58,892 research outputs found

    The Essence of Nested Composition

    Get PDF
    Calculi with disjoint intersection types support an introduction form for intersections called the merge operator, while retaining a coherent semantics. Disjoint intersections types have great potential to serve as a foundation for powerful, flexible and yet type-safe and easy to reason OO languages. This paper shows how to significantly increase the expressive power of disjoint intersection types by adding support for nested subtyping and composition, which enables simple forms of family polymorphism to be expressed in the calculus. The extension with nested subtyping and composition is challenging, for two different reasons. Firstly, the subtyping relation that supports these features is non-trivial, especially when it comes to obtaining an algorithmic version. Secondly, the syntactic method used to prove coherence for previous calculi with disjoint intersection types is too inflexible, making it hard to extend those calculi with new features (such as nested subtyping). We show how to address the first problem by adapting and extending the Barendregt, Coppo and Dezani (BCD) subtyping rules for intersections with records and coercions. A sound and complete algorithmic system is obtained by using an approach inspired by Pierce\u27s work. To address the second problem we replace the syntactic method to prove coherence, by a semantic proof method based on logical relations. Our work has been fully formalized in Coq, and we have an implementation of our calculus

    Row and Bounded Polymorphism via Disjoint Polymorphism

    Get PDF
    Polymorphism and subtyping are important features in mainstream OO languages. The most common way to integrate the two is via ?_{< :} style bounded quantification. A closely related mechanism is row polymorphism, which provides an alternative to subtyping, while still enabling many of the same applications. Yet another approach is to have type systems with intersection types and polymorphism. A recent addition to this design space are calculi with disjoint intersection types and disjoint polymorphism. With all these alternatives it is natural to wonder how they are related. This paper provides an answer to this question. We show that disjoint polymorphism can recover forms of both row polymorphism and bounded polymorphism, while retaining key desirable properties, such as type-safety and decidability. Furthermore, we identify the extra power of disjoint polymorphism which enables additional features that cannot be easily encoded in calculi with row polymorphism or bounded quantification alone. Ultimately we expect that our work is useful to inform language designers about the expressive power of those common features, and to simplify implementations and metatheory of feature-rich languages with polymorphism and subtyping

    Simulation of Traffic at a T-Intersection Using Slam

    Get PDF
    The flow of traffic at an intersection is often controlled by a traffic signal. This research report models a T-intersection with a disjoint network for each direction of traffic flow, eastbound, westbound and southbound. The traffic signal is modeled with a fourth network. Three types of signal control (pretimed, semi-actuated and full-actuated) are modeled to examine the effect of each type on the average delay time and average length of queues for each lane of traffic queue at the intersection. The computer models presented in the report use SLAM computer language to simulate the traffic signal and vehicle flow

    Unions of 3-punctured spheres in hyperbolic 3-manifolds

    Full text link
    We classify the topological types for the unions of the totally geodesic 3-punctured spheres in orientable hyperbolic 3-manifolds. General types of the unions appear in various hyperbolic 3-manifolds. Each of the special types of the unions appears only in a single hyperbolic 3-manifold or Dehn fillings of a single hyperbolic 3-manifold. Furthermore, we investigate bounds of the moduli of adjacent cusps for the union of linearly placed 3-punctured spheres.Comment: 40 pages, 32 figures. v2: Section 5 extended, references added, v3: Theorem 1.3 added, which concerns infinitely many 3-punctured spheres, v4: reference added; to appear in Communications in Analysis and Geometr

    Principal Typings in a Restricted Intersection Type System for Beta Normal Forms with De Bruijn Indices

    Full text link
    The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms through the property that a term is normalisable if and only if it is typeable. To be closer to computations and to simplify the formalisation of the atomic operations involved in beta-contractions, several calculi of explicit substitution were developed mostly with de Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast to versions with more elaborate type systems such as intersection types. In previous work, we introduced a de Bruijn version of the lambda-calculus with an intersection type system and proved that it preserves subject reduction, a basic property of type systems. In this paper a version with de Bruijn indices of an intersection type system originally introduced to characterise principal typings for beta-normal forms is presented. We present the characterisation in this new system and the corresponding versions for the type inference and the reconstruction of normal forms from principal typings algorithms. We briefly discuss the failure of the subject reduction property and some possible solutions for it

    Subexponential groups in 4-manifold topology

    Full text link
    We present a new, more elementary proof of the Freedman-Teichner result that the geometric classification techniques (surgery, s-cobordism, and pseudoisotopy) hold for topological 4-manifolds with groups of subexponential growth. In an appendix Freedman and Teichner give a correction to their original proof, and reformulate the growth estimates in terms of coarse geometry.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol4/paper14.abs.htm
    • …
    corecore