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RÉSUMÉ

Cette thèse porte sur la commande des systèmes à dimension infinie décrit par les équa-
tions aux dérivées partielles (EDP). La commande d’EDP peut être divisée approximative-
ment en deux catégories en fonction de l’emplacement des actionneurs: la commande à la
frontière, où les actionnements sont appliqués à la frontière des systèmes d’EDP, et la com-
mande dans le domaine, où les actionneurs pénètrent à l’intérieur du domaine des systèmes
d’EDP. Dans cette thèse, nous étudierons la commande dans le domaine de l’équation d’Euler-
Bernoulli, de l’équation de Fisher, l’équation de Chafee-Infante et de l’équation de Burgers.
L’équation d’Euler-Bernoulli est un modèle classique d’EDP linéaire décrivant la flexion pure
des structures flexibles. L’équation de Fisher et l’équation de Chafee-Infante sont des EDP
paraboliques semi-linéaires, qui peuvent être utilisées pour modéliser certains phénomènes
physiques, chimiques ou biologiques. L’équation de Burgers peut être considérée comme une
simplification d’équations de Navier-Stokes en mécanique des fluides, en dynamique des gaz,
en fluidité de la circulation, etc. Ces systèmes jouent des rôles très importants en mathéma-
tiques, en physique et dans d’autres domaines.

Dans cette thèse, de nouvelles méthodes qui se basent sur la dynamique des zéros et le
compensateur dynamique ont été développées pour la conception et l’implémentation de lois
de commande pour la commande des EDP avec des actionnements dans le domaine. Tout
d’abord, nous étudions le contrôle de l’équation d’Euler-Bernoulli avec plusieurs actionneurs
internes. L’inverse de la dynamique des zéros a été utilisé dans la conception de la loi de
commande, ce qui permet de suivre la trajectoire prescrit souhaitée. Afin de concevoir la
trajectoire souhaitée, la fonction de Green est utilisée pour déterminer la commande sta-
tique. La planification de mouvement est générée par des contrôleurs dynamiques basés sur
la méthode de platitude différentielle. Pour les équations paraboliques non linéaires, la dy-
namique des zéros est régie par une EDP non linéaire. Par conséquent, nous avons recours
à la méthode de décomposition d’Adomian (ADM) pour générer la commande dynamique
afin de suivre les références désirées. Dans le cas de l’équation de Burgers, un compensateur
dynamique a été utilisé. Pour obtenir la stabilité globale de l’équation de Burgers contrôlée,
une rétroaction non linéaire a été appliquée à la frontière. La méthode d’ADM et la platitude
ont été utilisées dans l’implémentation du compensateur dynamique.
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ABSTRACT

This thesis addresses in-domain control of partial differential equation (PDE) systems. PDE
control can in general be classified into two categories according to the location of the ac-
tuators: boundary control, where the actuators are assigned to the boundary of the PDE
systems, and in-domain control, where the actuation penetrates inside the domain of the
PDE systems. This thesis investigates the in-domain control of some well-known PDEs,
including the Euler-Bernoulli equation, the Fisher’s equation, the Chafee-Infante equation,
and Burgers’ equation. Euler-Bernoulli equation is a classical linear PDE used to describe
the pure bending of flexible structures. Fisher’s equation and the Chafee-Infante equation
are semi-linear parabolic PDEs that can be used to model physical, chemical, and biolog-
ical phenomena. Burgers’ equation can be viewed as simplified Navier-Stokes equations in
lower dimensions in applied mathematics, and it has been widely adopted in fluid mechan-
ics, gas dynamics, traffic flow modeling, etc. These PDE systems play important roles in
mathematics, physics, and other fields.

In this work, in-domain control of linear and semi-linear parabolic equations are treated
based on dynamic compensators. First, we consider the in-domain control of an Euler-
Bernoulli equation with multiple internal actuators. The method of zero dynamics inverse
is adopted to derive the in-domain control to allow an asymptotic tracking of the prescribed
desired outputs. A linear proportional boundary feedback control is employed to stabilize
the Euler-Bernoulli equation around its zero dynamics. To design the desired trajectory, the
Green’s function is employed to determine the static control, and then motion planning is
generated by dynamic control based on differential flatness. For the semi-linear parabolic
equations, zero dynamics are governed by nonlinear PDEs. Therefore, the implementation
of the in-domain control of linear PDEs cannot be directly applied. We resort then to the
Adomian decomposition method (ADM) to implement the dynamic control in order to track
the desired set-points. Finally, the in-domain control of a Burgers’ equation is addressed
based on dynamic compensator. A nonlinear boundary feedback control is used to achieve
the global stability of the controlled Burgers’ equation, and the ADM as well as the flatness
are used in the implementation of the proposed in-domain control scheme.
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CHAPTER 1 INTRODUCTION

1.1 General Context of PDE Control

Control theory is an indispensable branch of engineering and mathematics that addresses the
behaviours of dynamical systems. It has been applied to huge number of real systems, such as
electrical mechanical systems, communications and computing systems, aerospace systems,
medical and biological systems, social and economic systems, etc. Feedback control is one of
the most essential concepts, which plays an important role in assuring the system stability
and achieving the desired performance. The basis scheme of feedback control is illustrated in
Fig.1.1. The measurement of the output of the system is captured by the sensors and then,
is fed to the controller. In order to compensate for the regulation error between the desired
performance and the actual outputs, the resulting feedback controllers can adjust control
inputs according to the control objective.

Figure 1.1 Block diagram of feedback control

Partial differential equation (PDE) is one of mainstream fields of mathematics. PDEs can
be utilized to describe different physical, chemical and biological phenomenons. This work
considered some PDEs that have been used in modeling of a wide variety of scientific and
engineering systems. One of the typical application is the deformable mirrors in adaptive
optic system in astronomical telescopes, where such devises are used to eliminate the dis-
tortion of light due to earth atmosphere turbulence [25]. A simplified model of deformable
micro-mirrors in one dimensional space is a micro-beam governed as Euler-Bernoulli equation
(see Fig.1.2). Another well-studied class of PDEs is the parabolic PDE. One of the typical
paraboic PDE is Fisher’s equation that can be used to predict the evolution of the popula-
tion of advantageous genes through a geographic region [57]. Due to the impact of human
activities, climate prediction becomes more and more challenging. Chaffee-Infante equation
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is other typical parabolic PDE that can be used to reconstruct the model of climate dynamics
in order to enhance the prediction accuracy [96]. Burgers’ equation considered in this work
is widely addressed in the literature. Burgers’ equation is indeed a simplified Navier-Stokes
equation in low dimensional spaces, which is used in the analysis of fluid turbulence. It
combines the effects of the nonlinear advection and the diffusion, and can be applied to other
fluid-flow inspired applications, such as traffic flow [26].

Figure 1.2 Deformable micro-beam [14]

Based on the dimension of the spaces on which the control systems are defined, control
systems can be classified into two categories: finite-dimensional systems, given by ordi-
nary differential equations, and infinite-dimensional systems, governed by abstract differ-
ential equations. Control theory for finite-dimensional systems has been considered as a
classical framework, that has successfully been applied to deal with many control prob-
lems [54, 76]. A variety of methods have been developed for finite-dimensional systems,
such as root locus design, frequency response methods, optimal control, backstepping con-
trol, feedback linearization, sliding mode control, Lyapunov method, etc. Control theory for
finite-dimensional systems plays a crucial role in a wide range of applications, from aerospace,
computer networks, and mechanical systems to economical and social systems. However,
with the evolution of complexity inherent in the industrial and scientific dynamic models,
classical finite-dimensional control cannot meet the growing demands of applications in bi-
ology, climate modelling, ecosystems, neural networks, telecommunication networks, etc. To
bridge the gap between practical applications and control theory, infinite-dimensional sys-
tems control has been developed to solve the more complicated control problems, including
time-delay systems control and partial differential equation (PDE) control [51]. There has
been considerable interest recently in developing new control techniques to solve the control
of infinite dimensional systems, also called distributed parameter systems (DPS), described
by PDEs [88]. Note that the solutions to PDE systems evolve in an infinite-dimensional
Hilbert space, the so-called Sobolev space [2]. Due to the nature of infinite-dimension space,
classical finite-dimensional control theory cannot be directly extended to PDE control.
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From the perspective of actuator locations, PDE control generally consists of boundary
control and in-domain control. Many studies have focused on boundary control design of
PDEs [66, 82, 110]. Boundary control plays an important role in stabilizing as well as track-
ing desired signals and rejection of disturbances. In the control of PDEs, it is still possible to
leverage the techniques developed for finite-dimensional systems by discretizing the original
infinite-dimensional system. With this approach, called early-lumping, the feedback con-
troller design is based on a finite-dimensional approximation of the original PDE system. A
major concern of early-lumping is that it may lead to the well-known spillover phenomenon
due to the residual modes [17]. For this reason, a great effort on PDE control is devoted to
the development of control system design based on the original infinite-dimensional model.
This approach is called late-lumping. One of the well-known methods for PDE control is the
semigroup theory, which is a classical mathematical theory and has been exploited for PDE
control systems [51, 131]. The most promising advantage of the semigroup method is that
it converts PDE control systems to an analogous form of finite-dimensional control systems,
for which the solutions can be expressed as an extension of the exponential matrices of the
finite-dimensional linear systems. This conversion allows for PDE systems to be transformed
into abstract operator ordinary differential equations (ODEs) that in turn make it possible to
leverage techniques for finite-dimensional control design to help solve PDE control problems,
such as pole-assignment design and optimal control [52]. The semigroup method has demon-
strated its effectiveness and its capacity in PDE control, especially in the well-posedness and
stability analysis of PDE control systems [23,131].

The Lyapunov direct method is a very useful tool in the stability analysis of linear and
nonlinear systems [48,49]. In general, Lyapunov functions can also be used as energy functions
for PDE systems. Another concept, named differential flatness, from the geometrical property
of finite-dimensional control systems, has also been successful adopted to some specific linear
PDE systems [100], whose variables and inputs can be represented in terms of flat outputs
and their time derivatives, such as heat equation, wave equation, open channel flow, Euler-
Bernoulli equation, etc.

On the other hand, studies on in-domain control of PDE systems are scattered in the lit-
erature. For an in-domain control problem, the actuation penetrates inside the domain of
the PDE system or is distributed over the domain. In-domain control can be utilized to
design PDE systems with prescribed performance and to achieve the steady-state responses
to desired interior inputs. The method considered in this thesis is mainly based on the
zero-dynamics inverse design that is developed in a series of articles from Byrns and his
collaborators [28, 31, 33–35, 39]. A major contribution of this research lies in the design and
implementation of dynamic compensator for in-domain control by combining zero dynamics
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with flatness and introducing a semi-analytical method, called the Adomian decomposition
method, for nonlinear PDEs. A possible application of the considered problems is network
congestion control, where the in-domain control can be designed to modify buffer queues or
switches in order to avoid the overflowing of resources. A brief literature review on some
methods for PDE systems analysis and control related to the present work is given below.

1.2 Boundary Control

Boundary controller synthesis, combined with the need to feasibly implement control systems
in real applications, has motivated extensive research efforts on PDE control systems that
comprise linear PDE system and nonlinear PDE systems [20, 61, 83, 130]. Boundary control
requires actuators and sensors located on the boundary, which is easily implemented in
practice [90]. Indeed, the sensors can convert physical signals, such as temperature, force,
pressure, position, etc., into electrical signals, such as voltage or current, that are much more
convenient to manipulate with computer hardware and software. Some control methodologies
that have been successfully employed in PDE boundary control are described below.

1.2.1 Boundary feedback control

Feedback control is the fundamental basis in control theory, and many advances have been
made in both theoretical and practical areas [60, 123, 126, 128]. Feedback control can be
employed to stabilize infinite-dimensional systems to compensate for unwanted disturbances.
It also plays a critical role for other control problems, such as output regulation, tracking
control, etc.

Feedback control is particularly important for distributed parameter systems. There are at
least two basic approaches to the use of feedback control for the stabilization of DPS. One way
is to apply early-lumped ordinary differential equations (ODE) to approximate the original
PDEs, simplifying the control procedure and facilitating the analysis of the DPS [18,19,45].
However, to avoid the appearance of spill-over and performance degradation, the approach of
early-lumping could result in high-dimensional feedback control structures and complicated
computational efforts. To compensate for model imperfection and perturbations, feedback
control laws are applied directly to DPS to locally stabilize DPS [21, 36]. Meanwhile, it is
difficulty or almost impossible to achieve a global stability by only using linear feedback
control. Consequently, nonlinear feedback control is developed for DPS to establish global
stability and improve the regulation performance [9, 78].
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1.2.2 Backstepping control

Backstepping control has been employed extensively in nonlinear finite-dimensional systems.
It has proven its ability to deal with nonlinear strict-feedback system under a lower tri-
angular structure [73]. However, the classical backstepping approach cannot be applied
straightforwardly to infinite-dimensional systems, because it is almost impossible to refor-
mulate the original infinite-dimensional systems in the lower triangular form using linear
finite-dimensional transformations. To extend the classical backstepping method to infinite-
dimensional systems, one would have to resort to infinite dimensional transformations instead
of linear finite-dimensional transformations, which can reformulate the original PDE systems
into asymptotically stable systems. There are several transformation operators that can
transform original PDE control systems into asymptotically stable target systems, including
the invertible Volterra integral transformation and the Fredholm-type transformation [10,82].
The process of backstepping control can eliminate the unstable term of the original PDE sys-
tems and brings all the undesired terms into the boundary, thereby using boundary control
schemes to stabilize the original PDE systems, which facilitates the control design of PDE
systems [83]. Backstepping control was successfully applied to a variety of PDE systems, such
as heat equations [20,91], wave equations [79,125], and Burgers’ equations [92]. In addition,
backstepping control involves the computation of the integration of the state variable with
respect to the spatial domain, and thus the implementation of backstepping-based controllers
requires access to the total state variables of the PDE systems, which is almost impossible
for PDEs systems because of the infinite dimensional nature. Consequently, observers are
required for backstepping control to make the resulting schemes implementable [81,124].

