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Abstract
Calculi with disjoint intersection types support an introduction form for intersections called the
merge operator, while retaining a coherent semantics. Disjoint intersections types have great
potential to serve as a foundation for powerful, flexible and yet type-safe and easy to reason
OO languages. This paper shows how to significantly increase the expressive power of disjoint
intersection types by adding support for nested subtyping and composition, which enables simple
forms of family polymorphism to be expressed in the calculus. The extension with nested sub-
typing and composition is challenging, for two different reasons. Firstly, the subtyping relation
that supports these features is non-trivial, especially when it comes to obtaining an algorithmic
version. Secondly, the syntactic method used to prove coherence for previous calculi with disjoint
intersection types is too inflexible, making it hard to extend those calculi with new features (such
as nested subtyping). We show how to address the first problem by adapting and extending the
Barendregt, Coppo and Dezani (BCD) subtyping rules for intersections with records and coer-
cions. A sound and complete algorithmic system is obtained by using an approach inspired by
Pierce’s work. To address the second problem we replace the syntactic method to prove coher-
ence, by a semantic proof method based on logical relations. Our work has been fully formalized
in Coq, and we have an implementation of our calculus.
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1 Introduction

Intersection types [49, 18] have a long history in programming languages. They were
originally introduced to characterize exactly all strongly normalizing lambda terms. Since
then, starting with Reynolds’s work on Forsythe [54], they have also been employed to express
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22:2 The Essence of Nested Composition

useful programming language constructs, such as key aspects of multiple inheritance [17] in
Object-Oriented Programming (OOP). One notable example is the Scala language [44] and its
DOT calculus [3], which make fundamental use of intersection types to express a class/trait
that extends multiple other traits. Other modern languages, such as TypeScript [39], Flow [28]
and Ceylon [51], also adopt some form of intersection types.

Intersection types come in different varieties in the literature. Some calculi provide an
explicit introduction form for intersections, called the merge operator. This operator was
introduced by Reynolds in Forsythe [54] and adopted by a few other calculi [15, 23, 46, 2].
Unfortunately, while the merge operator is powerful, it also makes it hard to get a coherent
(or unambiguous) semantics. Unrestricted uses of the merge operator can be ambiguous,
leading to an incoherent semantics where the same program can evaluate to different values.
A far more common form of intersection types are the so-called refinement types [30, 21, 24].
Refinement types restrict the formation of intersection types so that the two types in an
intersection are refinements of the same simple (unrefined) type. Refinement intersection
increases only the expressiveness of types and not of terms. For this reason, Dunfield [23]
argues that refinement intersection is unsuited for encoding various useful language features
that require the merge operator (or an equivalent term-level operator).

Disjoint Intersection Types. λi is a recent calculus with a variant of intersection types
called disjoint intersection types [46]. Calculi with disjoint intersection types feature the
merge operator, with restrictions that all expressions in a merge operator must have disjoint
types and all well-formed intersections are also disjoint. A bidirectional type system and the
disjointness restrictions ensure that the semantics of the resulting calculi remains coherent.

Disjoint intersection types have great potential to serve as a foundation for powerful,
flexible and yet type-safe OO languages that are easy to reason about. As shown by Alpuim
et al. [2], calculi with disjoint intersection types are very expressive and can be used to
statically type-check JavaScript-style programs using mixins. Yet they retain both type
safety and coherence. While coherence may seem at first of mostly theoretical relevance, it
turns out to be very relevant for OOP. Multiple inheritance is renowned for being tricky to
get right, largely because of the possible ambiguity issues caused by the same field/method
names inherited from different parents [9, 58]. Disjoint intersection types enforce that the
types of parents are disjoint and thus that no conflicts exist. Any violations are statically
detected and can be manually resolved by the programmer. This is very similar to existing
trait models [29, 22]. Therefore in an OO language modelled on top of disjoint intersection
types, coherence implies that no ambiguity arises from multiple inheritance. This makes
reasoning a lot simpler.

Family Polymorphism. One powerful and long-standing idea in OOP is family polymorph-
ism [25]. In family polymorphism inheritance is extended to work on a whole family of
classes, rather than just a single class. This enables high degrees of modularity and reuse,
including simple solutions to hard programming language problems, like the Expression
Problem [64]. An essential feature of family polymorphism is nested composition [19, 27, 42],
which allows the automatic inheritance/composition of nested (or inner) classes when the
top-level classes containing them are composed. Designing a sound type system that fully
supports family polymorphism and nested composition is notoriously hard; there are only a
few, quite sophisticated, languages that manage this [27, 42, 16, 57].
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NeColus. This paper presents an improved variant of λi called NeColus3 (or λ+
i ): a simple

calculus with records and disjoint intersection types that supports nested composition. Nested
composition enables encoding simple forms of family polymorphism. More complex forms of
family polymorphism, involving binary methods [11] and mutable state are not yet supported,
but are interesting avenues for future work. Nevertheless, in NeColus, it is possible, for
example, to encode Ernst’s elegant family-polymorphism solution [25] to the Expression
Problem. Compared to λi the essential novelty of NeColus are distributivity rules between
function/record types and intersection types. These rules are the delta that enable extending
the simple forms of multiple inheritance/composition supported by λi into a more powerful
form supporting nested composition. The distributivity rule between function types and
intersections is common in calculi with intersection types aimed at capturing the set of all
strongly normalizable terms, and was first proposed by Barendregt et al. [4] (BCD). However
the distributivity rule is not common in calculi or languages with intersection types aimed at
programming. For example the rules employed in languages that support intersection types
(such as Scala, TypeScript, Flow or Ceylon) lack distributivity rules. Moreover distributivity
is also missing from several calculi with a merge operator. This includes all calculi with disjoint
intersection types and Dunfield’s work on elaborating intersection types, which was the
original foundation for λi. A possible reason for this omission in the past is that distributivity
adds substantial complexity (both algorithmically and metatheoretically), without having
any obvious practical applications. This paper shows how to deal with the complications of
BCD subtyping, while identifying a major reason to include it in a programming language:
BCD enables nested composition and subtyping, which is of significant practical interest.

NeColus differs significantly from previous BCD-based calculi in that it has to deal with
the possibility of incoherence, introduced by the merge operator. Incoherence is a non-issue
in the previous BCD-based calculi because they do not feature this merge operator or any
other source of incoherence. Although previous work on disjoint intersection types proposes
a solution to coherence, the solution imposes several ad-hoc restrictions to guarantee the
uniqueness of the elaboration and thus allow for a simple syntactic proof of coherence. Most
importantly, it makes it hard or impossible to adapt the proof to extensions of the calculus,
such as the new subtyping rules required by the BCD system.

In this work we remove the brittleness of the previous syntactic method to prove coherence,
by employing a more semantic proof method based on logical relations [63, 48, 61]. This new
proof method has several advantages. Firstly, with the new proof method, several restrictions
that were enforced by λi to enable the syntactic proof method are removed. For example
the work on λi has to carefully distinguish between so-called top-like types and other types.
In NeColus this distinction is not necessary; top-like types are handled like all other types.
Secondly, the method based on logical relations is more powerful because it is based on
semantic rather than syntactic equality. Finally, the removal of the ad-hoc side-conditions
makes adding new extensions, such as support for BCD-style subtyping, easier. In order to
deal with the complexity of the elaboration semantics of NeColus, we employ binary logical
relations that are heterogeneous, parameterized by two types; the fundamental property is
also reformulated to account for bidirectional type-checking.

In summary the contributions of this paper are:
NeColus: a calculus with (disjoint) intersection types that features both BCD-style
subtyping and the merge operator. This calculus is both type-safe and coherent, and
supports nested composition.

3 NeColus stands for Nested Composition calculus.
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A more flexible notion of disjoint intersection types where only merges need to be checked
for disjointness. This removes the need for enforcing disjointness for all well-formed types,
making the calculus more easily extensible.
An extension of BCD subtyping with both records and elaboration into coercions, and
algorithmic subtyping rules with coercions, inspired by Pierce’s decision procedure [47].
A more powerful proof strategy for coherence of disjoint intersection types based on
logical relations.
Illustrations of how the calculus can encode essential features of family polymorphism
through nested composition.
A comprehensive Coq mechanization of all meta-theory. This has notably revealed
several missing lemmas and oversights in Pierce’s manual proof [47] of BCD’s algorithmic
subtyping. We also have an implementation of a language built on top of NeColus; it
runs and type-checks all examples shown in the paper.4

2 Overview

This section illustrates NeColus with an encoding of a family polymorphism solution to the
Expression Problem, and informally presents its salient features.

2.1 Motivation: Family Polymorphism

In OOP family polymorphism is the ability to simultaneously refine a family of related classes
through inheritance. This is motivated by a need to not only refine individual classes, but
also to preserve and refine their mutual relationships. Nystrom et al. [42] call this scalable
extensibility: “the ability to extend a body of code while writing new code proportional to
the differences in functionality”. A well-studied mechanism to achieve family inheritance is
nested inheritance [42]. Nested inheritance combines two aspects. Firstly, a class can have
nested class members; the outer class is then a family of (inner) classes. Secondly, when one
family extends another, it inherits (and can override) all the class members, as well as the
relationships within the family (including subtyping) between the class members. However,
the members of the new family do not become subtypes of those in the parent family.

The Expression Problem, Scandinavian Style. Ernst [25] illustrates the benefits of nested
inheritance for modularity and extensibility with one of the most elegant and concise solutions
to the Expression Problem [64]. The objective of the Expression Problem is to extend a
datatype, consisting of several cases, together with several associated operations in two
dimensions: by adding more cases to the datatype and by adding new operations for the
datatype. Ernst solves the Expression Problem in the gbeta language, which he adorns with
a Java-like syntax for presentation purposes, for a small abstract syntax tree (AST) example.
His starting point is the code shown in Fig. 1a. The outer class Lang contains a family of
related AST classes: the common superclass Exp and two cases, Lit for literals and Add for
addition. The AST comes equipped with one operation, toString, which is implemented by
both cases.

