expert performs the classification task, and in the second case supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction is required to create some training data before the automatic classification task takes place. In our new approach, we intend to propose automatic classification of documents through semantic keywords and building the formulas generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key benefits foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering, semantic index managing

    Modal Similarity

    Get PDF
    Just as Boolean rules define Boolean categories, the Boolean operators define higher-order Boolean categories referred to as modal categories. We examine the similarity order between these categories and the standard category of logical identity (i.e. the modal category defined by the biconditional or equivalence operator). Our goal is 4-fold: first, to introduce a similarity measure for determining this similarity order; second, to show that such a measure is a good predictor of the similarity assessment behaviour observed in our experiment involving key modal categories; third, to argue that as far as the modal categories are concerned, configural similarity assessment may be componential or analytical in nature; and lastly, to draw attention to the intimate interplay that may exist between deductive judgments, similarity assessment and categorisation

    Checking bisimilarity for attributed graph transformation

    Get PDF
    Borrowed context graph transformation is a technique developed by Ehrig and Koenig to define bisimilarity congruences from reduction semantics defined by graph transformation. This means that, for instance, this technique can be used for defining bisimilarity congruences for process calculi whose operational semantics can be defined by graph transformation. Moreover, given a set of graph transformation rules, the technique can be used for checking bisimilarity of two given graphs. Unfortunately, we can not use this ideas to check if attributed graphs are bisimilar, i.e. graphs whose nodes or edges are labelled with values from some given data algebra and where graph transformation involves computation on that algebra. The problem is that, in the case of attributed graphs, borrowed context transformation may be infinitely branching. In this paper, based on borrowed context transformation of what we call symbolic graphs, we present a sound and relatively complete inference system for checking bisimilarity of attributed graphs. In particular, this means that, if using our inference system we are able to prove that two graphs are bisimilar then they are indeed bisimilar. Conversely, two graphs are not bisimilar if and only if we can find a proof saying so, provided that we are able to prove some formulas over the given data algebra. Moreover, since the proof system is complex to use, we also present a tableau method based on the inference system that is also sound and relatively complete.Postprint (published version

    Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic

    Get PDF
    In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checking problem (MC) of PDL is NP-complete. The subject of this research is to identify a list of parametrisations (formula-size, treewidth, treedepth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) showing a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is in FPT. Finally, we introduce a variant of the satisfiability problem, asking for teams of a given size, and show for this problem an almost complete picture.Comment: Update includes refined result

    Encoding Classifications as Lightweight Ontologies

    Get PDF
    Classifications have been used for centuries with the goal of cataloguing and searching large sets of objects. In the early days it was mainly books; lately it has also become Web pages, pictures and any kind of electronic information items. Classifications describe their contents using natural language labels, which has proved very effective in manual classification. However natural language labels show their limitations when one tries to automate the process, as they make it very hard to reason about classifications and their contents. In this paper we introduce the novel notion of Formal Classification, as a graph structure where labels are written in a propositional concept language. Formal Classifications turn out to be some form of lightweight ontologies. This, in turn, allows us to reason about them, to associate to each node a normal form formula which univocally describes its contents, and to reduce document classification to reasoning about subsumption
    • …
    corecore