1.2.3 Differential flatness

The technique of differential flatness has been extensively exploited for finite-dimensional
systems, such as DC motor dynamics [115], underactuated crane systems [144], nonlinear
chemical reaction [117], etc. Differential flatness states that the state variables and the control
inputs of a system can be expressed in terms of the flat outputs and their derivatives, which
can greatly facilitate control design. Meanwhile, differential flatness can also be adapted to
DPS [99,100,102,121]. Due to the infinite-dimensional nature of DPS, its variables and inputs
can be parametrized by infinite power series, whose coefficients depend on the time-derivatives
of flat outputs. Thus, it is inevitable to truncate differential flatness-based controllers using
the approximated partial sums of the power series in practical implementations [87]. In
addition, the choice of flat outputs is crucial for flatness-based controllers, as they should
allow for the convergence and regularity of the infinite power series. The Gevrey function
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is an ideal candidate for flat outputs, as can be differentiated infinitely times, decays very
fast and smoothly connects the set-points [121]. Differential flatness-based control design
for PDEs has been developed to track prescribed trajectories and stabilize the trajectories
of PDEs around the desired reference profiles via motion planning [95, 99, 100, 102, 120].
Controllability of PDEs is treated in [97, 136], where differential flatness is used to generate
feasible trajectories to achieve the target outputs. A further generalization of semi- and
quasi-linear parabolic PDE systems is considered in [94,95,103], where differential flatness is
exploited to generate the desired trajectories to track the reference signals.

1.2.4 Zero dynamics inverse

The concept of zero dynamics arises from the notion of left or right half plane zeros and zeros
at infinity. The notion of zero dynamics was first introduced to solve the problem of pole-
placement for finite-dimensional linear systems and was then adapted to finite-dimensional
nonlinear systems. This concept implies that the dynamics of linear or nonlinear systems
comply with the constraint that the output is identically zero. Using input-output lineariza-
tion, the dynamics of a finite-dimensional nonlinear system can be split into an external part
(input-output dynamics) and an internal part (internal dynamics). Generally speaking, when
the outputs of a nonlinear system are set, the zero dynamics are simultaneously determined,
which are not accessible from the input-output dynamics [76]. This observation indicates
that the choice of outputs is crucial for input-output linearization, as it determines whether
the linearization of a nonlinear system will track the desired prescribed outputs or not while
achieving the global stability for the entire system. A number of zero dynamics-based solu-
tions for the control of nonlinear systems can be found in, e.g., [24, 39,63,104].

In the literature, tremendous efforts have been devoted to extending the zero dynamics
of finite-dimensional systems to infinite-dimensional systems [37, 38, 74, 77], including pole-
placement, zero-pole dynamics, and zero dynamics. Recently, zero dynamics inverse design
has been developed for PDE systems to track desired profiles and reject disturbances. Com-
pared to the original PDEs, the zero dynamics of the resulting PDEs are that whose boundary
complies with the constraints, bringing the regulation error down to zero. One of the advan-
tages of zero dynamics inverse is that the zero dynamics are much easier to be dealt with
than the controlled PDE systems, and the state variables of the zero dynamics are available,
allowing access to their estimates in both quantitative and qualitative fashion. When the
zero dynamics are determined, the tracking problems of PDEs are reduced to force the orig-
inal PDEs to converge to their zero dynamics via some boundary control schemes. The zero
dynamics inverse approach has been applied to linear parabolic PDE systems to regulate
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the tracking error for set-point problems and harmonic tracking problems [31,35]. The work
in [37] extends the notion of zero dynamics for a boundary controlled Burgers’ equation to
derive the tracking control scheme, which can guarantee the semi-globally exponential sta-
bilization of the Burgers’ equation and secure the regulation error to decay to zero as time
varying. In [34], the authors develop a feedback control law combined with zero dynam-
ics inverse for a Kuramoto-Sivashinsky equation to solve tracking and disturbance rejection
problem. Nevertheless, the implementation of zero dynamics-based dynamic compensators
remains a challenging issue as it requires to solve online the zero dynamics that are also a
PDE.

1.3 In-domain Control

In-domain control has been gaining increasing attention and plays a more and more critical
role in PDE control. Regulating the interior points to track the desired reference signals for
in-domain controlled PDE systems is still a challenging problem. This is due to the fact
that the actuation mechanisms for distributed control are not feasible for most of the real-
life applications. Whereas, point-wise in-domain control usually leads to unbounded input
operators in the Banach space L2 or H1, which causes enormous difficulties in analyzing
the properties of the solutions to PDEs, such as well-posedness, regularity, etc. One of the
intuitive approaches to deal with the in-domain control of PDEs is to convert the in-domain
control into boundary control, thereby applying the boundary control schemes developed for
boundary control to derive the in-domain controllers. However, due to the effect of in-domain
inputs on PDE systems, this approach is not applicable directly to PDEs with point-wise in-
domain actuations. Some efforts have been investigating coping with the in-domain control of
PDE systems by using differential flatness [119,139,145]. As linear PDE systems feature the
superposition principle, it allows decomposing multiple in-domain controlled linear PDEs into
a setting with parallel connected subsystems. A linear PDE with multiple in-domain control
can thus be split into several linear sub-PDEs, each of which comprises only one in-domain
control, Laplace transform can be applied to derive the in-domain control. This method has
been demonstrated effectively for heat equation [145] and Euler-Bernoulli equation [139].

However, for nonlinear PDE systems, the above approach cannot be applied as the superpo-
sition property does not hold anymore. Indeed, it is almost impossible for nonlinear PDEs
to obtain the explicit form of solutions. The mathematical tools for obtaining solutions to
linear PDEs, such as Laplace transform and Fourier transform, cannot be utilized directly to
nonlinear PDEs. New methods are needed for the design of in-domain control for nonlinear
PDE systems. Recently, the geometric theory was introduced as a method to address PDE
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control problems, as it can capture the essence of the controllability and observability of
nonlinear PDE systems [70,75]. The zero dynamics inverse approach is an application of the
geometric theory for PDE control and is used to simplify the control design. However, the
nonlinearity of zero dynamics makes it difficult to implement the controllers developed by
zero dynamics inverse. Static control is a simple method for implementing in-domain control
based on zero dynamics for nonlinear PDE systems, as proposed in [11–13].

The drawback of static control is that it may result in unwanted oscillations and degrade the
dynamic performance of the controlled PDE systems. To overcome this problem, dynamic
control can be applied to PDEs with in-domain actuations, which can significantly enhance
the performance of controlled systems. However, there are few solutions that allow solving the
in-domain control problems of PDE systems using dynamic control. A dynamic in-domain
control scheme capable of tracking desired set-points for a class of semi-linear parabolic
equations with multiple in-domain actuations is proposed in [140], where the implementation
of in-domain control based on zero dynamics utilizes the Adomian decomposition method
(ADM), and linear feedback boundary control is used to guarantee the asymptotical stability
of the semi-parabolic equations around their zero dynamics. In-domain control of Burgers’
equation is treated using a dynamic compensator, which generates the in-domain control,
and the implementation of the resulting in-domain controllers uses the combination of ADM
and differential flatness in [141]. This method will be presented in detail in this thesis.

1.4 Objective and Contributions

In-domain control is of theoretical and practical importance in both academia and industry.
This thesis investigates the set-point regulation problems of PDE systems with multiple point-
wise in-domain actuations. The subject of PDE control involves a variety of different linear
and nonlinear PDEs, such as parabolic equations, hyperbolic equations, nonlinear elliptic
equations, etc. Every PDE system characterizes its unique properties, such as existence,
regularity, and stability. Thus, it is impossible to develop a general theory to systematically
solve PDE control problems. For this reason, we limit our scope in this work for addressing
control problems of some classical PDE models: Euler-Bernoulli equation and semi-linear
parabolic equations, including Fisher’s equation, the Chaffee-Infante equation, and Burgers’
equation. These PDEs models are instrumental in and applicable to different problems
in theory and practice, as they can describe a wide range of phenomena and capture the
dominant properties. The Euler-Bernoulli equation can be used to explain how a flexible
structure behaves under axial forces and bending under the assumption that deformed angles
are small [22]. Fisher’s equation is a semi-linear PDE, which can represent the propagation
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of a virus mutation over a long time series [129]. Burgers’ equation can capture the features
of turbulent fluid flow and roughly simulate the behavior of Navier-Stokes equations [108].

We propose using zero dynamics and dynamic compensators in the control of nonlinear PDEs
with multiple in-domain inputs to produce the desired in-domain control signals. How-
ever, zero dynamics (or dynamic compensators) are governed by in-homogeneous nonlinear
parabolic equations, which cannot be dealt with using existing tools for obtaining their exact
solutions. Hence, we resort to numerical solutions to approximate the exact solutions to the
zero dynamics or dynamic compensators. As the ADM has been proved as an effective and
efficient numerical method to approximate exact solutions to linear and nonlinear PDEs, it
is leveraged in the present work for this purpose. One of the advantages of the ADM is that
it can reduce the computational complexity while it does not sacrifice the accuracy of the
numerical solution [3, 113]. Another advantage of this method is that, unlike other classical
numerical methods, there is no need to discretize or linearize the system [5]. Truncating the
solution until the final computational implementation is all that is required. In summary,
the developed approaches in this thesis belong to the category of late-lumping.

The major contributions of this thesis are listed as follows:

1 Deformation control of an Euler-Bernoulli equation with interior actuations is developed
by using zero dynamics inverse technique combined with differential flatness. The
well-posedness and stability of the controlled Euler-Bernoulli equation are established
based on the semigroup theory. An efficient control algorithm for the implementation
of zero dynamics with multiple in-domain control inputs is devised using differential
flatness. Furthermore, the Green’s function of the static equation of the Euler-Bernoulli
equation is employed in motion planning. The approach developed in this work presents
a systematic design procedure and is applicable to a wide range of linear PDEs with
point-wise actuations.

The results of this contribution are published in the 55th IEEE Conference on Decision
and Control in 2016 [139].

2 The problem of asymptotic output regulation of a class of semi-linear parabolic equa-
tions with in-domain control is treated using the zero dynamics inverse technique along
with the Adomian decomposition method. Zero dynamics inverse design allows gen-
erating the desired in-domain control inputs, which can track the prescribed desired
set-points. Differential flatness and the Adomian decomposition method are employed
to implement the in-domain control based on zero dynamics inverse design. Finally,
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Chaffee-Infante equation and Fisher’s equation are used to illustrate the effectiveness
of our proposed control scheme through both theoretical analysis and numerical sim-
ulations. This work contributed to extending the method of flatness-based trajectory
planning to nonlinear PDEs with multiple point-wise in-domain control.

This contribution is published in the International Journal of Robust and Nonlinear
Control [140].

3 Due to the fact that the nonlinear term of a Burgers’ equation is not smooth, the control
design procedure of Fisher’s equation and Chaffee-Infante equation cannot be directly
applied to Burgers’ equation. To extend the proposed control scheme, a dynamic
compensator is introduced to generate the desired in-domain control, which can force
the controlled Burgers’ equation to track the desired set-point signals. A nonlinear
feedback boundary control is used to globally stabilize the controlled Burgers’ equation
around the trajectory of the dynamic compensator. The resulting in-domain controllers
can be implemented based on the ADM.

The results of this work have been reported in a paper submitted to the International
Journal of Control [141].

1.5 Dissertation Organization

The rest of this thesis is organized as follows:

Chapter 2 outlines the background knowledge of PDE control theory required for this thesis.
It starts by presenting the Sobolev space, which is the fundamental tool of PDE analysis
and is crucial for the stability analysis of PDE systems. As semigroups theory is a classical
tool for assessing the well-posedness and stability of linear and nonlinear PDEs, some basic
notions and results related to this tool are provided. Differential flatness is then presented,
which can generate explicit trajectories of linear PDE systems. The Adomian decomposition
method is an important numerical method to obtain the approximate solutions of linear and
nonlinear PDEs, which is used intensively in this thesis.

Chapter 3 is devoted to studying the in-domain control of an Euler-Bernoulli equation. The
problem is solved using differential flatness to complete the in-domain control design, which
only relies on the so-called flat outputs. The Gevery function is chosen as the flat outputs in
order to guarantee the convergence of the solution that is under an infinite series. To facilitate
the motion planning, a static control algorithm based on the Green’s function is proposed to
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generate the static control inputs. The simulation results confirmed the effectiveness of the
proposed method.

Chapter 4 presents the in-domain control of a class of semi-linear parabolic equations, includ-
ing Fisher’s equation and Chaffee-Infante equation. The aim is to derive in-domain controllers
to regulate the multiple interior outputs of a class of semi-linear parabolic equations to track
the desired set-points. A linear boundary feedback control is used to allow the semi-linear
parabolic equations to approach their zero dynamics asymptotically. A zero dynamics-based
dynamic in-domain control is implemented by means of the Adomian decomposition method
and flatness. The simulation results are carried out to validate the proposed approach.

In-domain control of a Burgers’ equation under nonlinear boundary feedback control is pre-
sented in Chapter 5. A dynamic compensator is introduced to produce the in-domain control,
which can drive the in-domain control inputs to track the desired outputs. A Lyapunov sta-
bility analysis confirms that nonlinear boundary control enables the Burgers’ equation to
converge to the dynamic compensator. The ADM is used in the implementation of the
resulting in-domain control scheme. The simulation results confirmed the validity of the
proposed control scheme.