4 The Coq formalization and implementation are available at https://goo.gl/R5hUAp.

https://goo.gl/R5hUAp
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class Lang {
virtual class Exp {

String toString() {}
}
virtual class Lit extends Exp {
int value;
Lit(int value) {
this.value = value;

}
String toString() {
return value;

}
}
virtual class Add extends Exp {

Exp left,right;
Add(Exp left, Exp right) {
this.left = left;
this.right = right;

}
String toString() {
return left + "+" + right;

}
}

}

(a) Base family: the language Lang.

// Adding a new operation
class LangEval extends Lang {
refine class Exp {
int eval() {}

}
refine class Lit {
int eval { return value; }

}
refine class Add {
int eval { return

left.eval() + right.eval();
}

}
}
// Adding a new case
class LangNeg extends Lang {
virtual class Neg extends Exp {

Neg(Exp exp) { this.exp = exp; }
String toString() {
return "-(" + exp + ")";

}
Exp exp;

}
}

(b) Extending in two dimensions.

Figure 1 The Expression Problem, Scandinavian Style.

Adding a New Operation. One way to extend the family is to add an additional evaluation
operation, as shown in the top half of Fig. 1b. This is done by subclassing the Lang class
and refining all the contained classes by implementing the additional eval method. Note
that the inheritance between, e.g., Lang.Exp and Lang.Lit is transferred to LangEval.Exp
and LangEval.Lit. Similarly, the Lang.Exp type of the left and right fields in Lang.Add is
automatically refined to LangEval.Exp in LangEval.Add.

Adding a New Case. A second dimension to extend the family is to add a case for negation,
shown in the bottom half of Fig. 1b. This is similarly achieved by subclassing Lang, and now
adding a new contained class Neg, for negation, that implements the toString operation.

Finally, the two extensions are naturally combined by means of multiple inheritance,
closing the diamond.

class LangNegEval extends LangEval & LangNeg {
refine class Neg {
int eval() { return -exp.eval(); }

}
}

The only effort required is to implement the one missing operation case, evaluation of negated
expressions.

2.2 The Expression Problem, NeColus Style
The NeColus calculus allows us to solve the Expression Problem in a way that is very similar
to Ernst’s gbeta solution. However, the underlying mechanisms of NeColus are quite different

ECOOP 2018
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from those of gbeta. In particular, NeColus features a structural type system in which we
can model objects with records, and object types with record types. For instance, we model
the interface of Lang.Exp with the singleton record type { print : String }. For the sake of
conciseness, we use type aliases to abbreviate types.

type IPrint = { print : String };

Similarly, we capture the interface of the Lang family in a record, with one field for each
case’s constructor.

type Lang = { lit : Int → IPrint, add : IPrint → IPrint → IPrint };

Here is the implementation of Lang.

implLang : Lang = {
lit (value : Int) = { print = value.toString },
add (left : IPrint) (right : IPrint) = {

print = left.print ++ "+" ++ right.print
}

};

Adding Evaluation. We obtain IPrint & IEval, which is the corresponding type for
LangEval.Exp, by intersecting IPrint with IEval where

type IEval = { eval : Int };

The type for LangEval is then:

type LangEval = {
lit : Int → IPrint & IEval,
add : IPrint & IEval → IPrint & IEval → IPrint & IEval

};

We obtain an implementation for LangEval by merging the existing Lang implementation
implLang with the new evaluation functionality implEval using the merge operator ,,.

implEval = {
lit (value : Int) = { eval = value },
add (left : IEval) (right : IEval) = {

eval = left.eval + right.eval
}

};
implLangEval : LangEval = implLang ,, implEval;

Adding Negation. Adding negation to Lang works similarly.

type NegPrint = { neg : IPrint → IPrint };
type LangNeg = Lang & NegPrint;

implNegPrint : NegPrint = {
neg (exp : IPrint) = { print = "-" ++ exp.print }

};
implLangNeg : LangNeg = implLang ,, implNegPrint;
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Putting Everything Together. Finally, we can combine the two extensions and provide the
missing implementation of evaluation for the negation case.

type NegEval = { neg : IEval → IEval};
implNegEval : NegEval = {

neg (exp : IEval) = { eval = 0 - exp.eval }
};

type NegEvalExt = { neg : IPrint & IEval → IPrint & IEval };
type LangNegEval = LangEval & NegEvalExt;
implLangNegEval : LangNegEval = implLangEval ,, implNegPrint ,, implNegEval;

We can test implLangNegEval by creating an object e of expression −2 + 3 that is able to
print and evaluate at the same time.

fac = implLangNegEval;
e = fac.add (fac.neg (fac.lit 2)) (fac.lit 3);
main = e.print ++ " = " ++ e.eval.toString -- Output: "-2+3 = 1"

Multi-Field Records. One relevant remark is that NeColus does not have multi-field record
types built in. They are merely syntactic sugar for intersections of single-field record types.
Hence, the following is an equivalent definition of Lang:

type Lang = {lit : Int → IPrint} & {add : IPrint → IPrint → IPrint};

Similarly, the multi-field record expression in the definition of implLang is syntactic sugar for
the explicit merge of two single-field records.

implLang : Lang = { lit = ... } ,, { add = ... };

Subtyping. A big difference compared to gbeta is that many more NeColus types are related
through subtyping. Indeed, gbeta is unnecessarily conservative [26]: none of the families is
related through subtyping, nor is any of the class members of one family related to any of
the class members in another family. For instance, LangEval is not a subtype of Lang, nor is
LangNeg.Lit a subtype of Lang.Lit.

In contrast, subtyping in NeColus is much more nuanced and depends entirely on the
structure of types. The primary source of subtyping are intersection types: any intersection
type is a subtype of its components. For instance, IPrint & IEval is a subtype of both IPrint
and IEval. Similarly LangNeg = Lang & NegPrint is a subtype of Lang. Compare this to gbeta
where LangEval.Expr is not a subtype of Lang.Expr, nor is the family LangNeg a subtype of
the family Lang.

However, gbeta and NeColus agree that LangEval is not a subtype of Lang. The NeColus-
side of this may seem contradictory at first, as we have seen that intersection types arise from
the use of the merge operator, and we have created an implementation for LangEval with
implLang ,, implEval where implLang : Lang. That suggests that LangEval is a subtype of
Lang. Yet, there is a flaw in our reasoning: strictly speaking, implLang ,, implEval is not of
type LangEval but instead of type Lang & EvalExt, where EvalExt is the type of implEval:

type EvalExt = { lit : Int → IEval, add : IEval → IEval → IEval };

Nevertheless, the definition of implLangEval is valid because Lang & EvalExt is a subtype of
LangEval. Indeed, if we consider for the sake of simplicity only the lit field, we have that
(Int → IPrint) & (Int → IEval) is a subtype of Int → IPrint & IEval. This follows from

ECOOP 2018
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Interface
LEGEND:

implmentation subtype-of#

# composition

impl-of#

implLang

Lang EvalExt

implEval

LangEval

NegPrint

implNegPrint

NegEval

implNegEval

NegEvalExt

LangNeg Lang & EvalExt

LangNegEval

implLangNegEval

implLangNeg implLangEval

NegEval & NegPrint

implNegEval
,,

implNegPrint

Figure 2 Summary diagram of the relationships between language components.

a standard subtyping axiom for distributivity of functions and intersections in the BCD
system inherited by NeColus. In conclusion, Lang & EvalExt is a subtype of both Lang and of
LangEval. However, neither of the latter two types is a subtype of the other. Indeed, LangEval
is not a subtype of Lang as the type of add is not covariantly refined and thus admitting the
subtyping is unsound. For the same reason Lang is not a subtype of LangEval.

Figure 2 shows the various relationships between the language components. Admittedly,
the figure looks quite complex because our calculus features a structural type system (as
often more foundational calculi do), whereas mainstream OO languages have nominal type
systems. This is part of the reason why we have so many subtyping relations in Fig. 2.

Stand-Alone Extensions. Unlike in gbeta and other class-based inheritance systems, in
NeColus the extension implEval is not tied to LangEval. In that sense, it resembles trait and
mixin systems that can apply the same extension to different classes. However, unlike those
systems, implEval can also exist as a value on its own, i.e., it is not an extension per se.

2.3 Disjoint Intersection Types and Ambiguity
The above example shows that intersection types and the merge operator are closely related
to multiple inheritance. Indeed, they share a major concern with multiple inheritance,
namely ambiguity. When a subclass inherits an implementation of the same method from
two different parent classes, it is unclear which of the two methods is to be adopted by the
subclass. In the case where the two parent classes have a common superclass, this is known
as the diamond problem. The ambiguity problem also appears in NeColus, e.g., if we merge
two numbers to obtain 1 , , 2 of type Nat & Nat. Is the result of 1 , , 2 + 3 either 4 or 5?

Disjoint intersection types offer to statically detect potential ambiguity and to ask the
programmer to explicitly resolve the ambiguity by rejecting the program in its ambiguous
form. In the previous work on λi, ambiguity is avoided by dictating that all intersection
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types have to be disjoint, i.e., Nat & Nat is ill-formed because the first component has the
same type as the second.

Duplication is Harmless. While requiring that all intersections are disjoint is sufficient to
guarantee coherence, it is not necessary. In fact, such requirement unnecessarily encumbers
the subtyping definition with disjointness constraints and an ad-hoc treatment of “top-like”
types. Indeed, the value 1 , , 1 of the non-disjoint type Nat & Nat is entirely unambiguous, and
(1 , , 1) + 3 can obviously only result in 4. More generally, when the overlapping components
of an intersection type have the same value, there is no ambiguity problem. NeColus uses this
idea to relax λi’s enforcement of disjointness. In the case of a merge, it is hard to statically
decide whether the two arguments have the same value, and thus NeColus still requires
disjointness. This is why in Fig. 2 we cannot define implLangNegEval by directly composing
the two existing implLangEval and implLangNeg, even though the latter two both contain
the same implLang. Yet, disjointness is no longer required for the well-formedness of types
and overlapping intersections can be created implicitly through subtyping, which results
in duplicating values at runtime. For instance, while 1 , , 1 is not expressible 1 : Nat & Nat
creates the equivalent value implicitly. In short, duplication is harmless and subtyping only
generates duplicated values for non-disjoint types.

