6 research outputs found

    Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space

    Get PDF
    In this article we are interested in the boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space. We extend the so called "backstepping method" by introducing appropriate time-dependent integral transformations in order to map our initial system to a new one which has desired stability properties. The kernels of the integral transformations involved are solutions to non standard multi-dimensional hyperbolic PDEs, where the time dependence introduces several new difficulties in the treatment of their well-posedness. This work generalizes previous results of the literature, where only time-independent systems were considered

    In-Domain Control of Partial Differential Equations

    Get PDF
    RÉSUMÉ Cette thĂšse porte sur la commande des systĂšmes Ă  dimension infinie dĂ©crit par les Ă©qua-tions aux dĂ©rivĂ©es partielles (EDP). La commande d’EDP peut ĂȘtre divisĂ©e approximative-ment en deux catĂ©gories en fonction de l’emplacement des actionneurs: la commande Ă  la frontiĂšre, oĂč les actionnements sont appliquĂ©s Ă  la frontiĂšre des systĂšmes d’EDP, et la com-mande dans le domaine, oĂč les actionneurs pĂ©nĂštrent Ă  l’intĂ©rieur du domaine des systĂšmes d’EDP. Dans cette thĂšse, nous Ă©tudierons la commande dans le domaine de l’équation d’Euler-Bernoulli, de l’équation de Fisher, l’équation de Chafee-Infante et de l’équation de Burgers. L’équation d’Euler-Bernoulli est un modĂšle classique d’EDP linĂ©aire dĂ©crivant la flexion pure des structures flexibles. L’équation de Fisher et l’équation de Chafee-Infante sont des EDP paraboliques semi-linĂ©aires, qui peuvent ĂȘtre utilisĂ©es pour modĂ©liser certains phĂ©nomĂšnes physiques, chimiques ou biologiques. L’équation de Burgers peut ĂȘtre considĂ©rĂ©e comme une simplification d’équations de Navier-Stokes en mĂ©canique des fluides, en dynamique des gaz, en fluiditĂ© de la circulation, etc. Ces systĂšmes jouent des rĂŽles trĂšs importants en mathĂ©ma-tiques, en physique et dans d’autres domaines. Dans cette thĂšse, de nouvelles mĂ©thodes qui se basent sur la dynamique des zĂ©ros et le compensateur dynamique ont Ă©tĂ© dĂ©veloppĂ©es pour la conception et l’implĂ©mentation de lois de commande pour la commande des EDP avec des actionnements dans le domaine. Tout d’abord, nous Ă©tudions le contrĂŽle de l’équation d’Euler-Bernoulli avec plusieurs actionneurs internes. L’inverse de la dynamique des zĂ©ros a Ă©tĂ© utilisĂ© dans la conception de la loi de commande, ce qui permet de suivre la trajectoire prescrit souhaitĂ©e. Afin de concevoir la trajectoire souhaitĂ©e, la fonction de Green est utilisĂ©e pour dĂ©terminer la commande sta-tique. La planification de mouvement est gĂ©nĂ©rĂ©e par des contrĂŽleurs dynamiques basĂ©s sur la mĂ©thode de platitude di˙érentielle. Pour les Ă©quations paraboliques non linĂ©aires, la dy-namique des zĂ©ros est rĂ©gie par une EDP non linĂ©aire. Par consĂ©quent, nous avons recours Ă  la mĂ©thode de dĂ©composition d’Adomian (ADM) pour gĂ©nĂ©rer la commande dynamique afin de suivre les rĂ©fĂ©rences dĂ©sirĂ©es. Dans le cas de l’équation de Burgers, un compensateur dynamique a Ă©tĂ© utilisĂ©. Pour obtenir la stabilitĂ© globale de l’équation de Burgers contrĂŽlĂ©e, une rĂ©troaction non linĂ©aire a Ă©tĂ© appliquĂ©e Ă  la frontiĂšre. La mĂ©thode d’ADM et la platitude ont Ă©tĂ© utilisĂ©es dans l’implĂ©mentation du compensateur dynamique.----------ABSTRACT This thesis addresses in-domain control of partial di˙erential equation (PDE) systems. PDE control can in general be classified into two categories according to the location of the ac-tuators: boundary control, where the actuators are assigned to the boundary of the PDE systems, and in-domain control, where the actuation penetrates inside the domain of the PDE systems. This thesis investigates the in-domain control of some well-known PDEs, including the Euler-Bernoulli equation, the Fisher’s equation, the Chafee-Infante equation, and Burgers’ equation. Euler-Bernoulli equation is a classical linear PDE used to describe the pure bending of flexible structures. Fisher’s equation and the Chafee-Infante equation are semi-linear parabolic PDEs that can be used to model physical, chemical, and biolog-ical phenomena. Burgers’ equation can be viewed as simplified Navier-Stokes equations in lower dimensions in applied mathematics, and it has been widely adopted in fluid mechan-ics, gas dynamics, traĂżc flow modeling, etc. These PDE systems play important roles in mathematics, physics, and other fields. In this work, in-domain control of linear and semi-linear parabolic equations are treated based on dynamic compensators. First, we consider the in-domain control of an Euler-Bernoulli equation with multiple internal actuators. The method of zero dynamics inverse is adopted to derive the in-domain control to allow an asymptotic tracking of the prescribed desired outputs. A linear proportional boundary feedback control is employed to stabilize the Euler-Bernoulli equation around its zero dynamics. To design the desired trajectory, the Green’s function is employed to determine the static control, and then motion planning is generated by dynamic control based on di˙erential flatness. For the semi-linear parabolic equations, zero dynamics are governed by nonlinear PDEs. Therefore, the implementation of the in-domain control of linear PDEs cannot be directly applied. We resort then to the Adomian decomposition method (ADM) to implement the dynamic control in order to track the desired set-points. Finally, the in-domain control of a Burgers’ equation is addressed based on dynamic compensator. A nonlinear boundary feedback control is used to achieve the global stability of the controlled Burgers’ equation, and the ADM as well as the flatness are used in the implementation of the proposed in-domain control scheme
    corecore