Chapter 6 discusses the general concepts of this thesis. It covers the main ideas on how to
deal with in-domain control of PDE systems as well as the most promising trends of this
subject.

Chapter 7 summarizes the work reported in this thesis and discusses the research direction
related to this work.
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CHAPTER 2 BASIC NOTIONS AND TOOLS FOR PDE CONTROL

This chapter introduces some basic notions and mathematical tools, including Sobolev spaces,
their properties, semigroup theory, basic knowledge of elliptic equations and linear parabolic
equations, and the Adomian decomposition method, which are used throughout the thesis.

2.1 Sobolev Spaces and PDE

The theory of Sobolev spaces is a standard tool for the study of partial differential equations,
which provides a systematic methodology to address different problems in this field. In the
thesis, Sobolev inequalities are utilized to estimate H1- and L2-norms of solutions to PDE
systems while dealing with stability and tracking problems. Before introducing the Sobolev
space, we first give the definition of Lp space and Hölder inequality. Assume that Ω is an
open set in Rn, and Ω̄ is the closure of the set Ω. We denote by L1(Ω) the space of integrable
functions on Ω and by L1

loc(Ω) the space of functions locally integrable in Ω. Let Ck(Ω)
denote the space of functions with continuous derivatives of order k, and C∞c (Ω) denote the
space of infinitely differentiable functions with compact support in Ω [56]. Some notations
for derivative are listed as follows, which will be used in the upcoming development.
Notation for derivatives [56]. Assume u : Ω→ R, x ∈ Ω.

(i) ∂u

∂xi
= limh→0

u(x+ hei)− u(x)
h

, provide the limit exists, where ei represents the vector
with a 1 in the ith coordinate and 0’s elswhere in Rn.

(ii) We usually write uxi for
∂u

∂xi

(iii) Similarly, ∂2u

∂xi∂xj
= uxixj ,

∂3u

∂xi∂xj∂xk
= uxixjxk , etc.

(iv) Multi-index notation:
(a) A vector of the form α = (α1, . . . , αn), where each component αi is nonnegative
integer, is called a multi-index of order

|α| = α1 + . . .+ αn. (2.1)

(b) Given a multi-index α, define

Dαu(x) := ∂|α|u(x)
∂xα1

1 . . . ∂xαnn
= ∂α1

x1 . . . ∂
αn

xn u. (2.2)
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Definition 2.1. [65] Let p ∈ R with 1 < p <∞. We set

Lp(Ω) =
{
f : Ω→ R; f is measurable and |f |p ∈ L1(Ω)

}
(2.3)

with

‖f‖LP =
[ ∫

Ω
|f(x)|pdx

]1/p

. (2.4)

In particular, the space L∞ is defined as follows.

Definition 2.2. [65] We set

L∞(Ω) =

f : Ω→ R : f is measurable and there is a constant C
such that |f(x)| ≤ C a.e. on Ω

 (2.5)

with
‖f‖L∞ = inf {C : |f(x)| ≤ C a.e. on Ω} . (2.6)

Let 1 ≤ p ≤ ∞. We denote by p′ the conjugate exponent, i.e.

1
p

+ 1
p′

= 1. (2.7)

Theorem 2.1. [65] Assume that f ∈ Lp and g ∈ Lp′ with 1 < p <∞. Then fg ∈ L1 and
∫

Ω
|fg|dx ≤ ‖f‖Lp‖g‖Lp′ . (2.8)

In most cases, it is difficult to study the classical solutions to PDEs because of the lack of
knowledge on the explicit form of the solutions to PDEs. Moreover, although functional
analysis is a fundamental mathematical tool for PDEs, it cannot directly be employed to
deal with classical solutions. Therefore, one needs to resort to studying weak solutions of
PDEs, which makes the theory of functional analysis an efficient tool in the study of PDE
problems. To study weak solutions, weak derivatives should be introduced.

Definition 2.3. [56] Suppose u, v ∈ L1
loc(Ω) and α is a multi-index. We say that v is the

α-th weak partial derivative of u, denoted by

Dαu = v, (2.9)

provided ∫
Ω
uDαφdx = (−1)α

∫
Ω
vφdx, for all φ ∈ C∞c (Ω). (2.10)
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Lemma 2.1. [56] A weak α-th partial differential derivative of u ∈ L1
loc(Ω), if it exists, is

uniquely defined up to a set of measure zero.

In this context, we will introduce some elementary properties of Sobolev spaces. Let Ω ⊂ Rn

be an open set and p ∈ R with 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) consists in all locally
summable functions u : Ω→ R such that for each multi-index α with |α| ≤ k, Dαu exists in
the weak sense and belongs to Lp(Ω). Specifically, the space Wm,p is defined as follows.

Definition 2.4. [65] The Sobolev space Wm,p(Ω) is defined to be

Wm,p(Ω) =

u ∈ L
p(Ω);∀α with |α| ≤ m, ∃gα ∈ Lp(Ω) such that∫

Ω uD
αϕdx = (−1)α

∫
Ω gαϕdx, ∀ϕ ∈ C∞c (Ω)

 . (2.11)

If p = 2, Hk(Ω) = W k,2(Ω), k = 0, 1, . . . ,∞. We denote by H1
0 (Ω) the closure of C∞c (Ω) in

H1(Ω) and by H−1(Ω) the dual space to H1
0 (Ω). Note that the space W 1,p is equipped with

the norm

‖u‖W 1,p = ‖u‖Lp + ‖Du‖Lp . (2.12)

The following inequality is called the interpolation inequality of Gagliardo-Nirenberg. It is a
very powerful tool for establishing the estimates of higher power norm in H1 and L2 spaces.

Theorem 2.2. [65] For any w ∈ H1(0, 1) and 2 ≤ q ≤ ∞, there exists a constant C > 0
such that

‖w‖Lq ≤ C‖w‖θH1‖w‖1−θ
L2 , (2.13)

where θ = 1/2− 1/q and C is a constant independent of w.

2.1.1 Second-order elliptic equations

In this section, we introduce the weak solution to a linear elliptic PDE and the properties
of its solution. Consider the boundary-value problem of a second-order elliptic equation
described by Lu = f, in Ω,

u = 0, on ∂Ω,
(2.14)

where the function u : Ω→ R is the state of the system, Ω is an open bounded subset of Rn,
f : Ω→ R, and L represents a second-order partial differential operator of the form:

Lu = −
n∑

i,j=1

∂

∂xj

(
aij(x) ∂u

∂xi

)
+

n∑
i=1

b1(x) ∂u
∂xi

+ c(x)u. (2.15)
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We assume the symmetry condition

aij = aji, i, j = 1, . . . , n. (2.16)

Definition 2.5. [56] The partial differential operator L defined in (2.15) is uniformly elliptic
if there exists a constant θ > 0 such that

n∑
i,j=1

aijξiξj ≥ θ|ξ|2 (2.17)

a.e. ∀x ∈ U and all ξ ∈ Rn.

We proceed to formulate the week solution to the second-order elliptic equation (2.14).

Definition 2.6. [56] We say that u ∈ H1
0 (Ω) is a weak solution to the elliptic equation (2.14)

if ∫
Ω

n∑
i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuvdx =
∫

Ω
fvdx (2.18)

for any v ∈ H1
0 (Ω).

The existence of a weak solution to the elliptic equation (2.14) is an application of the
Fredholm theory. Before giving the existence theory, the formal adjoint of L is introduced.

Definition 2.7. [56] The operator L∗, the formal adjoint of L, is given by

L∗v := −
n∑

i,j=1

∂

∂xi
aij

∂v

∂xj

)
−

n∑
i=1

bi
∂v

∂xi
+
(
c−

n∑
i=1

b1
xi

)
v, (2.19)

provided v : Ω→ R, bi ∈ C1(Ω̄), i = 1, . . . , n.

Theorem 2.3. [56]

(i) One of the following statements holds:

(α) for each f ∈ L2(Ω) there exists a unique weak solution to the boundary-value prob-
lem (2.14);

(β) there exists a weak solution u 6≡ 0 to the homogeneous problem:
Lu = 0, in Ω,

u = 0, on ∂Ω.
(2.20)
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(ii) Furthermore, if assertion (β) holds, then the dimension of the subspace N ⊂ H1
0 (Ω)

of (2.20) is finite and equals to the dimension of the subspace N∗ ⊂ H1
0 (Ω) of the weak

solutions of L
∗v = 0, in Ω,

v = 0, on ∂Ω.
(2.21)

(iii) Finally, the boundary-value problem (2.14) has a weak solution if and only if
∫

Ω
fvdx = 0 for all v ∈ N∗. (2.22)

Introducing of the regularity of domain boundaries allows us to study the smoothness of
the weak solution up to the boundary. First, B(x, r) = {v ∈ Rn : |x − v| < r}, where
x ∈ Rn, r > 0. Specifically, the smoothness of domain boundaries is defined below.

Definition 2.8. [56] The boundary ∂Ω is Ck if for each point x0 ∈ ∂Ω, there exist r > 0
and a Ck function γ : Rn−1 → R such that, upon relabeling and reorienting the coordinates
axes if necessary, we have

Ω ∩B(x0, r) = {x ∈ B(x0, r)|xn > γ(x1, . . . , xn−1)}. (2.23)

Likewise, ∂Ω is C∞ if ∂Ω is of Ck for k = 1, 2, . . . , and ∂Ω is analytical if the mapping γ is
analytic.

The following theorem provides some insight on the smoothness effect on the elliptic operator
for the second-order elliptic equation.

Theorem 2.4. [56] Assume that aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω), i, j = 1, . . . , n and f ∈ L2(Ω).
Suppose that u ∈ H1

0 (Ω) is a weak solution to the elliptic boundary-value problem (2.14).
Assume furthermore that ∂U is of C2. Then u ∈ H2(Ω), and we have the estimate

‖u‖H2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
, (2.24)

where C > 0 is a constant, depending only on U and the coefficients of L.

Note that although the nonhomogeneous term f and the initial value of u only belong to
L2(Ω), the weak solution u belongs to H2(Ω), which implies that the elliptic operator can
improve the regularity of the weak solution to make it more smooth than the nonhomogeneous
term and the initial data.



17

2.1.2 Linear parabolic equations

Next, we introduce some energy inequalities, and notions on the existence and the regularity
of a parabolic equation. Assume that Ω is an open bounded subset of Rn and ΩT = Ω×(0, T ].
Consider the following parabolic equation:

ut + Lu = f, in Ω,

u = 0, on ∂Ω× [0, T ],

u = u0, on Ω× {t = 0},

(2.25)

where the function u : Ω× [0, T ]→ R is the state of the system, f : Ω→ R and u0 : Ω→ R
are given, and u : Ω̄T → R is unknown. The operator L can be expressed as

Lu = −
n∑

i,j=1

∂

∂xj

(
aij(x, t) ∂u

∂xi

)
+

n∑
i=1

bi(x, t) ∂u
∂xi

+ c(x, t)u (2.26)

for given coefficients aij, bi, c, and

n∑
i,j=1

ai,j(x, t)ξiξj ≥ θ|ξ|2 (2.27)

where θ is a constant and (x, t) ∈ ΩT , ξ ∈ Rn. To construct the weak solutions to linear
parabolic equations, we need to define some other Sobolev spaces. Let X denote a real
Banach space equipped with norm ‖ · ‖.

Definition 2.9. [56] The space Lp(0, T ;X) consists of all strongly measurable functions
u : [0, T ]→ X with

(i)

‖u‖Lp(0,T ;X) :=
(∫ T

0
‖u(t)‖pdt

)1/p

<∞ (2.28)

for 1 ≤ p <∞ and

(ii)

‖u‖L∞(0,T ;X) := ess sup0≤t≤T‖u(t)‖ <∞. (2.29)

Definition 2.10. [56] The space C([0, T ];X) comprises all continuous functions u : [0, T ]→
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X with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖ <∞. (2.30)

Definition 2.11. [56] Let u ∈ L1(0, T ;X). We say that v ∈ L1(0, T ;X) is the weak
derivative of u, written as

u′ = v, (2.31)

provided
∫ T

0
φ′(t)u(t)dt = −

∫ T

0
φ(t)v(t)dt (2.32)

for all φ ∈ C∞c (0, T ).

Next, we consider below the weak solution to a parabolic equation.

Definition 2.12. [56] We say that a function

u ∈ L2(0, t;H1
0 (Ω)), with u′ ∈ L2(0, T ;H−1(Ω)), (2.33)

is a weak solution to the parabolic boundary-value problem (2.25) provided

〈u′, v〉+
∫

Ω

n∑
i,j

ai,j(·, t)uxivxj +
n∑
i=1

bi(·, t)uxiv + c(·, t)uvdx = (f, v),

for v ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T

(2.34)

and

u(0) = u0, (2.35)

where the pairing (, ) denotes the inner product in L2(Ω).

The following theorem provides an a priori bound of the solution to a parabolic equation,
which makes it possible to analyse the stability of the linear parabolic equation without
having an explicit form of the solution. We assume the coefficient aij, bi, c (i, j = 1, . . . , n)
are smooth on Ω̄ and do not depend on t.

Theorem 2.5. [56] Assume u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;L2(Ω)). Suppose that u ∈ L2(0, T ;H1

0 (Ω)),
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with u′ ∈ L2(0, T ;H−1(Ω)), is the weak solution to the parabolic equation (2.25). Then

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), u′ ∈ L2(0, t;L2(Ω)), (2.36)

and we have the estimate

ess sup0≤t≤T‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2

0 (Ω)) + ‖u′‖L2(0,T ;L2(Ω)) ≤ C
(
‖f‖L2(0,t;L2(Ω)) + ‖u0‖H1

0 (Ω)

)
,

(2.37)

where the constant C depends only on Ω, T and the coefficients of L.