2.4 Logical Relations for Coherence
Coherence is easy to establish for λi as its rigid rules mean that there is at most one possible
subtyping derivation between any two types. As a consequence there is only one possible
elaboration and thus one possible behavior for any program.

Two factors make establishing coherence for NeColus much more difficult: the relaxation
of disjointness and the adoption of the more expressive subtyping rules from the BCD system
(for which λi lacks). These two factors mean that subtyping proofs are no longer unique
and hence that there are multiple elaborations of the same source program. For instance,
Nat & Nat is a subtype of Nat in two ways: by projection on either the first or second
component. Hence the fact that all elaborations yield the same result when evaluated has
become a much more subtle property that requires sophisticated reasoning. For instance, in
the example, we can see that coherence holds because at runtime any value of type Nat & Nat
has identical components, and thus both projections yield the same result.

For NeColus in general, we show coherence by capturing the non-ambiguity invariant in a
logical relation and showing that it is preserved by the operational semantics. A complicating
factor is that not one, but two languages are involved: the source language NeColus and the
target language, essentially the simply-typed lambda calculus extended with coercions and
records. The logical relation does not hold for target programs and program contexts in
general, but only for those that are the image of a corresponding source program or program
context. Thus we must view everything through the lens of elaboration.

3 NeColus: Syntax and Semantics

In this section we formally present the syntax and semantics of NeColus. Compared to
prior work [2, 46], NeColus has a more powerful subtyping relation. The new subtyping
relation is inspired by BCD-style subtyping, but with two noteworthy differences: subtyping
is coercive (in contrast to traditional formulations of BCD); and it is extended with records.
We also have a new target language with explicit coercions inspired by the coercion calculus
of Henglein [32]. A full technical comparison between λ+

i and λi can be found in Section 3.5.

ECOOP 2018
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Types A,B, C ::= Nat | > | A→ B | A & B | {l : A}
Expressions E ::= x | i | > | λx. E | E1 E2 | E1 , , E2 | E : A | {l = E} | E.l
Typing contexts Γ ::= • | Γ, x : A

Figure 3 Syntax of NeColus.

A <: B  c (Declarative subtyping)

S-refl

A <: A  id

S-trans
A2 <: A3  c1 A1 <: A2  c2

A1 <: A3  c1 ◦ c2

S-top

A <: >  top

S-rcd
A <: B  c

{l : A} <: {l : B}  {l : c}

S-arr
B1 <: A1  c1 A2 <: B2  c2

A1 → A2 <: B1 → B2  c1 → c2

S-andl

A1 & A2 <: A1  π1

S-andr

A1 & A2 <: A2  π2

S-and
A1 <: A2  c1 A1 <: A3  c2

A1 <: A2 & A3  〈c1, c2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3  dist→

S-topArr

> <: > → >  top→

S-distRcd

{l : A}& {l : B} <: {l : A & B}  dist{l}

S-topRcd

> <: {l : >}  top{l}

Figure 4 Declarative specification of subtyping.

3.1 Syntax
Figure 3 shows the syntax of NeColus. For brevity of the meta-theoretic study, we do
not consider primitive operations on natural numbers, or other primitive types. They can
be easily added to the language, and our prototype implementation is indeed equipped
with common primitive types and their operations. Metavariables A,B, C range over types.
Types include naturals Nat, a top type >, function types A→ B, intersection types A & B,
and singleton record types {l : A}. Metavariable E ranges over expressions. Expressions
include variables x, natural numbers i, a canonical top value >, lambda abstractions λx. E,
applications E1 E2, merges E1 , , E2, annotated terms E : A, singleton records {l = E}, and
record selections E.l.

3.2 Declarative Subtyping
Figure 4 presents the subtyping relation. We ignore the highlighted parts, and explain
them later in Section 3.4.

BCD-Style Subtyping. The subtyping rules are essentially those of the BCD type system [4],
extended with subtyping for singleton records. Rules S-top and S-rcd for top types and
record types are straightforward. Rule S-arr for function subtyping is standard. Rules S-
andl, S-andr, and S-and for intersection types axiomatize that A & B is the greatest
lower bound of A and B. Rule S-distArr is perhaps the most interesting rule. This,
so-called “distributivity” rule, describes the interaction between the subtyping relations for
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Γ ` E ⇒ A  e (Inference)

T-top

Γ ` > ⇒ >  〈〉

T-lit

Γ ` i ⇒ Nat  i

T-var
x : A ∈ Γ

Γ ` x ⇒ A  x

T-app
Γ ` E1 ⇒ A1 → A2  e1

Γ ` E2 ⇐ A1  e2

Γ ` E1 E2 ⇒ A2  e1 e2

T-anno
Γ ` E ⇐ A  e

Γ ` E : A⇒ A  e

T-proj
Γ ` E ⇒ {l : A}  e
Γ ` E.l ⇒ A  e.l

T-merge
Γ ` E1 ⇒ A1  e1

Γ ` E2 ⇒ A2  e2 A1 ∗A2

Γ ` E1 , , E2 ⇒ A1 & A2  〈e1, e2〉

T-rcd
Γ ` E ⇒ A  e

Γ ` {l = E} ⇒ {l : A}  {l = e}

Γ ` E ⇐ A  e (Checking)

T-abs
Γ, x : A ` E ⇐ B  e

Γ ` λx. E ⇐ A→ B  λx. e

T-sub
Γ ` E ⇒ B  e B <: A  c

Γ ` E ⇐ A  c e

Figure 5 Bidirectional type system of NeColus.

function types and those for intersection types. It can be shown5 that the other direction
(A1 → A2 & A3 <: (A1 → A2) & (A1 → A3)) and the contravariant distribution ((A1 →
A2) & (A3 → A2) <: A1 & A3 → A2) are both derivable from the existing subtyping rules.
Rule S-distRcd, which is not found in the original BCD system, prescribes the distribution
of records over intersection types. The two distributivity rules are the key to enable nested
composition. The rule S-topArr is standard in BCD subtyping, and the new rule S-topRcd
plays a similar role for record types.

Non-Algorithmic. The subtyping relation in Fig. 4 is clearly no more than a specification
due to the two subtyping axioms: rules S-refl and S-trans. A sound and complete
algorithmic version is discussed in Section 5. Nevertheless, for the sake of establishing
coherence, the declarative subtyping relation is sufficient.

3.3 Typing of NeColus
The bidirectional type system for NeColus is shown in Fig. 5. Again we ignore the highlighted
parts for now.

Typing Rules and Disjointness. As with traditional bidirectional type systems, we employ
two modes: the inference mode (⇒) and the checking mode (⇐). The inference judgement
Γ ` E ⇒ A says that we can synthesize a type A for expression E in the context Γ. The

5 The full derivations are found in the appendix.
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A ∗ B (Disjointness)

D-topL

> ∗A

D-topR

A ∗ >

D-arr
A2 ∗ B2

A1 → A2 ∗ B1 → B2

D-andL
A1 ∗ B A2 ∗ B

A1 & A2 ∗ B

D-andR
A ∗ B1 A ∗ B2

A ∗ B1 & B2

D-rcdEq
A ∗ B

{l : A} ∗ {l : B}

D-rcdNeq
l1 6= l2

{l1 : A} ∗ {l2 : B}

D-axNatArr

Nat ∗A1 → A2

D-axArrNat

A1 → A2 ∗ Nat

D-axNatRcd

Nat ∗ {l : A}

D-axRcdNat

{l : A} ∗ Nat

D-axArrRcd

A1 → A2 ∗ {l : A}

D-axRcdArr

{l : A} ∗A1 → A2

Figure 6 Disjointness.

Target types τ ::= Nat | 〈〉 | τ1 × τ2 | τ1 → τ2 | {l : τ}
Typing contexts ∆ ::= • | ∆, x : τ
Target terms e ::= x | i | 〈〉 | λx. e | e1 e2 | 〈e1, e2〉 | {l = e} | e.l | c e
Coercions c ::= id | c1 ◦ c2 | top | top→ | top{l} | c1 → c2 | 〈c1, c2〉

| π1 | π2 | {l : c} | dist{l} | dist→
Target values v ::= λx. e | 〈〉 | i | 〈v1, v2〉 | (c1 → c2) v | dist→ v | top→ v

Figure 7 λc types, terms and coercions.

checking judgement Γ ` E ⇐ A checks E against A in the context Γ. The disjointness
judgement A ∗B used in rule T-merge is shown in Fig. 6, which states that the types A and
B are disjoint. The intuition of two types being disjoint is that their least upper bound is
(isomorphic to) >. The disjointness judgement is important in order to rule out ambiguous
expressions such as 1 , , 2. Most of the typing and disjointness rules are standard and are
explained in detail in previous work [46, 2].

3.4 Elaboration Semantics
The operational semantics of NeColus is given by elaborating source expressions E into
target terms e. Our target language λc is the standard simply-typed call-by-value λ-calculus
extended with singleton records, products and coercions. The syntax of λc is shown in Fig. 7.
The meta-function | · | transforms NeColus types to λc types, and extends naturally to typing
contexts. Its definition is in the appendix.

Explicit Coercions and Coercive Subtyping. The separate syntactic category for explicit
coercions is a distinct difference from the prior works (in which they are regular terms).
Our coercions are based on those of Henglein [32], and we add more forms due to our extra
subtyping rules. Metavariable c ranges over coercions.6 Coercions express the conversion of
a term from one type to another. Because of the addition of coercions, the grammar contains
explicit coercion applications c e as a term, and various unsaturated coercion applications as
values. The use of explicit coercions is useful for the new semantic proof of coherence based

6 Coercions π1 and π2 subsume the first and second projection of pairs, respectively.
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c ` τ1 . τ2 (Coercion typing)

cotyp-refl

id ` τ . τ

cotyp-trans
c1 ` τ2 . τ3 c2 ` τ1 . τ2

c1 ◦ c2 ` τ1 . τ3

cotyp-top

top ` τ . 〈〉

cotyp-topArr

top→ ` 〈〉 . 〈〉 → 〈〉

cotyp-topRcd

top{l} ` 〈〉 . {l : 〈〉}

cotyp-arr
c1 ` τ ′1 . τ1 c2 ` τ2 . τ

′
2

c1 → c2 ` τ1 → τ2 . τ
′
1 → τ ′2

cotyp-pair
c1 ` τ1 . τ2 c2 ` τ1 . τ3

〈c1, c2〉 ` τ1 . τ2 × τ3

cotyp-projl

π1 ` τ1 × τ2 . τ1

cotyp-projr

π2 ` τ1 × τ2 . τ2

cotyp-rcd
c ` τ1 . τ2

{l : c} ` {l : τ1} . {l : τ2}

cotyp-distRcd

dist{l} ` {l : τ1} × {l : τ2} . {l : τ1 × τ2}

cotyp-distArr

dist→ ` (τ1 → τ2)× (τ1 → τ3) . τ1 → τ2 × τ3

Figure 8 Coercion typing.

on logical relations. The subtyping judgement in Fig. 4 has the form A <: B  c, which
says that the subtyping derivation of A <: B produces a coercion c that converts terms of
type |A| to type |B|. Each subtyping rule has its own specific form of coercion.

Target Typing. The typing of λc has the form ∆ ` e : τ , which is entirely standard. Only
the typing of coercion applications, shown below, deserves attention:

∆ ` e : τ c ` τ . τ ′

∆ ` c e : τ ′
typ-capp

Here the judgement c ` τ1 . τ2 expresses the typing of coercions, which are essentially
functions from τ1 to τ2. Their typing rules correspond exactly to the subtyping rules of
NeColus, as shown in Fig. 8.

Target Operational Semantics and Type Safety. The operational semantics of λc is mostly
unremarkable. What may be interesting is the operational semantics of coercions. Figure 9
shows the single-step (−→) reduction rules for coercions. Our coercion reduction rules are
quite standard but not efficient in terms of space. Nevertheless, there is existing work on
space-efficient coercions [60, 33], which should be applicable to our work as well. As standard,
−→∗ is the reflexive, transitive closure of −→. We show that λc is type safe:

I Theorem 1 (Preservation). If • ` e : τ and e −→ e′, then • ` e′ : τ .

I Theorem 2 (Progress). If • ` e : τ , then either e is a value, or ∃e′ such that e −→ e′.

Elaboration. We are now in a position to explain the elaboration judgements Γ ` E ⇒
A e and Γ ` E ⇐ A e in Fig. 5. The only interesting rule is rule T-sub, which applies
the coercion c produced by subtyping to the target term e to form a coercion application c e.
All the other rules do straightforward translations between source and target expressions.

To conclude, we show two lemmas that relate NeColus expressions to λc terms.

I Lemma 3 (Coercions preserve types). If A <: B  c, then c ` |A| . |B|.
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e −→ e′ (Coercion reduction)

step-id

id v −→ v

step-trans

(c1 ◦ c2) v −→ c1 (c2 v)

step-top

top v −→ 〈〉

step-topArr

(top→ 〈〉) 〈〉 −→ 〈〉

step-topRcd

top{l} 〈〉 −→ {l = 〈〉}

step-pair

〈c1, c2〉 v −→ 〈c1 v, c2 v〉

step-arr

((c1 → c2) v1) v2 −→ c2 (v1 (c1 v2))

step-distArr

(dist→ 〈v1, v2〉) v3 −→ 〈v1 v3, v2 v3〉

step-projl

π1 〈v1, v2〉 −→ v1

step-projr

π2 〈v1, v2〉 −→ v2

step-crcd

{l : c} {l = v} −→ {l = c v}

step-distRcd

dist{l} 〈{l = v1}, {l = v2}〉 −→ {l = 〈v1, v2〉}

Figure 9 Coercion reduction.

Proof. By structural induction on the derivation of subtyping. J

I Lemma 4 (Elaboration soundness). We have that:
If Γ ` E ⇒ A e, then |Γ| ` e : |A|.
If Γ ` E ⇐ A e, then |Γ| ` e : |A|.

Proof. By structural induction on the derivation of typing. J

3.5 Comparison with λi
Below we identify major differences between λ+

i and λi, which, when taken together, yield
a simpler and more elegant system. The differences may seem superficial, but they have
far-reaching impacts on the semantics, especially on coherence, our major topic in Section 4.

No Ordinary Types. Apart from the extra subtyping rules, there is an important difference
from the λi subtyping relation. The subtyping relation of λi employs an auxiliary unary
relation called ordinary, which plays a fundamental role for ensuring coherence and obtaining
an algorithm [21]. The NeColus calculus discards the notion of ordinary types completely; this
yields a clean and elegant formulation of the subtyping relation. Another minor difference is
that due to the addition of the transitivity axiom (rule S-trans), rules S-andl and S-andr
are simplified: an intersection type A & B is a subtype of both A and B, instead of the more
general form A & B <: C.

No Top-Like Types. There is a notable difference from the coercive subtyping of λi. Because
of their syntactic proof method, they have special treatment for coercions of top-like types in
order to retain coherence. For NeColus, as with ordinary types, we do not need this kind of
ad-hoc treatment, thanks to the adoption of a more powerful proof method (cf. Section 4).

No Well-Formedness Judgement. A key difference from the type system of λi is the
complete omission of the well-formedness judgement. In λi, the well-formedness judgement
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Γ ` A appears in both rules T-abs and T-sub. The sole purpose of this judgement is to
enforce the invariant that all intersection types are disjoint. However, as Section 4 will
explain, the syntactic restriction is unnecessary for coherence, and merely complicates the
type system. The NeColus calculus discards this well-formedness judgement altogether in
favour of a simpler design that is still coherent. An important implication is that even
without adding BCD subtyping, NeColus is already more expressive than λi: an expression
such as 1 : Nat & Nat is accepted in NeColus but rejected in λi. This simplification is based on
an important observation: incoherence can only originate in merges. Therefore disjointness
checking is only necessary in rule T-merge.

4 Coherence

This section constructs logical relations to establish the coherence of NeColus. Finding a
suitable definition of coherence for NeColus is already challenging in its own right. In what
follows we reproduce the steps of finding a definition for coherence that is both intuitive and
applicable. Then we present the construction of logical (equivalence) relations tailored to
this definition, and the connection between logical equivalence and coherence.

4.1 In Search of Coherence
In λi the definition of coherence is based on α-equivalence. More specifically, their coherence
property states that any two target terms that a source expression elaborates into must be
exactly the same (up to α-equivalence). Unfortunately this syntactic notion of coherence
is very fragile with respect to extensions. For example, it is not obvious how to retain this
notion of coherence when adding more subtyping rules such as those in Fig. 4.

If we permit ourselves to consider only the syntactic aspects of expressions, then very few
expressions can be considered equal. The syntactic view also conflicts with the intuition that
the significance of an expression lies in its contribution to the outcome of a computation [31].
Drawing inspiration from a wide range of literature on contextual equivalence [41], we want a
context-based notion of coherence. It is helpful to consider several examples before presenting
the formal definition of our new semantically founded notion of coherence.

I Example 5. The same NeColus expression 3 can be typed Nat in many ways: for instance,
by rule T-lit; by rules T-sub and S-refl; or by rules T-sub, S-trans, and S-refl,
resulting in λc terms 3, id 3 and (id ◦ id) 3, respectively. It is apparent that these three λc

terms are “equal” in the sense that all reduce to the same numeral 3.

Expression Contexts and Contextual Equivalence. To formalize the intuition, we introduce
the notion of expression contexts. An expression context D is a term with a single hole [·]
(possibly under some binders) in it. The syntax of λc expression contexts can be found in
Fig. 10. The typing judgement for expression contexts has the form D : (∆ ` τ) (∆′ ` τ ′)
where (∆ ` τ) indicates the type of the hole. This judgement essentially says that plugging
a well-typed term ∆ ` e : τ into the context D gives another well-typed term ∆′ ` D{e} : τ ′.
We define a complete program to mean any closed term of type Nat. The following two
definitions capture the notion of contextual equivalence.

I Definition 6 (Kleene Equality). Two complete programs, e and e′, are Kleene equal, written
e w e′, iff there exists i such that e −→∗ i and e′ −→∗ i.

I Definition 7 (λc Contextual Equivalence).
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λc contexts D ::= [·] | λx.D | D e2 | e1D | 〈D, e2〉 | 〈e1,D〉 | cD | {l = D} | D.l
NeColus contexts C ::= [·] | λx. C | C E2 | E1 C | E1 , , C | C , , E2 | C : A | {l = C} | C.l

Figure 10 Expression contexts of NeColus and λc.

∆ ` e1 wctx e2 : τ , ∆ ` e1 : τ ∧∆ ` e2 : τ ∧
∀D. D : (∆ ` τ) (• ` Nat) =⇒ D{e1} w D{e2}

Regarding Example 5, it seems adequate to say that 3 and id 3 are contextually equivalent.
Does this imply that coherence can be based on Definition 7? Unfortunately it cannot, as
demonstrated by the following example.

I Example 8. It may be counter-intuitive that two λc terms λx. π1 x and λx. π2 x should
also be considered equal. To see why, first note that they are both translations of the
same NeColus expression: (λx. x) : Nat & Nat → Nat. What can we do with this lambda
abstraction? We can apply it to 1 : Nat & Nat for example. In that case, we get two
translations (λx. π1 x) 〈1, 1〉 and (λx. π2 x) 〈1, 1〉, which both reduce to the same numeral 1.
However, λx. π1 x and λx. π2 x are definitely not equal according to Definition 7, as one can
find a context [·] 〈1, 2〉 where the two terms reduce to two different numerals. The problem
is that not every well-typed λc term can be obtained from a well-typed NeColus expression
through the elaboration semantics. For example, [·] 〈1, 2〉 should not be considered because
the (non-disjoint) source expression 1 , , 2 is rejected by the type system of the source calculus
NeColus and thus never gets elaborated into 〈1, 2〉.