Theorem 2.6. [56] Assume that

u0 ∈ H2m+1(Ω), dkf
dtk ∈ L

2(0, T ;H2m−2k(Ω)), k = 0, . . . ,m. (2.38)

We have the estimate

m+1∑
k=0

∥∥∥∥∥dku
dtk

∥∥∥∥∥
L2(0,T ;H2m+2−2k(Ω))

≤ C

 m∑
k=0

∥∥∥∥∥dkf
dtk

∥∥∥∥∥
L2(0,T ;H2m−2k(Ω))

+ ‖u0‖H2m+1(Ω)

 , (2.39)

where C > 0 is the constant, depending only on m, Ω, T and the coefficients of L.

Theorem 2.7. [56] Assume that

u0 ∈ C∞(Ω̄), f ∈ C∞(Ω̄T ), (2.40)

and the m-th order compatibility conditions hold for m ≥ 0. Then the parabolic boundary
value problem (2.25) has a unique solution

u ∈ C∞(Ω̄T ). (2.41)

2.2 Theory of Semigroups

The semigroup theory is a theory that can be used for the analysis of both finite dimensional
and infinite dimensional problems. From the practical and theoretical point of view, it has
been proved to be a useful tool for PDE control theory, especially for linear PDE systems,
such as parabolic equations, wave equations, Euler-Bernoulli equations, etc. We introduce
first some basic notations. Let X denote a complex Hilbert space equipped with the norm
‖ · ‖. We denote by 〈x, y〉 the scalar product of two elements x and y in X. We denote the
space of bounded linear operators from X to X by L(X). I represents the identity operator
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from X to X. Re z denotes the real part of the complex number z. The linear operator A is
a linear map A : D(A) ⊂ X → X defined on a domain D(A) that is a linear subspace of X.
R(A) denote the range of the operator A. A linear operator is said to be closed if its graph

G(A) = {(x,Ax) : x ∈ D(A)} (2.42)

is closed in the product space X×X. The resolvent set ρ(A) is the set of all complex numbers
λ such that λI − A has a bounded inverse, namely,

R(λ,A) def= (λI − A)−1. (2.43)

Definition 2.13. [51] The adjoint operator A∗ of the operatorA is the linear operator

A∗ :D(A∗) ⊂ X → X

x→ A∗x,
(2.44)

where D(A∗) is the set of all y such that the linear map

D(A) ⊂ X → X

x→ 〈Ax, y〉
(2.45)

is continuous, a.e., and there exists C > 0 depending on y such that

|〈Ax, y〉| ≤ C‖x‖, ∀x ∈ D(A). (2.46)

Definition 2.14. [51] A family eAt = {eAt}t≥0 of operators in L(X) is a strongly continuous
semigroup, also denoted as C0-semigroup, on X if

1. eA0 = I,

2. eA(t+τ) = eAteAτ for every t, τ ≥ 0, ( semigroup property)

3. limt→0,t>0 e
Atz = z for all z ∈ X. (strong continuity)

The infinitesimal generator A of this semigroup in X is defined by

D(A) =
{
x ∈ X : such that the lim

t→0+

eAtx− x
t

exists
}
, (2.47)

and
Ax = lim

t→0+

eAtx− x
t

, x ∈ D(A). (2.48)
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Theorem 2.8. D(A) is dense in X [51].

The following Hille-Yosida-Miyadera-Feller-Phillips theorem provides a necessary and suffi-
cient condition to determine whether a linear operator A is the infinitesimal generator of a
strongly continuous semigroup or not.

Theorem 2.9. [51] Let A : D(A) ⊂ X → X be a linear operator. Then the following
statements are equivalent:

(i) D(A) is dense in X, there exist real numbers M > 0 and ω ∈ R such that ρ(A) ⊃ {λ ∈
C : Re λ > ω}, and the following inequalities hold:

‖Rk(λ,A)‖ ≤M(Re λ− ω)−k, k ∈ N,∀λ,Reλ > ω. (2.49)

(ii) A is the infinitesimal generator of a strongly continuous semigroup eAt, and there exist
real numbers ω ∈ R and M > 0 such that

‖eAt‖ ≤Meωt, ∀t ≥ 0. (2.50)

Definition 2.15. eAt is a contraction semigroup if it is a C0-semigroup that satisfies an
estimate ‖eAt‖ ≤ 1 for all t ≥ 0.

The following theorem provides a simpler criterion for a closed, densely defined operator to
be the infinitesimal generator of a contraction semigroup.

Theorem 2.10. [51] A closed, densely defined operator in a Hilbert space is the infinitesimal
generator of a C0-semigroup satisfying ‖T (t)‖ ≤ eωt if the following conditions hold:

Re (〈Az, z〉) ≤ ω‖z‖2 for z ∈ D(A); (2.51)

Re (〈A∗z, z〉) ≤ ω‖z‖2 for z ∈ D(A∗). (2.52)

Definition 2.16. [70] A is a sectorial operator if it is a closed densely defined operator such
that, for some φ in (0, π2 ) and some M ≥ 1 and real a, the sector

Sa,φ =
{
λ
∣∣∣ φ ≤ |arg(λ− a)| ≤ π, λ 6= a

}
(2.53)

is in the resolvent set of A and

‖(λ− A)−1‖ ≤ M

|λ− a|
for ∀ λ ∈ Sa,φ. (2.54)
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Definition 2.17. [70] Suppose that A is a sectorial operator and Re σ > 0. Then for any
α > 0

A−α = 1
Γ(α)

∫ ∞
0

tα−1e−Atdt (2.55)

defines Aα as the inverse of A−α (α > 0), D(Aα) = R(A−α), and A0 is equal to identity on
X.

Theorem 2.11. [70] Suppose that A is sectorial and Re σ(A) > δ > 0. For α ≥ 0, there
exists Cα such that

‖Aαe−At‖ ≤ Cαt
−αe−δt, t > 0. (2.56)

Example 2.1. [51] Consider the operator A = −α d2

dx2 , whose domain can be defined as

D(A) =
{
v ∈ H2(0, 1) : v(0) = 0, v(1) = 0

}
. (2.57)

The eigenvalues and eigenfunctions of A are then given by

i(x) =
√

2 sin(iπx), λi = α(iπ)2, for i ∈ N∗, (2.58)

which consist of the complete orthonormal vectors in L2(0, 1). By Hill-Yosida’s theorem, −A
is the infinitesimal generator of the semigroup e−At. Furmore, we have

‖e−Atϕ‖L2 ≤ e−Lt‖ϕ‖L2 , (2.59)

where L = α(π)2. We define the fractional powers of A by As, s ∈ R,

D(As) =
{
ϕ ∈ L2(0, 1);

∞∑
i=1

λ2s
i |〈ψi, ϕ〉|2 <∞

}
, (2.60)

and for ϕ ∈ D(As)

Asϕ =
∞∑
i=1

λs〈ψi, ϕ〉ψi. (2.61)

The following inequality holds:

‖Ase−Atϕ‖L2 ≤ κt−se−Lt‖ϕ‖L2 , t, s > 0. (2.62)

It is easy to see that D(A) ⊂ H1
0 (0, 1) = {ϕ ∈ H1(0, 1);ϕ(0) = ϕ(1) = 0}, which is equipped
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with the norm

‖ϕ‖H1
0

= ‖ϕx‖L2 . (2.63)

Note that the norm ‖ϕ‖H1
0
of the space H1

0 (0, 1) is equivalent to the norm ‖ϕ‖H1 [56].

Lemma 2.2. Let ϕ ∈ H1
0 (0, 1). Then

‖ϕ‖H1
0

= ‖A1/2ϕ‖L2 . (2.64)

Furthermore, the following inequality holds:

‖ϕ‖2
L2 ≤

α

λ1
‖ϕ‖2

H1
0
. (2.65)

Proof. For each ϕ ∈ H1
0 (0, 1), we have ϕ = ∑∞

i=1〈ϕ, i〉ψi. Based on the definition of the
power of the operator A, we have

‖ϕ‖2
H1

0
=
∫ 1

0
ϕ2
xdx = −

∫ 1

0
ϕxxϕdx = α−1

∫ 1

0
Aϕϕdx

= α−1
∞∑
i=1

λi〈ϕ, ψi〉
∫ 1

0
iϕdx = α−1

∞∑
i=1

λ1|〈ϕ, ψi〉|2

= α−1‖A1/2ϕ‖2
L2 ,

(2.66)

which implies the first claim of the lemma. Then, using the above result, it yields

‖ϕ‖L2 =
∞∑
i=1
|〈ϕ, ψi〉|2 ≤

∞∑
i=1

λi
λ1
|〈ϕ, ψi〉|2 ≤ λ−1

i ‖A1/2ϕ‖2
L2 ≤

α

λ1
‖ϕ‖H1

0
, (2.67)

which leads to the desired inequality.

Next, we introduce the Lumer-Phillips theorem, which is about the existence of semigroup
under some conditions.

Definition 2.18. [51] The operator A is dissipative if

Re 〈Ax, x〉 ≤ 0, ∀x ∈ D(A). (2.68)

We can now sate the well-known Lumer-Phillips theorem.

Theorem 2.12. [51] Assume that A is densely defined and closed. If both A and A∗ are



24

dissipative, then for every x0 ∈ D(A∗), there exists a unique

x ∈ C1([0,+∞);H) ∩ C0([0,+∞);D(A)) (2.69)

such that 
dx
dt = Ax, t ∈ (0,+∞),

x(0) = x0.
(2.70)

Furthermore,

‖x(t)‖ ≤ ‖x0‖, ∀t ∈ [0,+∞). (2.71)

Theorem 2.13. [51] Assume that A is densely defined and closed. If both A and A∗ are dis-
sipative, then for every x0 ∈ D(A), for every T ∈ (0,+∞), and for every f ∈ C1((0, T ), X),
there exists a unique

x ∈ C1([0, T );H) ∩ C0([0, T );D(A)) (2.72)

such that 
dx
dt = Ax+ f(t), t ∈ (0, T ),
x(0) = x0.

(2.73)

Furthermore,

x(t) = eAtx0 +
∫ t

0
eA(t−τ)f(τ)dτ, ∀t ∈ [0, T ). (2.74)

2.3 Differential Flatness

Differential flatness has been proven to be a powerful tool for the control of linear and nonlin-
ear finite-dimensional systems. Differential flatness states basically that the state variables
and the control inputs of a system can be parametrized in terms of basic outputs and their
derivatives up to certain orders. With this method, motion planning for tracking control
involves only differential and algebraic computations without integration. It means that tra-
jectory generation of dynamical systems can be reduced to that of algebraic systems, which
could considerably simplify the design process and implementation of the control scheme.
The definition of finite dimensional flat systems is given below.

Definition 2.19. [64] The system ẋ = f(x, u), x ∈ Rn, u ∈ Rm is differentially flat, or flat
for short, if there exist
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h : Rn × (Rm)r+1 → Rm, (2.75)

φ : (R)r → Rn, (2.76)

: (Rm)r+1 → Rm, (2.77)

such that

y = h(x, u, u̇, · · · , u(r)), (2.78)

x = φ(y, ẏ, · · · , y(r−1)), (2.79)

u = ψ(y, ẏ, · · · , y(r−1), y(r)). (2.80)

In recent years, differential flatness has been adopted to address control problems of linear
and nonlinear PDEs [95, 100, 102, 103]. Although the properties of the flatness for infinite
dimensional systems are basically the same for that for finite dimensional systems, its state-
ment is not straightforward. For this reason, we give below an example to illustrate the
design process for tracking control of infinite dimensional systems.

Example 2.2. Consider the in-domain control problem of a heat equation:

ξt − ξxx = 0, x ∈ Ω, t > 0,

ξx(0, t) = k1ξ(0, t), ξx(1, t) = k2ξ(1, t),

[ξx(x, t)]xi = ui(t), i = 1, . . . , n,

ξ(x, 0) = 0,

(2.81)

where Ω , (0, x1) ∪ (x1, x2) ∪ · · · ∪ (xn−1, xn) ∪ (xn, 1), and [v(x)]x=xi = v(x+
i ) − v(x−i ),

with v(x+
i ) and v(x−i ) denoting, respectively, the right and the left limits of v(x) at the point

xi. ui(t), i = 1, . . . , n, are control inputs located in the domain, k1, k2 > 0 are proportional
boundary feedback control gains.

We first divide the system (2.81) into n parallelly connected systems ξi(x, t), i = 1, . . . , n:

ξit − ξixx = 0, x ∈ (0, xj) ∪ (xj, 1),

ξix(0, t) = k1 ξi(0, t), ξix(1, t) = −k2 ξi(1, t),

ξi(0, t) = 0,

ξix+ − ξix− = ui(t).

(2.82)
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We split every system ξi into two sub-systems, i.e., for fixed xi ∈ (0, 1), considering

ξ−it (x, t)− ξ−ixx(x, t) = 0, x ∈ (0, xi), (2.83)

ξ−i (0, t) = 0, ξ−ix(0, t) = k1ξ
−
i (0, t), (2.84)

and

ξ+
it (x, t)− ξ+

ixx(x, t) = 0, x ∈ (xi, 1), (2.85)

ξ+
i (0, t) = 0, ξ+

ix(1, t) = −k2ξ
+
i (1, t), (2.86)

with the joint conditions

ξ−i (xi, t) = ξ+
i (xi, t), (2.87)

ξ+
ix(xi, t)− ξ−ix(xi, t) = vi. (2.88)

Applying the Laplace transform to both sides of (2.85) with boundary conditions (2.86) and
(2.87) with boundary conditions (2.88), it yields

s”ξ−i (x, s) = ‘ξ−ixx(x, s), x ∈ (0, xi),”ξ−ix = k1
”ξ−i (0, s),

(2.89)

and

s”ξ+
i (x, s) = ‘ξ+

ixx(x, s), x ∈ (xi, 1),”ξ+
ix(1, s) = −k2

”ξ+
i (1, s).