NeColus Contexts and Refined Contextual Equivalence. Example 8 hints at a shift from
λc contexts to NeColus contexts C, whose syntax is shown in Fig. 10. Due to the bidirectional
nature of the type system, the typing judgement of C features 4 different forms:

C : (Γ ⇒ A) 7→ (Γ′ ⇒ A′) D C : (Γ ⇐ A) 7→ (Γ′ ⇒ A′) D

C : (Γ ⇒ A) 7→ (Γ′ ⇐ A′) D C : (Γ ⇐ A) 7→ (Γ′ ⇐ A′) D

We write C : (Γ ⇔ A) 7→ (Γ′ ⇔′ A′)  D to abbreviate the above 4 different forms. Take
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A′) D for example, it reads given a well-typed NeColus expression
Γ ` E ⇒ A, we have Γ′ ` C{E} ⇒ A′. The judgement also generates a λc context D such
that D : (|Γ| ` |A|)  (|Γ′| ` |A′|) holds by construction. The typing rules appear in the
appendix. Now we are ready to refine Definition 7’s contextual equivalence to take into
consideration both NeColus and λc contexts.

I Definition 9 (NeColus Contextual Equivalence).

Γ ` E1 wctx E2 : A , ∀e1, e2, C,D. Γ ` E1 ⇒ A e1 ∧ Γ ` E2 ⇒ A e2 ∧
C : (Γ ⇒ A) 7→ (• ⇒ Nat) D =⇒ D{e1} w D{e2}

I Remark. For brevity we only consider expressions in the inference mode. Our Coq
formalization is complete with two modes.
Regarding Example 8, a possible NeColus context is [·] 1 : (• ⇒ Nat & Nat→ Nat) 7→ (• ⇒
Nat)  [·] 〈1, 1〉. We can verify that both λx. π1 x and λx. π2 x produce 1 in the context
[·] 〈1, 1〉. Of course we should consider all possible contexts to be certain they are truly equal.
From now on, we use the symbol wctx to refer to contextual equivalence in Definition 9.
With Definition 9 we can formally state that NeColus is coherent in the following theorem:
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(v1, v2) ∈ VJNat; NatK , ∃i, v1 = v2 = i

(v1, v2) ∈ VJτ1 → τ2; τ ′1 → τ ′2K , ∀(v, v′) ∈ VJτ1; τ ′1K, (v1 v, v2 v′) ∈ EJτ2; τ ′2K

({l = v1}, {l = v2}) ∈ VJ{l : τ1}; {l : τ2}K , (v1, v2) ∈ VJτ1; τ2K

(〈v1, v2〉, v3) ∈ VJτ1 × τ2; τ3K , (v1, v3) ∈ VJτ1; τ3K ∧ (v2, v3) ∈ VJτ2; τ3K

(v3, 〈v1, v2〉) ∈ VJτ3; τ1 × τ2K , (v3, v1) ∈ VJτ3; τ1K ∧ (v3, v2) ∈ VJτ3; τ2K

(v1, v2) ∈ VJτ1; τ2K , true otherwise

(e1, e2) ∈ EJτ1; τ2K , ∃v1v2, e1 −→∗ v1 ∧ e2 −→∗ v2 ∧ (v1, v2) ∈ VJτ1; τ2K

Figure 11 Logical relations for λc.

I Theorem 10 (Coherence). If Γ ` E ⇒ A then Γ ` E wctx E : A.

For the same reason as in Definition 9, we only consider expressions in the inference mode.
The rest of the section is devoted to proving that Theorem 10 holds.

4.2 Logical Relations
Intuitive as Definition 9 may seem, it is generally very hard to prove contextual equivalence
directly, since it involves quantification over all possible contexts. Worse still, two kinds of
contexts are involved in Theorem 10, which makes reasoning even more tedious. The key to
simplifying the reasoning is to exploit types by using logical relations [63, 61, 48].

In Search of a Logical Relation. It is worth pausing to ponder what kind of relation we are
looking for. The high-level intuition behind the relation is to capture the notion of “coherent”
values. These values are unambiguous in every context. A moment of thought leads us to
the following important observations:
I Observation 1 (Disjoint values are unambiguous). The relation should relate values originating
from disjoint intersection types. Those values are essentially translated from merges, and
since rule T-merge ensures disjointness, they are unambiguous. For example, 〈1, {l = 1}〉
corresponds to the type Nat & {l : Nat}. It is always clear which one to choose (1 or {l = 1})
no matter how this pair is used in certain contexts.
I Observation 2 (Duplication is unambiguous). The relation should relate values originating
from non-disjoint intersection types, only if the values are duplicates. This may sound baffling
since the whole point of disjointness is to rule out (ambiguous) expressions such as 1 , , 2.
However, 1 , , 2 never gets elaborated, and the only values corresponding to Nat & Nat are
those pairs such as 〈1, 1〉, 〈2, 2〉, etc. Those values are essentially generated from rule T-sub
and are also unambiguous.

To formalize values being “coherent” based on the above observations, Figure 11 defines
two (binary) logical relations for λc, one for values (VJτ1; τ2K) and one for terms (EJτ1; τ2K).
We require that any two values (v1, v2) ∈ VJτ1; τ2K are closed and well-typed. For succinctness,
we write VJτK to mean VJτ ; τK, and similarly for EJτK.
I Remark. The logical relations are heterogeneous, parameterized by two types, one for each
argument. This is intended to relate values of different types.
I Remark. The logical relations resemble those given by Biernacki and Polesiuk [8], as both
are heterogeneous. However, two important differences are worth pointing out. Firstly, our
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value relation for product types (VJτ1× τ2; τ3K and VJτ3; τ1× τ2K) is unusual. Secondly, their
value relation disallows relating functions with natural numbers, while ours does not. As we
explain shortly, both points are related to disjointness.

First let us consider VJτ1; τ2K. The first three cases are standard: Two natural numbers
are related iff they are the same numeral. Two functions are related iff they map related
arguments to related results. Two singleton records are related iff they have the same label
and their fields are related. These cases reflect Observation 2: the same type corresponds to
the same value.

In the next two cases one of the parameterized types is a product type. In those cases,
the relation distributes over the product constructor ×. This may look strange at first, since
the traditional way of relating pairs is by relating their components pairwise. That is, 〈v1, v2〉
and 〈v′1, v′2〉 are related iff (1) v1 and v′1 are related and (2) v2 and v′2 are related. According
to our definition, we also require that (3) v1 and v′2 are related and (4) v2 and v′1 are related.
The design of these two cases is influenced by the disjointness of intersection types. Below
are two rules dealing with intersection types:

A1 ∗ B A2 ∗ B
A1 & A2 ∗ B

D-andL
A ∗ B1 A ∗ B2

A ∗ B1 & B2
D-andR

Notice the structural similarity between these two rules and the two cases. Now it is clear that
the cases for products manifests disjointness of intersection types, reflecting Observation 1.
Together with the last case, we can show that disjointness and the value relation are connected
by the following lemma:

I Lemma 11 (Disjoint values are in a value relation). If A1 ∗A2 and v1 : |A1| and v2 : |A2|,
then (v1, v2) ∈ VJ|A1|; |A2|K.

Proof. By induction on the derivation of disjointness. J

Next we consider EJτ1; τ2K, which is standard. Informally it expresses that two closed
terms e1 and e2 are related iff they evaluate to two values v1 and v2 that are related.

Logical Equivalence. The logical relations can be lifted to open terms in the usual way.
First we give the semantic interpretation of typing contexts:

I Definition 12 (Interpretation of Typing Contexts). (γ1, γ2) ∈ GJ∆1; ∆2K is defined as follows:

(∅, ∅) ∈ GJ•; •K

(v1, v2) ∈ VJτ1; τ2K
(γ1, γ2) ∈ GJ∆1; ∆2K freshx

(γ1[x 7→ v1], γ2[x 7→ v2]) ∈ GJ∆1, x : τ1; ∆2, x : τ2K

Two open terms are related if every pair of related closing substitutions makes them related:

I Definition 13 (Logical equivalence). Let ∆1 ` e1 : τ1 and ∆2 ` e2 : τ2.

∆1; ∆2 ` e1 wlog e2 : τ1; τ2 , ∀γ1, γ2. (γ1, γ2) ∈ GJ∆1; ∆2K =⇒ (γ1 e1, γ2 e2) ∈ EJτ1; τ2K

For succinctness, we write ∆ ` e1 wlog e2 : τ to mean ∆; ∆ ` e1 wlog e2 : τ ; τ .
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4.3 Establishing Coherence
With all the machinery in place, we are now ready to prove Theorem 10. But we need several
lemmas to set the stage.

First we show compatibility lemmas, which state that logical equivalence is preserved
by every language construct. Most are standard and thus are omitted. We show only one
compatibility lemma that is specific to our relations:

I Lemma 14 (Coercion Compatibility). Suppose that c ` τ1 . τ2,
If ∆1; ∆2 ` e1 wlog e2 : τ1; τ0 then ∆1; ∆2 ` c e1 wlog e2 : τ2; τ0.
If ∆1; ∆2 ` e1 wlog e2 : τ0; τ1 then ∆1; ∆2 ` e1 wlog c e2 : τ0; τ2.

Proof. By induction on the typing derivation of the coercion c. J

The “Fundamental Property” states that any well-typed expression is related to itself
by the logical relation. In our elaboration setting, we rephrase it so that any two λc terms
elaborated from the same NeColus expression are related by the logical relation. To prove it,
we require Theorem 15.

I Theorem 15 (Inference Uniqueness). If Γ ` E ⇒ A1 and Γ ` E ⇒ A2, then A1 ≡ A2.

I Theorem 16 (Fundamental Property). We have that:
If Γ ` E ⇒ A e and Γ ` E ⇒ A e′, then |Γ| ` e wlog e′ : |A|.
If Γ ` E ⇐ A e and Γ ` E ⇐ A e′, then |Γ| ` e wlog e′ : |A|.

Proof. The proof follows by induction on the first derivation. The most interesting case is
rule T-sub where we need Theorem 15 to be able to apply the induction hypothesis. Then
we apply Lemma 14 to say that the coercion generated preserves the relation between terms.
For the other cases we use the appropriate compatibility lemmas. J

I Remark. It is interesting to ask whether the Fundamental Property holds in the target
language. That is, if ∆ ` e : τ then ∆ ` e wlog e : τ . Clearly this does not hold for every
well-typed λc term. However, as we have emphasized, we do not need to consider every λc

term. Our logical relation is carefully formulated so that the Fundamental Property holds in
the source language.

We show that logical equivalence is preserved by NeColus contexts:

I Lemma 17 (Congruence). If C : (Γ ⇔ A) 7→ (Γ′ ⇔′ A′)  D, Γ ` E1 ⇔ A  e1,
Γ ` E2 ⇔ A e2 and |Γ| ` e1 wlog e2 : |A|, then |Γ′| ` D{e1} wlog D{e2} : |A′|.

Proof. By induction on the typing derivation of the context C, and applying the compatibility
lemmas where appropriate. J

I Lemma 18 (Adequacy). If • ` e1 wlog e2 : Nat then e1 w e2.

Proof. Adequacy follows easily from the definition of the logical relation. J

Next up is the proof that logical relation is sound with respect to contextual equivalence:

I Theorem 19 (Soundness w.r.t. Contextual Equivalence). If Γ ` E1 ⇒ A  e1 and
Γ ` E2 ⇒ A e2 and |Γ| ` e1 wlog e2 : |A| then Γ ` E1 wctx E2 : A.

Proof. From Definition 9, we are given a context C : (Γ ⇒ A) 7→ (• ⇒ Nat)  D. By
Lemma 17 we have • ` D{e1} wlog D{e2} : Nat, thus D{e1} w D{e2} by Lemma 18. J
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Armed with Theorem 16 and Theorem 19, coherence follows directly.

I Theorem 10 (Coherence). If Γ ` E ⇒ A then Γ ` E wctx E : A.

Proof. Immediate from Theorem 16 and Theorem 19. J

4.4 Some Interesting Corollaries
To showcase the strength of the new proof method, we can derive some interesting corollaries.
For the most part, they are direct consequences of logical equivalence which carry over to
contextual equivalence.

Corollary 20 says that merging a term of some type with something else does not
affect its semantics. Corollary 21 and Corollary 22 express that merges are commutative
and associative, respectively. Corollary 23 states that coercions from the same types are
“coherent”.

I Corollary 20 (Merge is Neutral). If Γ ` E1 ⇒ A and Γ ` E1 , , E2 ⇒ A, then Γ ` E1 wctx

E1 , , E2 : A

I Corollary 21 (Merge is Commutative). If Γ ` E1 , , E2 ⇒ A and Γ ` E2 , , E1 ⇒ A, then
Γ ` E1 , , E2 wctx E2 , , E1 : A.

I Corollary 22 (Merge is Associative). If Γ ` (E1 , , E2) , , E3 ⇒ A and Γ ` E1 , , (E2 , , E3) ⇒
A, then Γ ` (E1 , , E2) , , E3 wctx E1 , , (E2 , , E3) : A.

I Corollary 23 (Coercions Preserve Semantics). If A <: B  c1 and A <: B  c2, then
∆ ` λx. c1 x wlog λx. c2 x : |A| → |B|.

5 Algorithmic Subtyping

This section presents an algorithm that implements the subtyping relation in Fig. 4. While
BCD subtyping is well-known, the presence of a transitivity axiom in the rules means that
the system is not algorithmic. This raises an obvious question: how to obtain an algorithm
for this subtyping relation? Laurent [37] has shown that simply dropping the transitivity
rule from the BCD system is not possible without losing expressivity. Hence, this avenue for
obtaining an algorithm is not available. Instead, we adapt Pierce’s decision procedure [47]
for a subtyping system (closely related to BCD) to obtain a sound and complete algorithm
for our BCD extension. Our algorithm extends Pierce’s decision procedure with subtyping of
singleton records and coercion generation. We prove in Coq that the algorithm is sound and
complete with respect to the declarative version. At the same time we find some errors and
missing lemmas in Pierce’s original manual proofs.

5.1 The Subtyping Algorithm
Figure 12 shows the algorithmic subtyping judgement L ` A ≺: B  c. This judgement
is the algorithmic counterpart of the declarative judgement A <: L → B  c, where the
symbol L stands for a queue of types and labels. Definition 24 converts a queue to a type:

I Definition 24. L → A is inductively defined as follows:

[]→ A = A (L,B)→ A = L → (B → A) (L, {l})→ A = L → {l : A}
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L ` A ≺: B  c (Algorithmic subtyping)

A-and
L ` A ≺: B1  c1 L ` A ≺: B2  c2

L ` A ≺: B1 & B2  JLK& ◦ 〈c1, c2〉

A-arr
L,B1 ` A ≺: B2  c
L ` A ≺: B1 → B2  c

A-rcd
L, {l} ` A ≺: B  c
L ` A ≺: {l : B} c

A-top

L ` A ≺: > JLK> ◦ top

A-arrNat
[] ` A ≺: A1  c1 L ` A2 ≺: Nat c2

A,L ` A1 → A2 ≺: Nat c1 → c2

A-rcdNat
L ` A ≺: Nat c

{l},L ` {l : A} ≺: Nat {l : c}

A-andN1
L ` A1 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π1

A-andN2
L ` A2 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π2

A-nat

[] ` Nat ≺: Nat id

Figure 12 Algorithmic subtyping of NeColus.

For instance, if L = A,B, {l}, then L → C abbreviates A→ B → {l : C}.
The basic idea of L ` A ≺: B  c is to first perform a structural analysis of B, which

descends into both sides of & ’s (rule A-and), into the right side of →’s (rule A-arr), and
into the fields of records (rule A-rcd) until it reaches one of the two base cases, Nat or >. If
the base case is >, then the subtyping holds trivially (rule A-top). If the base case is Nat,
the algorithm performs a structural analysis of A, in which L plays an important role. The
left sides of →’s are pushed onto L as they are encountered in B and popped off again later,
left to right, as →’s are encountered in A (rule A-arrNat). Similarly, the labels are pushed
onto L as they are encountered in B and popped off again later, left to right, as records are
encountered in A (rule A-rcdNat). The remaining rules are similar to their declarative
counterparts. Let us illustrate the algorithm with an example derivation (for space reasons
we use N and S to denote Nat and String respectively), which is essentially the one used by
the add field in Section 2. The readers can try to give a corresponding derivation using the
declarative subtyping and see how rule S-trans plays an essential role there.

D D′

{l},N & S,N & S ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N & S
A-and

{l} ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N & S→ N & S→ N & S
A-arr(twice)

{l : N→ N→ N}& {l : S→ S→ S} ≺: {l : N & S→ N & S→ N & S}
A-rcd

where the sub-derivation D is shown below (D′ is similar):

. . .

N & S ≺: N
. . .

N & S ` N→ N ≺: N
N & S,N & S ` N→ N→ N ≺: N

A-arrNat

{l},N & S,N & S ` {l : N→ N→ N} ≺: N
A-rcdNat

{l},N & S,N & S ` {l : N→ N→ N}& {l : S→ S→ S} ≺: N
A-andN1

Now consider the coercions. Algorithmic subtyping uses the same set of coercions as
declarative subtyping. However, because algorithmic subtyping has a different structure, the
rules generate slightly more complicated coercions. Two meta-functions J·K> and J·K& used
in rules A-top and A-and respectively, are meant to generate correct forms of coercions.
They are defined recursively on L and are shown in Fig. 13.
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J[]K> = top
J{l},LK> = {l : JLK>} ◦ top{l}
JA,LK> = (top→ JLK>) ◦ (top→ ◦ top)

J[]K& = id
J{l},LK& = {l : JLK&} ◦ dist{l}
JA,LK& = (id→ JLK&) ◦ dist→

Figure 13 Meta-functions of coercions.

5.2 Correctness of the Algorithm
To establish the correctness of the algorithm, we must show that the algorithm is both sound
and complete with respect to the declarative specification. While soundness follows quite
easily, completeness is much harder. The proof of completeness essentially follows that of
Pierce [47] in that we need to show the algorithmic subtyping is reflexive and transitive.

Soundness of the Algorithm. The proof of soundness is straightforward.

I Theorem 25 (Soundness). If L ` A ≺: B  c then A <: L → B  c.

Proof. By induction on the derivation of the algorithmic subtyping. J

Completeness of the Algorithm. Completeness, however, is much harder. The reason is
that, due to the use of L, reflexivity and transitivity are not entirely obvious. We need to
strengthen the induction hypothesis by introducing the notion of a set, U(A), of “reflexive
supertypes” of A, as defined below:

U(>) , {>} U(Nat) , {Nat} U({l : A}) , {{l : B} | B ∈ U(A)}

U(A & B) , U(A) ∪ U(B) ∪ {A & B} U(A→ B) , {A→ C | C ∈ U(B)}

We show two lemmas about U(A) that are crucial in the subsequent proofs.

I Lemma 26. A ∈ U(A)

Proof. By induction on the structure of A. J

I Lemma 27. If A ∈ U(B) and B ∈ U(C), then A ∈ U(C).

Proof. By induction on the structure of B. J

I Remark. Lemma 27 is not found in Pierce’s proofs [47], which is crucial in Lemma 28,
from which reflexivity (Lemma 29) follows immediately.

I Lemma 28. If L → B ∈ U(A) then there exists c such that L ` A ≺: B  c.

Proof. By induction on size(A) + size(B) + size(L). J

Now it immediately follows that the algorithmic subtyping is reflexive.

I Lemma 29 (Reflexivity). For every A there exists c such that [] ` A ≺: A c.

Proof. Immediate from Lemma 26 and Lemma 28. J

We omit the details of the proof of transitivity.

I Lemma 30 (Transitivity). If [] ` A1 ≺: A2  c1 and [] ` A2 ≺: A3  c2, then there exists
c such that [] ` A1 ≺: A3  c.
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With reflexivity and transitivity in position, we show the main theorem.

I Theorem 31 (Completeness). If A <: B  c then there exists c′ such that [] ` A ≺: B  c′.

Proof. By induction on the derivation of the declarative subtyping and applying Lemmas 29
and 30 where appropriate. J

I Remark. Pierce’s proof is wrong [47, pp. 20, Case F] in the case

B1 <: A1  c1 A2 <: B2  c2

A1 → A2 <: B1 → B2  c1 → c2
S-arr

where he concludes from the inductive hypotheses [] ` B1 ≺: A1 and [] ` A2 ≺: B2 that
[] ` A1 → A2 ≺: B1 → B2 (rules 6a and 3). However his rule 6a (our rule A-arrNat) only
works for primitive types, and is thus not applicable in this case. Instead we need a few
technical lemmas to support the argument.
I Remark. It is worth pointing out that the two coercions c and c′ in Theorem 31 are
contextually equivalent, which follows from Theorem 25 and Corollary 23.