(2.90)

which admits the solution”ξ−i (x, s) = Ĉ1(s)φ1(x, s) + Ĉ2(s)φ2(x, s),”ξ+
i (x, s) = Ĉ3(s)φ1(ζ, s) + Ĉ4(s)φ2(ζ, s),

(2.91)

where

ζ = x− xi, φ1(x, s) = sinh(
√
sx)√
s

, φ2(x, s) = cosh(
√
sx). (2.92)

Then, deriving φ1(x, s) and φ2(x, s) with respect to x, we can obtain:

φ′1(x, s) = φ2(x, s), φ′2(x, s) = sφ1(x, s). (2.93)
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By the boundary conditions (2.89) and (2.90), we have

Ĉ1(s) = k1Ĉ2(s),

Ĉ3(s)φ2(1− xi, s) + sĈ4(s)φ1(1− xi, s) =

− k2
(
Ĉ3(s)φ1(1− xi, s) + Ĉ4(s)φ2(1− xi, s)

)
.

(2.94)

Applying the boundary conditions (2.87) and (2.88), we have

Ĉ1(s)φ1(xi, s) + Ĉ2(s)φ2(xi, s) = Ĉ4(s),

Ĉ1(s)φ2(xi, s) + sĈ2(s)φ1(xi, s)− Ĉ3(s) = v̂(s).
(2.95)

Substituting (2.94) into (2.95) yields

Ĉ4(s) = Ĉ2(s) (k1φ1(xi, s) + φ2(xi, s)) ,

Ĉ3(s) (φ2(1− xi, s) + k2φ1(1− xi, s)) =

− (k2φ2(1− xi, s) + sφ1(1− xi, s)) (k1φ1(xi, s) + φ2(xi, s))C2(s).

(2.96)

Setting

C2(s) = − (φ2(1− xi, s) + k2φ1(1− xi, s)) ĥi(s),

C3(s) = (k2φ2(1− xi, s) + sφ1(1− xi, s)) (k1φ1(xi, s) + φ2(xi, s)) ĥi(s),
(2.97)

and substituting the C2(s) and C3(s) into (2.94) and (2.96), respectively, we can obtain C1(s)
and C4(s), which leads to

ûi(s) =
(√

sφ1(1, s) + k1k2φ1(1, s) + k1φ2(1, s) + k2φ2(1, s)
)
ĥi(s). (2.98)

Note that ĥi(s)↔ hi(t) is the so-called basic output, or flat output. Recall that

sinh(x) =
∞∑
n=0

x2n+1

(2n+ 1)! , cosh(x) =
∞∑
n=0

x2n

(2n)! . (2.99)

The full-state trajectory ûj can be written in the form

ûi(s) = k1k2

∞∑
n=0

sn

(2n+ 1)! + (k1 + k2)
∞∑
n=0

sn

(2n)! +
∞∑
n=0

sn+1

(2n+ 1)!

)
ĥi(s), i = 1, . . . , n.

(2.100)
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Thus, in time domain the control inputs of the system (2.81) is given by

ui(t) = k1k2

∞∑
n=0

h
(n)
i (t)

(2n+ 1)! + (k1 + k2)
∞∑
n=0

h
(n)
i (t)
(2n)! +

∞∑
n=0

h
(n+1)
i (t)

(2n+ 1)! .
(2.101)

In order to make sure that the above controller is well-defined, the basic output hi(t) should
be C∞. We choose then the following function ψ(t) as a component of basic outputs:

(t) =



0, if t ≤ 0,∫ t
0 exp(−1/(τ(1− τ)))εdτ∫ T
0 exp(−1/(τ(1− τ)))εdτ

, if 0 < t < T,

1, if t ≥ T,

(2.102)

which is known as the Gevrey function of order σ = 1 + 1
ε
, ε > 0. Due to the properties of the

Gevery function, the convergence of the in-domain controllers (2.101) are ensured [112].

2.4 Adomian Decomposition Method

The Adomian decomposition method (ADM) is a semi-analytic scheme to obtain solutions
to ordinary and partial differential equations [1,43,55]. It has been shown that the ADM can
achieve a rapid convergence of the series solution compared with other numerical techniques
[107]. In general, the ADM deals with a nonlinear abstract equation of the form,

w −N(w) = f, (2.103)

where N denotes a nonlinear operator, and f is a nonhomogeneous term. To apply the
ADM to the nonlinear equation (2.103), we assume that the solution can be written a series
solution:

w =
∞∑
k=0

wk. (2.104)

Then, the nonlinear term N(w) can be expressed as

N(w) =
∞∑
n=0

An(w0, w1, · · · , wn), (2.105)

where [1]

Am =
[

1
m!

dm

dλmN(
∞∑
i=0

λiwi)
]∣∣∣∣∣
λ=0

. (2.106)
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Consequently, we obtain every term wn in the Adomian series recursively:

w0 = f,

w1 = A0(w0),
...

wn+1 = An(w0, · · · , wn),
...

(2.107)

Next, we use two examples to illustrate how to generate numerical solutions by ADM.

Example 2.3. Consider the initial value problem of the following ordinary differential equa-
tion

dy
dx = x+ y(x), y(0) = 0, (2.108)

for which the exact solution is given by y(x) = ex − x− 1.

To apply ADM to (2.108), we introduce the operator Lx = d
dx and its inverse operator L−1

x =∫ t
0(·)dx. The ODE (2.108) can then be expressed as

Lxy = x+ y(x). (2.109)

Apply the operator L−1
x on both side of the equation (2.109)

y(x) = y(0) +
∫ x

0
(t+ y(t))dt. (2.110)

The recursive relationship is given by

y0 = x2

2 , yn+1 = L−1
x yn, n ≥ 0. (2.111)

Thus, the Adomian series can be expressed as

y0 = x2

2 ,

y1 = L−1
x y0 = x3

3! ,

y2 = L−1
x y1 = x4

4! ,

y3 = L−1
x y2 = x5

5! ,

. . . .

(2.112)
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The series solution to the ODE (2.108) is given by

y(x) = y0 + y1 + y2 + y3 + · · ·

= x2

2 + x3

3! + x4

4! + x5

5! + · · ·

= ex − x− 1.

(2.113)

Example 2.4. Consider the initial value problem of Fisher’s equation

wt − wxx = w(1− w), (2.114)

subject to the initial condition

w(x, 0) = x. (2.115)

To address the above initial value problem based on the ADM, we rewrite equation (2.114) in
an operator form

Ltw = Lxxw +Nw, (2.116)

where Lt = ∂
∂t
, Lxx = ∂2

∂x2 , and the nonlinear term is given by Nw = w(1 − w). Operating
L−1
t =

∫ t
0(·)dt on both side of equation (2.116), it yields

L−1
t Ltw = L−1

t Lxxw + L−1
t (1− w)w, (2.117)

w − w(0) = L−1
t Lxxw + L−1

t (1− w)w. (2.118)

Decomposing w into ∑∞n=0wn, the nonlinear term (1− w)w can be expressed in terms of the
Adomian polynomials An:

w = w(0) + L−1
t Lxx

∞∑
n=0

wn − L−1
t

∞∑
n=0

An. (2.119)
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Then, we can now write 

w0 = x,

w1 = L−1
t Lxxw0 + L−1

t A0,

w2 = L−1
t Lxxw1 + L−1

t A1,
...

wn+1 = L−1
t Lxxwn + L−1

t An,
...

(2.120)

Thus the components of w can be computed for n ≥ 0. Specifically, the several terms of
Adomian series are given by

A0 = (1− w0)w0,

A1 = d
dλ [N(w0 + w1λ)]λ=0

= d
dλ [(1− w0 − λw1)(w0 + λw1)]λ=0

= w1 − 2w0w1,

A2 = 1
2

d2

dλ2

[
N(w0 + λw1 + λ2w2)

]
= 1

2
d2

dλ2

[
(w0 + λw1 + λ2w2)(1− w0 − λw1 − λ2w2)

]
= 2w2 − 4w2w0 − 2w2

1,

...

(2.121)

Thus, the solution of (2.114) is w = x+ (x− x2)t+ (−1 + x− 3
2 + x3)t2 + · · · .
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CHAPTER 3 ARTICLE 1: DEFORMATION CONTROL OF AN
EULER-BERNOULLI BEAM BASED ON ZERO-DYNAMICS INVERSE

DESIGN AND FLATNESS

This chapter is reproduced from the paper [140].

Authors: Kaijun Yang, Jun Zheng, and Guchuan Zhu.

Abstract— This paper addresses the problem of deformation control of an Euler-Bernoulli
beam with point-wise interior actuation. The method of zero-dynamics inverse design is
employed in control synthesis, which allows avoiding early truncations. The method of flat
systems is used in the realization of a dynamic control scheme for set-point regulation. The
well-posedness and the stability of the considered system are assessed, and the viability of
the developed approach is confirmed by numerical simulation.

3.1 Introduction

In this paper, we consider the set-point deformation control of an Euler-Bernoulli beam with
point-wise interior (or in-domain) actuation formulated as an output regulation problem,
which can be found in such applications as deformable micro-mirrors in adaptive optics
systems [127,132,133].

Although the control of Euler-Bernoulli beams is a long-time standing topic in the field of
partial differential equations (PDEs) control, this problem with different settings and for
different applications still draws considerable attention in the recent literature (see, e.g.,
[6, 66–69, 100]). Due to the fact that the stability of this type of system is a main concern
from both theoretical and practical viewpoints, the majority of work on this topic is dedicated
to the stabilization of beams via boundary or interior control (see the above cited work
and [7,23,42,83,114]). For the in-domain control of beams, if early truncations are allowed,
the model of PDEs can be discretized on space to obtain a system of lumped ordinary
differential equations (ODEs) [23, 105]. Then, a variety of techniques developed for the
control of finite-dimensional systems can be applied. Nevertheless, it is often of great interest
to directly deal with the control of PDE models, in order to avoid the possible instability
[17]. A scheme proposed recently in [100,122] tackles this issue by utilizing the Weierstrass-
factorized representation of the spectrum of the input-output dynamics. In this approach,
the truncation is still needed in order to obtain a finite-dimensional input-output map. In
order to avoid early truncations, the work reported in [16] tried to transform the in-domain
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actuation to the boundary to enable the application of boundary control techniques. A similar
attempt is presented in [137] for the in-domain control of parabolic equations. However, due
to the regularity problem, it is almost impossible to bring the point-wise in-domain actuation
to the boundary in most cases.

The approach employed in this work is based on zero-dynamic inverse (ZDI) design that
is developed in a series of work reported in [27–31, 35] for asymptotic regulation of PDEs.
Essentially, this approach amounts to constructing a dynamic control scheme from the zero-
dynamics associated with the original system. This allows for the control design to be
carried out directly with interior (or eventually boundary) actuation while not requiring
any early truncations. Nevertheless, a main issue related to the application of ZDI design
is that the implementation of such control schemes requires resolving the corresponding
zero-dynamics, which may be very difficult for generic regulation problems, such as set-
point control considered in the present work. To overcome this difficulty, we resort to the
method of flat systems, which is also a well-established method for PDEs control (see, e.g.,
[8, 59, 87, 100, 111, 118]). Note that the ZDI design has been applied in a recent work to
the in-domain control of a heat equation [145]. Note also that the design of flatness-based
feedforward control presented in this paper is greatly inspired by the method developed
in [119].

The rest of the paper is organized as follows. Section 3.2 introduces the model of the consid-
ered problem and presents the basic properties of this system. Section 3.3 details the control
synthesis and the implementation, followed by Section 3.4 that presents motion planning
for feedforward control. A simulation study is carried out in Section 3.5. Some concluding
remarks are provided in Section 3.6.

3.2 System Modeling and Basic Properties

In this work, we consider a 1-dimensional Euler-Bernoulli beam with constant mass density
and flexural rigidity actuated by interior point-wise control located at {x1, x2, · · · , xN}. The
dynamic transversal displacement of the beam, denoted by w(x, t), in a normalized coordi-
nate, where the variable x is spanned over the domain (0, 1), can be described by the following
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PDE [42,53]:

wtt(x, t) + wxxxx(x, t) =
N∑
j=1

αj(t)δ(x− xj), (3.1a)

x ∈ (0, 1), t > 0,

w(0, t) = wxx(0, t) = wx(1, t) = 0, (3.1b)

wxxx(1, t) = kwt(1, t), k > 0, (3.1c)

w(x, 0) = w0(x), wt(x, 0) = w1(x), (3.1d)

where wx and wt denote, respectively, the derivatives of w with respect to its variables x and t,
δ(x−xj) is the Dirac mass concentrated at the point xj ∈ (0, 1), and αj : t 7→ R, j = 1, · · ·, N,
are the control signals. Without loss of generality, we assume that 0 < x1 < x2 < ... < xN <

1. The initial data defined in (3.1d) are taken as w0 ∈ H4, w1 ∈ H2. Note that the feedback
control located at x = 1 given in (3.1c) is for the purpose of stabilization (see, e.g., [7,42,114]).

For well-posedness and stability analysis, we resort to the abstract linear system of the
PDE (3.1). For that, we introduce the state space Y = Φ × L2(0, 1), where Φ = {υ ∈
H2(0, 1)|υ(0) = υx(1) = 0}. Then, Y is a Hilbert space with the inner product:

〈ψ1

ϕ1

 ,
ψ2

ϕ2

〉
Y

=
∫ 1

0
(ψ1xxψ2xx + ϕ1ϕ2) dx. (3.2)

Note that the system (3.1) with boundary feedback control given in (3.1c) can also be ex-
pressed as (see, e.g., [42, 114]):

wtt(x, t) + wxxxx(x, t) + kwt(x, t)δ(x− 1)

=
N∑
j=1

αj(t)δ(x− xj), x ∈ (0, 1), t > 0; (3.3a)

w(0, t) = wxx(0, t) = wx(1, t) = wxxx(1, t) = 0, (3.3b)

w(x, 0) = w0(x), wt(x, 0) = w1(x), (3.3c)

so that the systems (3.1) and (3.3) are equivalent in a weak sense. Hence, based on (3.3) we
can define an operator A on Y :

A

ψ
ϕ

 =
 ϕ

−ψxxxx − kϕδ(x− 1)

 (3.4)
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with domain

D(A) ={(ψ, ϕ) ∈ Y ; (ψ, ϕ) ∈ (H2(0, 1) ∩ (H4(0, x1)

∪H4(x1, x2) ∪ · · · ∪H4(xN , 1)))×H2(0, 1),

(0) = x(1) = xx(0) = xxx(1) = 0,

ϕ(0) = ϕx(1) = 0}.

(3.5)

Define another operator B : RN → D′(A∗), where A∗ is the adjoint of A, as

Bα =
 0∑N

j=1 αjδ(x− xj)

 , (3.6)

where D′(A∗) is the dual space of D(A∗) and α = (α1, ..., αN)T . By a direct computation we
obtain that the operator B∗ : D(A∗) 7→ RN , the adjoint of B, is given by

B∗

ψ
ϕ

 = (ϕ(x1), . . . , ϕ(xN))T , ∀

ψ
ϕ

 ∈ D(A∗). (3.7)

Letting y = (w,wt)T and y0 = (w0, w1)T , the abstract control system corresponding to (3.1)
(or (3.3)) is of the form:

ẏ = Ay +Bα, y(0) = y0. (3.8)

It is known that A generates an exponentially stable C0-semigroup S(t) (see, e.g., [7,42,114]),
i.e., there exist positive constants m and M such that

‖S(t)‖L(Y,Y ) ≤Me−mt, ∀t ≥ 0. (3.9)

Furthermore, System (3.8) (respectively (3.1) or (3.3)) is well-posed (see, e.g., [50]), because
B is admissible in the sense that there exist T and c > 0 such that for any α ∈ L2(0, T ) [114],

∥∥∥∥∥
∫ T

0
S(t− τ)Bα(τ)dτ

∥∥∥∥∥
Y

≤ c‖α‖L2(0,T ). (3.10)

Letting U = RN and considering a test function z ∈ Y , a weak solution to (3.8) (or equiva-
lently to (3.1) or (3.3)) is then given by (see [50], Definition 2.36, p53):

〈y, z〉Y =
〈
y0, S

∗(t)z
〉
Y

+
∫ t

0
〈α(τ), B∗S∗(t− τ)z〉U dτ, (3.11)
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where S∗(t) is the adjoint of S(t).

Based on (3.9), we can derive the following property of the weak solution defined in (3.11).

Theorem 3.1. Assume that there exits a positive constant C such that ‖α‖L∞ ≤ C. Then
for any t > 0, the weak solution to (3.8) given by (3.11) is bounded by

‖y(t)‖Y ≤Me−mt‖y0‖Y + C
M

m
. (3.12)

Proof. Let y ∈ Y, t ∈ [0,+∞). Suppose that there exists a constant C > 0, such that
‖α‖L∞ ≤ C. Then, taking z ∈ Y we obtain

〈y, z〉Y = 〈S(t)y0, z〉Y +
∫ t

0
〈S(t− τ)Bα(τ), z〉Udτ

≤Me−mt‖y0‖Y ‖z‖Y +M‖z‖L∞
∫ t

0
Ce−m(t−τ)dτ

≤Me−mt‖y0‖Y ‖z‖Y + C
M

m
‖z‖L∞

≤Me−mt‖y0‖Y ‖z‖Y + C
M

m
‖z‖Y ,

(3.13)

which leads to (3.12).

Theorem 3.1 implies that the trajectory of System (3.1) should be bounded if the control
inputs are uniformly bounded.

In order to establish the corresponding zero-dynamics, which is an essential step in ZDI
design, we present the beam in a serially connected form:

wtt + wxxxx = 0, x ∈ Ω, t > 0, (3.14a)

w(0, t) = wxx(0, t) = wx(1, t) = 0, (3.14b)

wxxx(1, t) = kwt(1, t), (3.14c)

w(x+
j ) = w(x−j ), wx(x+

j ) = wx(x−j ), wxx(x+
j ) = wxx(x−j ),

j = 1, . . . , N, (3.14d)

[wxxx]xj = wxxx(x+
j , t)− wjxxx(x−j , t) = uj, j = 1, . . . , N, (3.14e)

w(x, 0) = w0(x), wt(x, 0) = w1(x), (3.14f)

where Ω .= (0, x1) ∪ (x1, x2) ∪ · · · ∪ (xN , 1), and x−j and x+
j denote, respectively, the usual

left- and right-hand limits to xj.

The systems (3.1) and (3.14) are weakly equivalent in the sense that they admit the same
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weak solution defined by (3.11). Specifically, we have

Lemma 3.1. Considering weak solutions in C([0, T ]; Φ)⋂C1([0, T ];L2(0, 1)), T < ∞, the
systems (3.1) and (3.14) are equivalent if

αj(t) = −uj(t) = −[wxxx]xj , j = 1, . . . , N. (3.15)

The claim of Lemma 3.1 can be proved by extending the method used in the proof of Theo-
rem 1.1 in [114] to the case of the beam with multiple point-wise interior controls described
by the systems (3.1) and (3.14).

3.3 Control Synthesis and Implementation

Let wd(xj, t) ∈ C∞, for all t <∞, be the reference output at the position xj, for j = 1, . . . , N .
Let ej(t) = w(xj, t) − wd(xj, t), j = 1, . . . , N , be the regulation errors. Denote by e(t) =
(e1(t), . . . , eN(t)) the vector of regulation errors and by u(t) = (u1(t), . . . , uN(t)) the control
vector. The considered regulation problem for set-point control is specified as follows.

Problem 3.1. Find a dynamic control u(t) such that the regulation error satisfies e(t)→ 0
as t→∞.

To utilize the method of ZDI design, we need first to establish the forced zero-dynamics, or
zero dynamics for short, which can be obtained from (3.14) by replacing the input constraints
in (3.14e) by the requirement that the regulation errors vanish identically, i.e., ej(t) = 0, for
j = 1, . . . , N . We obtain then

ξtt + ξxxxx = 0, x ∈ Ω, t > 0, (3.16a)

ξ(0, t) = wxx(0, t) = ξx(1, t) = 0, (3.16b)

ξxxx(1, t) = kξt(1, t), (3.16c)

ξ(x+
j ) = ξ(x−j ), ξx(x+

j ) = ξx(x−j ), ξxx(x+
j ) = ξxx(x−j ),

j = 1, . . . , N, (3.16d)

ξ(xj, t) = wd(xj, t), j = 1, . . . , N, (3.16e)

ξ(x, 0) = ξ0(x), ξt(x, 0) = ξ1(x). (3.16f)

Note that, we can always choose appropriate initial data for the reference system so that
ξ0(x) = ξ1(x) = 0. Therefore, in the following, we will consider only the zero-dynamics with
null initial condition, which will simplify control design.
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To derive the control signal at each control support point, xj, j = 1, . . . , N , we present the
zero-dynamics in a parallel connected form ξ(x, t) = ∑N

j=1 ξ
j(x, t), in which for a fixed index

j, the sub-system of the zero-dynamics is given by:

ξjtt + ξjxxxx = 0, x ∈ (0, xj) ∪ (xj, 1), t > 0, (3.17a)

ξj(0, t) = wxx(0, t) = ξjx(1, t) = 0, (3.17b)

ξjxxx(1, t) = kξjt (1, t), (3.17c)

ξj(x+
j ) = ξj(x−j ), ξjx(x+

j ) = ξjx(x−j ), ξjxx(x+
j ) = ξjxx(x−j ), (3.17d)

ξj(xj, t) = wdj (t), (3.17e)

where wdj (t) is the input to the ξj-subsystem of the zero-dynamics. As the output of the
zero-dynamics satisfies

[ξxxx]xj =
N∑
i=1

[ξixxx]xj = [ξjxxx]xj = uj, (3.18)

for all j = 1, . . . , N , ξ(x, t) = ∑N
j=1 ξ

j(x, t) is a solution to (3.16). Hence, (3.17) and (3.18)
form a dynamic control scheme.

The implementation of the above dynamic control scheme requires solving the dynamic sys-
tem (3.17). For this purpose, we further divide (3.17) into two segments:

ξj−tt (x, t) + ξj−xxxx(x, t) = 0, x ∈ (0, x−j ), t > 0, (3.19a)

ξj−(0, t) = ξj−xx (0, t) = 0, (3.19b)

and

ξj+tt (x, t) + ξj+xxxx(x, t) = 0, x ∈ (x+
j , 1), t > 0, (3.20a)

ξj+x (1, t) = 0, ξj+xxx(1, t) = kξj+t (1, t), (3.20b)

with the joint conditions

ξj(x−j , t) = ξj(x+
j , t) = wdj (t), (3.21a)

ξjx(x−j , t) = ξjx(x+
j , t), (3.21b)

ξjxx(x−j , t) = ξjxx(x+
j , t), (3.21c)

ξjxxx(x+
j , t)− ξjxxx(x−j , t) = [ξjxxx]xj = uj. (3.21d)

We resort then to the method of flat systems, in particular a standard procedure of Laplace
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transform-based method, to find the solution to (3.19) and (3.20) subject to (3.21) [8,59,118].
Let x̃ = x− xj. The general solutions to (3.19) and (3.20) in the Laplace domain are given
by

ξ̂j−(x, s) =k̂1(s)Ĉ1(x, s) + k̂2(s)Ŝ1(x, s) + k̂3(s)Ĉ2(x, s)

+ k̂4(s)Ŝ2(x, s), (3.22a)

ξ̂j+(x, s) =k̂5(s)Ĉ1(x̃, s) + k̂6(s)Ŝ1(x̃, s) + k̂7(s)Ĉ2(x̃, s)

+ k̂8(s)Ŝ2(x̃, s), (3.22b)

where

Ĉ1(x, s) = cosh(
√
isx) + cos(

√
isx)

2 , (3.23)

Ĉ2(x, s) = cosh(
√
isx)− cos(

√
isx)

2is , (3.24)

Ŝ1(x, s) = sinh(
√
isx) + sin(

√
isx)

2
√
is

, (3.25)

Ŝ2(x, s) = sinh(
√
isx)− sin(

√
isx)

2(is) 3
2

. (3.26)

Note that the derivatives of Ĉ1(x, s), Ĉ2(x, s), Ŝ1(x, s), and Ŝ1(x, s) with respect to x are
given by:

Ĉ ′1 = −s2Ŝ2, Ĉ
′
2 = Ŝ1, Ŝ

′
1 = Ĉ1, Ŝ

′
2 = Ĉ2. (3.27)

The boundary condition (3.19b) results in k̂1 = k̂3 = 0. From the joint conditions given in
(3.21), we get

k̂5 = k̂2Ŝ1(xj, s) + k̂4Ŝ2(xj, s), (3.28a)

k̂6 = k̂2Ĉ1(xj, s) + k̂4Ĉ2(xj, s), (3.28b)

k̂7 = −s2k̂2Ŝ2(xj, s) + k̂4Ŝ1(xj, s), (3.28c)

k̂8 = −s2k̂2Ĉ2(xj, s) + k̂4Ĉ1(xj, s)− ûj(s). (3.28d)
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The boundary condition (3.20b) yields:

0 =− s2k̂5Ŝ2(1− xj) + k̂6Ĉ1(1− xj) + k̂7Ŝ1(1− xj)

+ k̂8Ĉ2(1− xj), (3.29a)

0 =k̂5(ksĈ1(1− xj + s2Ŝ1(1− xj)) + k̂6(ksŜ1(1− xj)

+ s2Ĉ2(1− xj)) + k̂7(ksĈ2(1− xj) + s2Ŝ2(1− xj))

+ k̂8(ksŜ2(1− xj)− Ĉ1(1− xj)). (3.29b)

The control can then be derived from (3.28) and (3.29), which reads:

ûj(s) =
(
Ĉ1(1)(Ĉ1(1)− ksŜ2(1))

+sĈ2(1)(kŜ1(1) + sĈ2(1))
)
ŷj(s),

(3.30)

where ŷj(s) ↔ yj(t) is the so-called basic output, or flat output, which plays a central role
in control design.

The control ûj can be written in the form

ûj(s) =
∞∑
n=0

{(
n∑
k=0

(−1)n
(4k)!(4(n− k) + 3)!

)
ks2n+1

−
(

n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 1)!

)
ks2n+1

−
(

n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 2)!

)
s2n+2

−
(

n∑
k=0

(−1)n
(4k)!(4(n− k))!

)
s2n
}
ŷj(s).

(3.31)

Thus, the time domain control signal is given by

uj(t) =
∞∑
n=0

n∑
k=0

(−1)n
(4k)!(4(n− k) + 3)!

)
ky

(2n+1)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 1)!

)
ky

(2n+1)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 2)!

)
y

(2n+2)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k)!(4(n− k))!

)
y

(2n)
j (t).

(3.32)
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Note that the full-state trajectory of the zero-dynamics, ξj(x, t), can also be expressed in
terms of the basic output and its time derivatives. As the control design and analysis do
not use the explicit expression of ξj(x, t), it is omitted here. Moreover, in flatness-based
implementation, the explicit generation of wd(xj, t) is not needed.