6 Related Work

Coherence. In calculi that feature coercive subtyping, a semantics that interprets the
subtyping judgement by introducing explicit coercions is typically defined on typing deriv-
ations rather than on typing judgements. A natural question that arises for such systems
is whether the semantics is coherent, i.e., distinct typing derivations of the same typing
judgement possess the same meaning. Since Reynolds [55] proved the coherence of a calculus
with intersection types, based on the denotational semantics for intersection types, many
researchers have studied the problem of coherence in a variety of typed calculi. Below we
summarize two commonly-found approaches in the literature.

Breazu-Tannen et al. [10] proved the coherence of a coercion translation from Fun [13]
extended with recursive types to System F by showing that any two typing derivations of
the same judgement are normalizable to a unique normal derivation. Ghelli [20] presented
a translation of System F≤ into a calculus with explicit coercions and showed that any
derivations of the same judgement are translated to terms that are normalizable to a unique
normal form. Following the same approach, Schwinghammer [59] proved the coherence of
coercion translation from Moggi’s computational lambda calculus [40] with subtyping.

Central to the first approach is to find a normal form for a representation of the derivation
and show that normal forms are unique for a given typing judgement. However, this approach
cannot be directly applied to Curry-style calculi, i.e, where the lambda abstractions are not
type annotated. Also this line of reasoning cannot be used when the calculus has general
recursion. Biernacki and Polesiuk [8] considered the coherence problem of coercion semantics.
Their criterion for coherence of the translation is contextual equivalence in the target calculus.
They presented a construction of logical relations for establishing so constructed coherence
for coercion semantics, applicable in a variety of calculi, including delimited continuations
and control-effect subtyping.

As far as we know, our work is the first to use logical relations to show the coherence
for intersection types and the merge operator. The BCD subtyping in our setting poses a
non-trivial complication over Biernacki and Polesiuk’s simple structural subtyping. Indeed,
because any two coercions between given types are behaviorally equivalent in the target
language, their coherence reasoning can all take place in the target language. This is not
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true in our setting, where coercions can be distinguished by arbitrary target programs, but
not those that are elaborations of source programs. Hence, we have to restrict our reasoning
to the latter class, which is reflected in a more complicated notion of contextual equivalence
and our logical relation’s non-trivial treatment of pairs.

Intersection Types and the Merge Operator. Forsythe [54] has intersection types and
a merge-like operator. However to ensure coherence, various restrictions were added to
limit the use of merges. For example, in Forsythe merges cannot contain more than one
function. Castagna et al. [15] proposed a coherent calculus with a special merge operator
that works on functions only. More recently, Dunfield [23] shows significant expressiveness
of type systems with intersection types and a merge operator. However his calculus lacks
coherence. The limitation was addressed by Oliveira et al. [46], who introduced disjointness
to ensure coherence. The combination of intersection types, a merge operator and parametric
polymorphism, while achieving coherence was first studied in the Fi calculus [2]. Compared
to prior work, NeColus simplifies type systems with disjoint intersection types by removing
several restrictions. Furthermore, NeColus adopts a more powerful subtyping relation based
on BCD subtyping, which in turn requires the use of a more powerful logical relations based
method for proving coherence.

BCD Type System and Decidability. The BCD type system was first introduced by
Barendregt et al. [4]. It is derived from a filter lambda model in order to characterize exactly
the strongly normalizing terms. The BCD type system features a powerful subtyping relation,
which serves as a base for our subtyping relation. Bessai el at. [5] showed how to type classes
and mixins in a BCD-style record calculus with Bracha-Cook’s merge operator [9]. Their
merge can only operate on records, and they only study a type assignment system. The
decidability of BCD subtyping has been shown in several works [47, 35, 52, 62]. Laurent [36]
has formalized the relation in Coq in order to eliminate transitivity cuts from it, but his
formalization does not deliver an algorithm. Based on Statman’s work [62], Bessai et al. [6]
show a formally verified subtyping algorithm in Coq. Our Coq formalization follows a
different idea based on Pierce’s decision procedure [47], which is shown to be easily extensible
to coercions and records. In the course of our mechanization we identified several mistakes
in Pierce’s proofs, as well as some important missing lemmas.

Family Polymorphism. There has been much work on family polymorphism since Ernst’s
original proposal [25]. Family polymorphism provides an elegant solution to the Expression
Problem. Although a simple Scala solution does exist without requiring family polymorphism
(e.g., see Wang and Oliveira [65]), Scala does not support nested composition: programmers
need to manually compose all the classes from multiple extensions. Generally speaking,
systems that support family polymorphism usually require quite sophisticated mechanisms
such as dependent types.

There are two approaches to family polymorphism: the original object family approach
of Beta (e.g., virtual classes [38]) treats nested classes as attributes of objects of the family
classes. Path-dependent types are used to ensure type safety for virtual types and virtual
classes in the calculus vc [27]. As for conflicts, vc follows the mixin-style by allowing the
rightmost class to take precedence. This is in contrast to NeColus where conflicts are detected
statically and resolved explicitly. In the class family approach of Concord [34], Jx and
J& [42, 43], nested classes and types are attributes of the family classes directly. Jx supports
nested inheritance, a class family mechanism that allows nesting of arbitrary depth. J&
is a language that supports nested intersection, building on top of Jx. Similar to NeColus,
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intersection types play an important role in J&, which are used to compose packages/classes.
Unlike NeColus, J& does not have a merge-like operator. When conflicts arise, prefix types
can be exploited to resolve the ambiguity. J&s [50] is an extension of the Java language
that adds class sharing to J&. Saito et al. [57] identified a minimal, lightweight set of
language features to enable family polymorphism, Corradi et al. [19] present a language
design that integrates modular composition and nesting of Java-like classes. It features a
set of composition operators that allow to manipulate nested classes at any depth level.
More recently, a Java-like language called Familia [66] were proposed to combine subtyping
polymorphism, parametric polymorphism and family polymorphism. The object and class
family approaches have even been combined by the work on Tribe [16].

Compared with those systems, which usually focus on getting a relatively complex Java-
like language with family polymorphism, NeColus focuses on a minimal calculus that supports
nested composition. NeColus shows that a calculus with the merge operator and a variant of
BCD captures the essence of nested composition. Moreover NeColus enables new insights on
the subtyping relations of families. NeColus’s goal is not to support full family polymorphism
which, besides nested composition, also requires dealing with other features such as self
types [12, 56] and mutable state. Supporting these features is not the focus of this paper,
but we expect to investigate those features in the future.

7 Conclusions and Future Work

We have proposed NeColus, a type-safe and coherent calculus with disjoint intersection types,
and support for nested composition/subtyping. It improves upon earlier work with a more
flexible notion of disjoint intersection types, which leads to a clean and elegant formulation
of the type system. Due to the added flexibility we have had to employ a more powerful
proof method based on logical relations to rigorously prove coherence. We also show how
NeColus supports essential features of family polymorphism, such as nested composition. We
believe NeColus provides insights into family polymorphism, and has potential for practical
applications for extensible software designs.

A natural direction for future work is to enrich NeColus with parametric polymorphism.
There is abundant literature on logical relations for parametric polymorphism [53]. The
main challenge in the definition of the logical relation is the clause that relates type variables
with arbitrary types. Careful measures are to be taken to avoid potential circularity due to
impredicativity.7 With the combination of parametric polymorphism and nested composition,
an interesting application that we intend to investigate is native support for a highly modular
form of Object Algebras [45, 7] and Visitors (or the finally tagless approach [14]).

Another direction for future work is to add mutable references, which would affect two
aspects of our metatheory: type safety and coherence. For type safety, we expect that lessons
learned from previous work on family polymorphism and mutability on OO apply to our
work. For example, it is well-known that subtyping in the presence of mutable state often
needs restrictions. Given such suitable restrictions we expect that type-safety in the presence
of mutability still holds. For coherence, it would be a major technical challenge to adjust our
coherence proof and its Coq mechanization: logical relations that account for mutable state
(e.g., see Ahmed’s thesis [1]) introduce significant complexity.

7 Our prototype implementation already supports polymorphism, but we are still in the process of
extending our Coq development with polymorphism.
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A Some Definitions

I Definition 32 (Type translation).

|Nat| = Nat
|>| = 〈〉

|A→ B| = |A| → |B|
|A&B| = |A| × |B|
|{l : A}| = {l : |A|}

I Example 33 (Derivation of other direction of distribution).

A1 <: A1 A2 & A3 <: A2

A1 → A2 & A3 <: A1 → A2
S-arr

A1 <: A1 A2 & A3 <: A3

A1 → A2 & A3 → A1 → A3
S-arr

A1 → A2 & A3 <: (A1 → A2) & (A1 → A3)
S-and

I Example 34 (Derivation of contravariant distribution).