3.4 Motion Planning and Closed-loop Stability

The closed-loop stability can be derived by virtute of Theorem 3.1.

Corollary 3.1. If uj(t) (or αj(t)) ∈ L∞(0,∞), for all j = 1, . . . , N , then in closed loop, the
system (3.3) (or (3.1)) with the dynamic control given by (3.17) and (3.18) is stable in the
sense that its trajectory is bounded.

In order to assure the closed-loop stability of the system, we have to choose appropriate basic
outputs yj(t) so that the control input uj(t) is uniformly bounded for all j = 1, . . . , N . For
this purpose, we consider a basic output of the form

yj(t) = ȳjφj(t), j = 1, . . . , N, (3.33)

where φj(t) is a C∞ function that links 0 and 1. In particular, we choose the following φj(t):

φj(t) =



0, t ≤ 0,∫ t
0 exp(−1/(τ(1− τ)))εdτ∫ T
0 exp(−1/(τ(1− τ)))εdτ

, 0 < t < T,

1, t ≥ T,

(3.34)

which is known as the Gevrey function of order σ = 1 + 1/ε, ε > 0 (see, e.g., [116]).

The control given in (3.32) becomes then:

uj(t) =ȳj
{ ∞∑
n=0

n∑
k=0

(−1)n
(4k)!(4(n− k) + 3)!

)
kφ

(2n+1)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 1)!

)
kφ

(2n+1)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k + 2)!(4(n− k) + 2)!

)
φ

(2n+2)
j (t)

−
∞∑
n=0

(
n∑
k=0

(−1)n
(4k)!(4(n− k))!

)
φ

(2n)
j (t)

}
.

(3.35)
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Theorem 3.2. The control uj(t) given in (3.35) is uniformly bounded for any Gevrey function
φj(t) of order 1 < σ < 2.

The proof of Theorem 3.2 can follow a standard procedure (see, e.g., [8,100,118]) and hence,
it is omitted here.

To complete the control design, we need to determine ȳj, j = 1, . . . , N , from the desired
reference profile. For a set-point control problem, we can choose the desired steady-state
profile of the beam as the solution of the static beam equation corresponding to (3.1), which
is of the form

wdxxxx(x) =
N∑
j=1

αjδ(x− xj), x ∈ (0, 1), (3.36a)

wd(0) = wdxx(0) = wdx(1) = wdxxx(0) = 0, (3.36b)

where αj, j = 1, . . . , N , are the steady state control inputs.

The solution to the static beam equation can be expressed in terms of its Green’s function
G(x, x̃j):

wd =
∫ 1

0

N∑
j=1

G(x, x̃)αjδ(x− x̃)dx̃ =
N∑
j=1

G(x, x̃j)αj, (3.37)

where the Green’s function G(x, x̃j) is defined as [16]

G(x, x̃j) =


−x

3

6 + xx̃j

(
1− x̃j

2

)
, 0 ≤ x < x̃j;

−
x̃3
j

6 + x̃jx

(
1− x

2

)
, x̃j ≤ x ≤ 1.

(3.38)

Now taking N points on wd(x), wd(xj), j = 1, ..., N , we obtain

wd(x1)

...
wd(xN)

 =


G(x1, x̃1) . . . G(xN , x̃1)

... . . . ...
G(x1, x̃N) . . . G(xN , x̃N)



α1
...
αN

 . (3.39)

Due to the invertibility of the matrix in (3.39) formed by G(xi, x̃j), xi 6= xj, if i 6= j [15], and
the fact that αj = − limt→∞ uj(t) = ȳj, we obtain:


ȳ1
...
ȳN

 =


G(x1, x̃1) . . . G(xN , x̃1)

... . . . ...
G(x1, x̃N) . . . G(xN , x̃N)


−1

wd(x1)
...

wd(xN)

 . (3.40)
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Now, it remains to asses the solution developed for Problem 3.1.

Proposition 3.1. Assume that the condition given in Theorem 3.1 is fulfilled. Let the basic
outputs be given by (3.33) with φj(t) generated from (3.34), with an order 1 < σ < 2 for
j = 1, . . . , N . Let the reference signals are chosen as wd(xj, t) = wd(xj), j = 1, . . . , N . Then
the dynamic control scheme (3.17)-(3.18) with the implementation given by (3.35) solves
Problem 3.1, i.e., ej(t) = wj(xj, t)− wd(xj, t)→ 0 as t→∞, for j = 1, . . . , N .

The proof of Proposition 3.1 can follow the development presented in Section III of [31].
Note that a key fact used in the proof is that the homogeneous PDE (with αj(t) = 0, for
j = 1, . . . , N) associated with (3.1) (or (3.3)) is exponentially stable.

3.5 Simulation

To illustrate the developed control algorithm, we performed a numerical study on a represen-
tative beam. Note that, in the simulation, all the variables are in the normalized coordinates
and all the parameters are dimensionless.

The desired steady state profile considered in the simulation is given by:

wref(x) = 3× 10−3

1 +
(10x− c1

a1

)2b1
+ 6× 10−3

1 +
(10x− c2

a2

)2b2

+ 4× 10−3

1 +
(10x− c3

a3

)2b3
(3.41)

with a1 = a2 = 1, a3 = 0.6, b1 = b2 = b3 = 4, c1 = 3, c2 = 5, and c3 = 7.5, as shown in
Fig. 3.1(a).

As in general, the desired steady state profile wref(x) may not be a solution to the static beam
equation (3.36), we use the Green’s functions to interpolate wref(x). Indeed, the accuracy of
interpolation depends on the number of actuators. As shown in Fig. 3.1(a), the system with
19 actuators offers an adequate performance, which is the setup used in the simulation. The
corresponding static controls are shown in Fig. 3.1(b).

A MATLAB Toolbox provided in Chapter 14 of [138] is used in the numerical implementation.
The initial data used in the simulation are chosen as w(x, 0) = −10−3 × cos(πx). As the
gain-margin of the stabilizing feedback control located at x = 1 is k ∈ (0,∞), the value of k
is determined through numerical experiments, and it is taken as k = 2. The interior controls
are smooth functions connecting 0 and αj, j = 1, . . . , N , as given in (3.34) and (3.35) with
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Figure 3.1 Static profile: (a) interpolation of reference curve; (b) static controls.
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ε = 1.111. The evolution of the beam shape and the regulation errors is shown in Fig. 3.2.
It can be seen from Fig. 3.2(a) that the initial disturbance has been damped out quickly and
the beam has been deformed to the desired form. Furthermore, Fig. 3.2(b) shows that the
regulation errors tend to zero identically along the beam. The simulation results confirmed
the behavior of the system predicted by theoretical analysis.

(a)

(b)

Figure 3.2 Solution surfaces: (a) beam deformation; (b) regulation error.

3.6 Conclusion

This paper presented a dynamic control scheme for deformation control of an Euler-Bernoulli
beam with point-wise interior actuation. The control synthesis is based on the method of
ZDI, and the control scheme for a set-point regulation problem is realized by utilizing the
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method of flat system. It should be noticed that the construction of zero-dynamics for output
regulation of many boundary or interiorly controlled PDEs is straightforward and hence, the
control design can be carried out in a systematic manner. As the ZDI design does not
invoke any early truncations, it can be expected that the performance guaranteed by the
design process can be preserved with appropriate implementations. Finally, the method of
ZDI provides the possibility to establish a connection with a more generic framework, namely
geometric regulation theory (see, e.g., [13]), and is applicable for a wide range of PDE control
problems.
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CHAPTER 4 ARTICLE 2: ASYMPTOTIC OUTPUT TRACKING FOR A 
CLASS OF SEMILINEAR PARABOLIC EQUATIONS: A

SEMIANALYTICAL APPROACH

This chapter is reproduced from the paper [140].

Authors: Kaijun Yang, Jun Zheng, and Guchuan Zhu.

Abstract— This paper addresses the problem of asymptotic tracking control of a class of
semi-linear parabolic equations with pointwise in-domain actuation. First, the assessment of
the well-posedness of the considered systems is performed, and then the stability of bound-
ary controlled systems is analysed via Chaffee-Infante equation and Fisher’s equation. The
application of the zero dynamics inverse design results in a dynamic control scheme that is
implemented by using the technique of trajectory planning for flat systems and the Adomian
decomposition method. The convergence of the solution of the original systems to that of the
corresponding zero dynamics and the convergence of the solution expressed by an Adomian
series are also analysed. Numerical simulations are carried out to illustrate the effectiveness
of the developed approach.

Index Terms—Semi-linear parabolic equations; Zero dynamics; Adomian decompositon
method; Differential flatness.

4.1 Introduction

Asymptotic output tracking is an important method that enables a control system to track
reference trajectories with vanishing tracking errors. The theory of asymptotic output regu-
lation was originally developed for the control of finite-dimensional nonlinear systems [39,40]
and then, it has been extended to infinite-dimensional systems described by, e.g., partial
differential equations (PDEs) in a series work of Byrnes et al. [27–32, 34, 35]. A basic ap-
proach for asymptotic output regulation of infinite-dimensional systems is the method of zero
dynamics inverse that has been applied to the control of a great variety of PDEs, such as
heat equations, Burgers’ equation, Kuramoto-Sivashinsky equation, etc. [13, 34]. Note that
the concept of zero dynamics of infinite-dimensional systems is an extension of the same one
in the theory of output regulation of finite-dimensional systems [39,40]. The method of zero
dynamics inverse can be used in the control of PDEs with inputs and outputs located in the
domain and/or on the boundary. Essentially, the zero dynamics inverse design results in a
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dynamic control scheme. A main difficulty in the implementation of such a control scheme
is that it requires to solve online the zero dynamics that are also described by a PDE. A
solution to get rid of this problem is the use of static control derived from the zero dynamics
at the equilibrium, which requires only to solve a steady PDE [13, 34]. Dynamic control
schemes derived from the zero dynamics have been developed for the in-domain control of a
one-dimensional linear heat equation [145] and the Euler-Bernoulli beam [139]. The dynamic
control is implemented by resorting to the method of flat systems, which is also originally
developed for the control of finite-dimensional nonlinear systems [58, 89] and has been ex-
tended to the control of PDEs [8, 59, 87, 100, 111, 118]. One of the particular feature offered
by the method of flat systems is that the trajectory of a PDE can be explicitly computed
from the so-called flat outputs and their time-derivatives [100,118].

The aim of this paper is to extend the approach developed in the previous work [139,145] to
a class of semi-linear parabolic PDEs with in-domain control and a nonlinear term that can
be expressed as a polynomial. It should be noted that certain boundary controlled nonlinear
parabolic PDEs can be converted to a linear one by using Hopf-Cole transformation [47,72].
However, it is straightforward to show that this technique is not applicable to systems with
in-domain controls. On the other hand, solving online nonlinear PDEs, such as the zero
dynamics associated to the problems considered in this work, is of a great computational
burden. Therefore, there is a need to develop computationally efficient solutions for the
implementation of dynamic control of nonlinear parabolic PDEs. This motivated the work
presented in this paper.

The approach developed in this work is to use the technique of flatness-based trajectory
planning and Adomian decomposition method (ADM) to solve the zero dynamics involved in
the dynamic controller. Adomian decomposition is a semi-analytic method for solving generic
functional equations [4,62]. With ADM, the solution to a functional equation is expressed by
a series, which can be seen as a generalization of Taylor series. A particular feature of this
method is that the Adomian polynomials in Adomian series can be computed recursively from
an initial approximation of the solution to the corresponding equation. It has been shown that
Adomian series exhibits a very fast convergence [107], and this technique becomes a powerful
tool in numerical analysis of a wide range of both static and evolutional PDEs [1,43,55]. In
the context of implementation of dynamic in-domain control, we use ADM to solve the zero
dynamics by taking the solution to the corresponding linear parabolic equation as the initial
approximation, which can be obtained by applying the technique development in the previous
work [145]. Note that the technique of flat systems can be straightforwardly applied to solve
motion planning problems of nonlinear PDEs under boundary control [95, 101]. However,
as with the proposed approaches the ansatz solutions are expressed as a power series, they
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cannot be applied to systems with multiple in-domain inputs due to the fact that it requires
to expend the power series around multiple points. Therefore, there is a need to develop
suitable solutions for this type of problems. To assure the validity of the proposed approach,
we will assess the well-posedness of the considered semi-linear parabolic PDEs and address
the stability, the convergence of the solution to the zero dynamics to that for the original
systems, and the convergence of Adomian series solution to the zero dynamics through two
typical PDEs, namely Chaffee-Infante equation and Fisher’s equation.

The rest of the paper is organized as follows. Section 4.2 presents the setting of the considered
semi-linear parabolic PDEs along with their well-poseness and stability analysis. The zero
dynamics inverse design process and the method of Adomian decomposition are introduced in
Section 4.3. The implementation of the dynamic in-domain control for semi-linear parabolic
PDEs is detailed in Section 4.4. Numerical simulation is conducted in Section 4.5, followed
by some concluding remarks given in Section 4.6.

4.2 Problem Statement and Stability Analysis

4.2.1 Problem Statement

This work addresses the in-domain control of semi-linear parabolic equations of the following
form:

wt − αwxx = f(w) +
n∑
i=1

δi(x− xi)ui(t), x ∈ (0, 1), t > 0,

wx(0, t) = k1w(0, t), wx(1, t) = −k2w(1, t),

w(x, 0) = ϕ(x),

Ciw = w(xi, t), i = 1, . . . , n,

(4.1)

where α is a positive constant, f(w) is the nonlinear term on R, the set of all real numbers,
which can be expressed as f(w) = ∑P

i=1 βiw
i with a positive integer P > 1. ki > 0, i = 1, 2,

are the proportional boundary feedback control gains, δi, i = 1, . . . , n, are the Dirac functions
supported at the point xi ∈ (0, 1) for i = 1, . . . , n, ui is the in-domain control located
at xi, and Ci, i = 1, . . . , n, are the output operators. It is supposed that the initial data
ϕ(x) ∈ L2(0, 1). We denote hereafter by w(xi, t), i = 1, . . . , n, the output signals.