(A1 → A2) & (A3 → A2) <: A1 → A2
S-andl

A1 & A3 <: A1 A2 <: A2

A1 → A2 <: A1 & A3 → A2
S-arr

(A1 → A2) & (A3 → A2) <: A1 & A3 → A2
S-trans

B Full Type System of NeColus

A <: B  c (Declarative subtyping)

S-refl

A <: A id

S-trans
A2 <: A3  c1 A1 <: A2  c2

A1 <: A3  c1 ◦ c2

S-top

A <: > top

S-rcd
A <: B  c

{l : A} <: {l : B} {l : c}

S-arr
B1 <: A1  c1 A2 <: B2  c2

A1 → A2 <: B1 → B2  c1 → c2

S-andl

A1 & A2 <: A1  π1

S-andr

A1 & A2 <: A2  π2

S-and
A1 <: A2  c1 A1 <: A3  c2

A1 <: A2 & A3  〈c1, c2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3  dist→

S-distRcd

{l : A}& {l : B} <: {l : A & B} dist{l}

S-topArr

> <: > → > top→

S-topRcd

> <: {l : >} top{l}
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Γ ` E ⇒ A e (Inference)

T-top

Γ ` > ⇒ > 〈〉

T-lit

Γ ` i ⇒ Nat i

T-var
x : A ∈ Γ

Γ ` x ⇒ A x

T-app
Γ ` E1 ⇒ A1 → A2  e1

Γ ` E2 ⇐ A1  e2

Γ ` E1 E2 ⇒ A2  e1 e2

T-anno
Γ ` E ⇐ A e

Γ ` E : A⇒ A e

T-merge
Γ ` E1 ⇒ A1  e1

Γ ` E2 ⇒ A2  e2 A1 ∗A2

Γ ` E1 , , E2 ⇒ A1 & A2  〈e1, e2〉

T-rcd
Γ ` E ⇒ A e

Γ ` {l = E} ⇒ {l : A} {l = e}

T-proj
Γ ` E ⇒ {l : A} e
Γ ` E.l ⇒ A e.l

Γ ` E ⇐ A e (Checking)

T-abs
Γ, x : A ` E ⇐ B  e

Γ ` λx. E ⇐ A→ B  λx. e

T-sub
Γ ` E ⇒ B  e B <: A c

Γ ` E ⇐ A c e

A ∗ B (Disjointness)

D-topL

> ∗A

D-topR

A ∗ >

D-arr
A2 ∗ B2

A1 → A2 ∗ B1 → B2

D-andL
A1 ∗ B A2 ∗ B

A1 & A2 ∗ B

D-andR
A ∗ B1 A ∗ B2

A ∗ B1 & B2

D-rcdEq
A ∗ B

{l : A} ∗ {l : B}

D-rcdNeq
l1 6= l2

{l1 : A} ∗ {l2 : B}

D-axNatArr

Nat ∗A1 → A2

D-axArrNat

A1 → A2 ∗ Nat

D-axNatRcd

Nat ∗ {l : A}

D-axRcdNat

{l : A} ∗ Nat

D-axArrRcd

A1 → A2 ∗ {l : A}

D-axRcdArr

{l : A} ∗A1 → A2

C : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D (Context typing I)

CTyp-empty1

[·] : (Γ ⇒ A) 7→ (Γ ⇒ A) [·]

CTyp-appL1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 → A2) D

Γ′ ` E2 ⇐ A1  e
C E2 : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) D e

CTyp-appR1
Γ′ ` E1 ⇒ A1 → A2  e

C : (Γ ⇒ A) 7→ (Γ′ ⇐ A1) D
E1 C : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) eD

CTyp-mergeL1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1) D
Γ′ ` E2 ⇒ A2  e A1 ∗A2

C , , E2 : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 & A2) 〈D, e〉
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CTyp-mergeR1
Γ′ ` E1 ⇒ A1  e

C : (Γ ⇒ A) 7→ (Γ′ ⇒ A2) D
A1 ∗A2

E1 , , C : (Γ ⇒ A) 7→ (Γ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D

{l = C} : (Γ ⇒ A) 7→ (Γ′ ⇒ {l : B}) {l = D}

CTyp-proj1
C : (Γ ⇒ A) 7→ (Γ′ ⇒ {l : B}) D
C.l : (Γ ⇒ A) 7→ (Γ′ ⇒ B) D.l

CTyp-anno1
C : (Γ ⇒ B) 7→ (Γ′ ⇐ A) D
C : A : (Γ ⇒ B) 7→ (Γ′ ⇒ A) D

C : (Γ ⇐ A) 7→ (Γ′ ⇐ B) D (Context typing II)

CTyp-empty2

[·] : (Γ ⇐ A) 7→ (Γ ⇐ A) [·]

CTyp-abs2
C : (Γ ⇐ A) 7→ (Γ′, x : A1 ⇐ A2) D

x /∈ Γ′

λx. C : (Γ ⇐ A) 7→ (Γ′ ⇐ A1 → A2) λx.D

C : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D (Context typing III)

CTyp-appL2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 → A2) D

Γ′ ` E2 ⇐ A1  e
C E2 : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) D e

CTyp-appR2
Γ′ ` E1 ⇒ A1 → A2  e

C : (Γ ⇐ A) 7→ (Γ′ ⇐ A1) D
E1 C : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) eD

CTyp-mergeL2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1) D
Γ′ ` E2 ⇒ A2  e A1 ∗A2

C , , E2 : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 & A2) 〈D, e〉

CTyp-mergeR2
Γ′ ` E1 ⇒ A1  e

C : (Γ ⇐ A) 7→ (Γ′ ⇒ A2) D
A1 ∗A2

E1 , , C : (Γ ⇐ A) 7→ (Γ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D

{l = C} : (Γ ⇐ A) 7→ (Γ′ ⇒ {l : B}) {l = D}

CTyp-proj2
C : (Γ ⇐ A) 7→ (Γ′ ⇒ {l : B}) D
C.l : (Γ ⇐ A) 7→ (Γ′ ⇒ B) D.l

CTyp-anno2
C : (Γ ⇐ B) 7→ (Γ′ ⇐ A) D
C : A : (Γ ⇐ B) 7→ (Γ′ ⇒ A) D
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C : (Γ ⇒ A) 7→ (Γ′ ⇐ B) D (Context typing IV)

CTyp-abs1
C : (Γ ⇒ A) 7→ (Γ′, x : A1 ⇐ A2) D

x /∈ Γ′

λx. C : (Γ ⇒ A) 7→ (Γ′ ⇐ A1 → A2) λx.D

L ` A ≺: B  c (Algorithmic subtyping)

A-and
L ` A ≺: B1  c1 L ` A ≺: B2  c2

L ` A ≺: B1 & B2  JLK& ◦ 〈c1, c2〉

A-arr
L,B1 ` A ≺: B2  c
L ` A ≺: B1 → B2  c

A-rcd
L, {l} ` A ≺: B  c
L ` A ≺: {l : B} c

A-top

L ` A ≺: > JLK> ◦ top

A-arrNat
[] ` A ≺: A1  c1 L ` A2 ≺: Nat c2

A,L ` A1 → A2 ≺: Nat c1 → c2

A-rcdNat
L ` A ≺: Nat c

{l},L ` {l : A} ≺: Nat {l : c}

A-nat

[] ` Nat ≺: Nat id

A-andN1
L ` A1 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π1

A-andN2
L ` A2 ≺: Nat c

L ` A1 & A2 ≺: Nat c ◦ π2

C Full Type System of λc

∆ ` e : τ (Target typing)

typ-unit

∆ ` 〈〉 : 〈〉

typ-lit

∆ ` i : Nat

typ-var
x : τ ∈ ∆

∆ ` x : τ

typ-abs
∆, x : τ1 ` e : τ2

∆ ` λx. e : τ1 → τ2

typ-app
∆ ` e1 : τ1 → τ2 ∆ ` e2 : τ1

∆ ` e1 e2 : τ2

typ-pair
∆ ` e1 : τ1 ∆ ` e2 : τ2

∆ ` 〈e1, e2〉 : τ1 × τ2

typ-capp
∆ ` e : τ c ` τ . τ ′

∆ ` c e : τ ′

typ-rcd
∆ ` e : τ

∆ ` {l = e} : {l : τ}

typ-proj
∆ ` e : {l : τ}

∆ ` e.l : τ

c ` τ1 . τ2 (Coercion typing)

cotyp-refl

id ` τ . τ

cotyp-trans
c1 ` τ2 . τ3 c2 ` τ1 . τ2

c1 ◦ c2 ` τ1 . τ3

cotyp-top

top ` τ . 〈〉

cotyp-topArr

top→ ` 〈〉 . 〈〉 → 〈〉

cotyp-topRcd

top{l} ` 〈〉 . {l : 〈〉}

cotyp-arr
c1 ` τ ′1 . τ1 c2 ` τ2 . τ

′
2

c1 → c2 ` τ1 → τ2 . τ
′
1 → τ ′2

cotyp-pair
c1 ` τ1 . τ2 c2 ` τ1 . τ3

〈c1, c2〉 ` τ1 . τ2 × τ3
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cotyp-projl

π1 ` τ1 × τ2 . τ1

cotyp-projr

π2 ` τ1 × τ2 . τ2

cotyp-rcd
c ` τ1 . τ2

{l : c} ` {l : τ1} . {l : τ2}

cotyp-distRcd

dist{l} ` {l : τ1} × {l : τ2} . {l : τ1 × τ2}

cotyp-distArr

dist→ ` (τ1 → τ2)× (τ1 → τ3) . τ1 → τ2 × τ3

e −→ e′ (Small-step reduction)

step-id

id v −→ v

step-trans

(c1 ◦ c2) v −→ c1 (c2 v)

step-top

top v −→ 〈〉

step-topArr

(top→ 〈〉) 〈〉 −→ 〈〉

step-topRcd

top{l} 〈〉 −→ {l = 〈〉}

step-arr

((c1 → c2) v1) v2 −→ c2 (v1 (c1 v2))

step-pair

〈c1, c2〉 v −→ 〈c1 v, c2 v〉

step-distArr

(dist→ 〈v1, v2〉) v3 −→ 〈v1 v3, v2 v3〉

step-distRcd

dist{l} 〈{l = v1}, {l = v2}〉 −→ {l = 〈v1, v2〉}

step-projl

π1 〈v1, v2〉 −→ v1

step-projr

π2 〈v1, v2〉 −→ v2

step-crcd

{l : c} {l = v} −→ {l = c v}

step-beta

(λx. e) v −→ e[x 7→ v]

step-projRcd

{l = v}.l −→ v

step-app1
e1 −→ e′1

e1 e2 −→ e′1 e2

step-app2
e2 −→ e′2

v1 e2 −→ v1 e′2

step-pair1
e1 −→ e′1

〈e1, e2〉 −→ 〈e′1, e2〉

step-pair2
e2 −→ e′2

〈v1, e2〉 −→ 〈v1, e′2〉

step-capp
e −→ e′

c e −→ c e′

step-rcd1
e −→ e′

{l = e} −→ {l = e′}

step-rcd2
e −→ e′

e.l −→ e′.l
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