We consider first the well-posedness of the control system (4.1). We introduce first of all some
notations. Z+ denotes the set of all positive integers. Let L2(0, 1) represent the space of 2nd
order absolutely integrable real functions defined on [0, 1] equipped with the norm ‖v‖L2 =(∫ 1

0 |v(x)|2dx
)1/2

, which can be equipped with an inner product defined as 〈u, v〉 =
∫ 1

0 uvdx,
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for any u, v ∈ L2(0, 1). Let g be a measurable real-valued function. Define the essential
supremum of g as ess sup g = inf {a ∈ R| |{g > a}| = 0}. Then ‖v‖∞ = ess sup{|v(x)|;x ∈
(0, 1)}, ‖w‖∞,∞ = ess supt∈(0,∞) ‖w(·, t)‖∞. The Sobolev space Hm(0, 1) is the space of real
functions in L2(0, 1) with derivatives of order less than or equal to m in L2(0, 1). The norm
of the Sobolev space H1(0, 1) is defined as

‖v‖2
H1 =

∫ 1

0
v2
xdx+ k1|v(0)|2 + k2|v(1)|2. (4.2)

The Sobolev space H−1(0, 1) is defined as the dual space of H1
0 (0, 1). Introduce an operator

A = −α d2

dx2 defined in

D(A) =
{
v ∈ H2(0, 1) : vx(0) = k1v(0), vx(1) = −k2v(1)

}
. (4.3)

Then, A is a positive self-adjoint operator, whose inverse A−1 is compact. Due to the Hill-
Yosida theorem [142], the linear operator −A is the infinitesimal generator of a strongly
continuous semigroup e−At. The eigenvalues of A, denoted by λi, i = 1, . . . ,∞, can be
estimated as α(i−1)2π2 < λi < αi2π2 (see, e.g., Reference [41]). Specially, α

(
π
2

)2
< λ1 < απ2

if
√
k1k2 >

π
2 . Denote by ψi the corresponding eigenvector, which is uniformly bounded [41].

Then, there exists a real-valued constant L > 0 such that [28]
∥∥∥e−Atφ∥∥∥

L2
≤ e−Lt ‖φ‖L2 , φ ∈ L2(0, 1), ∀t ≥ 0. (4.4)

Note that the parameter L depends on k1 and k2. Specifically, α
(
π
2

)2
< L < απ2 if

√
k1k2 >

π
2

[28].

Let As, s ∈ R, be a fractional power of A on the domain

D(As) =
{
ϕ ∈ L2(0, 1) :

∞∑
i=1

λ2s
i |〈ϕ, ψi〉|2 <∞

}
, (4.5)

which is defined as for ϕ ∈ D(As)

Asϕ =
∞∑
i=1

λsi 〈ϕ, ψi〉ψi. (4.6)

In particular [41],
√
α‖ϕ‖H1 = ‖A1/2ϕ‖L2 , (4.7)
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and
‖ϕ‖2

L2 ≤
α

λ1
‖ϕ‖2

H1 . (4.8)

Note that the norm ‖ · ‖H1 defined in (4.2) is equivalent to the usual norm of the Sobolev
space H1(0, 1) [41], since

1
max (2(k0 + k1), (1 + k1 + k2))‖ϕ‖

2
H1 ≤

∫ 1

0
|ϕx|2dx+

∫ 1

0
|ϕ|2dx ≤ (1 + λ−1

1 )‖ϕ‖2
H1 . (4.9)

We recall the following inequality [70]:
∥∥∥Ase−Atv∥∥∥

L2
≤ κt−se−Lt‖v‖L2 ,∀v ∈ L2(0, 1), s, t > 0. (4.10)

The control system (4.1) can then be expressed as an abstract differential equation:

d
dtw + Aw = Bu+ f(w),

w(0) = ϕ,

y = Cw,

(4.11)

where u = (u1, . . . , un)T and y = (y1, . . . , yn)T represent, respectively, the input and the
output, and B : Rn → D′(A), the dual space of D(A), Bv = ∑n

i=1 viδi(x), v = (v1, . . . , vn)T ∈
Rn, and C = (C1, . . . , Cn)T denote, respectively, the input and output operators.

In the subsequent development, the inequalities given in the following lemmas will be exten-
sively used.

Lemma 4.1. [41] For any w ∈ H1(0, 1) and 2 ≤ q ≤ ∞, we have

‖w‖Lq ≤ η‖w‖θH1‖w‖1−θ
L2 , (4.12)

where θ = 1/2− 1/q , and η = 23/4
(
3 + 2αλ−1

1

)1/4
.

Lemma 4.2. [143] Let k > 0, g ∈ C([0,∞)) with g(0) = 0. Assume that a non-negative ab-
solutely continuous function y : [0,∞)→ [0,∞) satisfies the following differential inequality

ẏ ≤ −(k − g(y))y, t ≥ 0. (4.13)

Then, there exists r∗ > 0 such that for any y(0) ≤ r∗,

y(t) ≤ e−
k
2 ty(0), t ≥ 0. (4.14)
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We present first the well-posedness of the system (4.1), which can be transformed into an
integrated equation by Duhamel’s principle [70]. Note that the well-posedness of semi-linear
parabolic equations has been intensively addressed in the literature [85, 143]. However, in
the considered setting, the non-homogeneous term ∑n

i=1 δui(t) belongs to D′(A) rather than
D(A). Therefore, the existing results on the well-posedness of semi-linear parabolic equations
cannot be directly applied.

Theorem 4.1. Assume the in-domain controllers ui ∈ C0(R) for i = 1, . . . , n, and the initial
data ϕ ∈ H1(0, 1). Then, there exists T > 0 such that the boundary and initial-value problem
(BIVP) (4.1) admits a unique solution on [0, T ] and w ∈ C([0, T ], H1(0, 1)).

Proof. By Duhamel’s principle [70], the BIVP (4.1) can be reformulated as an integral equa-
tion

w(t) = e−Atϕ+
∫ t

0
e−A(t−τ)

n∑
i=1

δiui(τ)dτ +
∫ t

0
e−A(t−τ)f(w(s))dτ, t > 0. (4.15)

The proof is based on the method of successive iterations starting with the solution of the
linear part w0 = e−Atϕ+

∫ t
0 e
−A(t−τ)∑n

i=1 δiui(τ)dτ . By the definition of the fractional power
of A, we obtain

∞∑
j=1

λ
− 4

5
j |〈δi, ψj〉|2 =

∞∑
j=1

λ
− 4

5
j |ψj(xi)|2 ≤ Λ

∞∑
j=1

j−
8
5 <∞, i = 1, · · · , n, (4.16)

where Λ is a positive constant, which implies that δi ∈ D(A− 2
5 ). Thus we have

‖w0 − ϕ‖H1 =(
√
α)−1

∥∥∥A1/2w0 − A1/2ϕ
∥∥∥
L2

≤(
√
α)−1

∥∥∥A1/2e−Atϕ− A1/2ϕ
∥∥∥
L2

+ (
√
α)−1

∫ t

0

∥∥∥∥∥A1/2e−A(t−τ)
n∑
i=1

δiui(τ)
∥∥∥∥∥
L2

dτ

≤(
√
α)−1

∥∥∥A1/2e−Atϕ− A1/2ϕ
∥∥∥
L2

+ (
√
α)−1

∫ t

0

∥∥∥∥∥A1/2A
2
5 e−A(t−τ)A−

2
5

n∑
i=1

δiui(τ)
∥∥∥∥∥
L2

dτ

≤(
√
α)−1

∥∥∥A1/2e−Atϕ− A1/2ϕ
∥∥∥
L2

+ (
√
α)−1

∫ t

0
κ(t− τ)− 9

10 e−L(t−τ)ui(τ)
∥∥∥∥∥
n∑
i=1

A−
2
5 δi

∥∥∥∥∥
L2

dτ.

(4.17)

Note that e−At converges to the identical operator when t tends to 0. As ui(t) ∈ C0(R), i =
1, . . . , n, we choose a small t = T1 such that ‖w0 − ϕ‖H1 ≤ ε

2 . The general term wm+1 can
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be defined recursively in terms of w0 and wm as following:

wm+1 = w0 +
∫ t

0
e−A(t−τ)f(wm(τ))dτ, m ≥ 0. (4.18)

By the induction method, assuming that {wi, i = 1, . . . ,m} ∈ Bε(ϕ), where Bε(ϕ) = {v ∈
H1(0, 1) : ‖v − ϕ‖H1 < ε}, and due to Lemma 4.1, for all v ∈ Bε(ϕ)

‖v‖∞ ≤ η‖v‖1/2
L2 ‖v‖1/2

H1 ≤
α1/4η

λ
1/4
1
‖v‖H1 ≤ α1/4η

λ
1/4
1
‖v − ϕ‖H1 + α1/4η

λ
1/4
1
‖ϕ‖H1

≤ α1/4η

λ
1/4
1

ε+ α1/4η

λ
1/4
1
‖ϕ‖H1

(4.19)

and

‖f(v)‖H1 ≤
√
k1|f(v(0))|+

√
k2|f(v(1))|+ ‖f ′(v)vx‖L2

≤
√
k1M1 +

√
k2M1 +M2‖v‖H1

≤
√
k1M1 +

√
k2M1 +M2 (ε+ ‖ϕ‖H1)

<∞,

(4.20)

where

M1 = max
|x|≤ηα1/4λ

−1/4
1 ε+ηα1/4λ

−1/4
1 ‖ϕ‖H1

|f(x)|,

M2 = max
|x|≤ηα1/4λ

−1/4
1 ε+ηα1/4λ

−1/4
1 ‖ϕ‖H1

|f ′(x)|.
(4.21)

Therefore, there exists T < T1 such that

T (
√
α)−1 sup

v∈Bε(ϕ)
‖f(v)‖H1 ≤ ε

2 , (4.22)
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which yields

sup
t∈(0,T )

‖wm+1(t)− ϕ‖H1 ≤ sup
t∈(0,T )

‖wm+1 − w0‖H1 + ‖w0 − ϕ‖H1

≤ (
√
α)−1 sup

t∈(0,T )

∫ t

0

∥∥∥A1/2e−A(t−τ)f(wm)
∥∥∥
L2

dτ + ε

2

≤ (
√
α)−1 sup

t∈(0,T )

∫ t

0
e−L(t−τ)‖f(wm)‖H1dτ + ε

2

≤ T (
√
α)−1 sup

v∈Bε(ϕ)
‖f(v)‖H1 + ε

2

≤ ε.

(4.23)

Therefore, wm ∈ Bε(ϕ), i = 0, 1, . . . ,∞. We define an operator Q : C([0, T ], Bε(ϕ)) →
C([0, T ], Bε(ϕ)) such that for any T < T1 :

Qw = w0 +
∫ t

0
e−A(t−τ)f(w(s))dτ. (4.24)

As f ∈ C2(R) is locally Lipschitz continuous in space H1(0, 1), the operator Q is contracted
in a sufficiently small time interval. By the Banach fixed point theorem, there exists a
unique solution w to the integral equation in a complete metric space C([0, T ], Bε(ϕ)), which
concludes that w ∈ C([0, T ], H1(0, 1)).

Remark 4.1. From the proof of Theorem 4.1, we know that the theorem can be extended to
the case of f ∈ C2.

To facilitate the subsequent development, we assume hereafter that k1 and k2 satisfy
√
k1k2 >

π
2 .

4.2.2 Stability of Boundary Controlled Semi-linear Parabolic PDEs

It should be noted that one of the essential conditions for the application of the method of
zero dynamics inverse is that the homogenous version of the original system (the one without
in-domain control in the considered problem) should be (at least locally) exponentially stable
[13]. This property can be achieved by suitable boundary feedback control as proposed in the
work [28,35], which is indeed the one used in this paper. Thus, we address first the stability
of the boundary controlled semi-linear parabolic PDEs of the following form:

wt − αwxx = f(w), x ∈ (0, 1), t > 0

wx(0, t) = k1w(0, t), wx(1, t) = −k2w(1, t),

w(x, 0) = ϕ,

(4.25)
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which is the homogenous counterpart of the system (4.1).

Due to the complexity of different PDE systems, it is almost impossible to assess the stability
for a general setting of PDEs. For this reason, we consider below two particular PDEs, namely
Chaffee-Infante equation and Fisher’s equation. Nevertheless, the developed method may be
applicable to other types of parabolic PDEs.

4.2.2 Stability of Boundary Controlled Chafee-Infante Equation
Chaffee-Infante equation with boundary feedback control can be expressed as

wt − αwxx = −γw(w2 − r), x ∈ (0, 1), t ∈ [0,∞),

wx(0, t) = k1w(0, t), wx(1, t) = −k2w(1, t),

w(x, 0) = ϕ,

(4.26)

where α, γ, and r are positive constants, ϕ represents the initial data, and k1, k2 are propor-
tional feedback control parameters.

Theorem 4.2. Let the initial data ϕ ∈ L2(0, 1). Then, the system (4.26) is globally expo-
nentially stable in L2-norm provided λ1 > rγ, where λ1 is the first eigenvalue of the operator
A.

Proof. Multiply both sides of (4.26) by w to obtain

∫ 1

0
wtwdx = α

∫ 1

0
wxxwdx−

∫ 1

0
γw2(w2 − r)dx. (4.27)

Due to the boundary conditions, applying integration by parts yields

∫ 1

0
wtwdx+ α

∫ 1

0
wxwxdx+ αk1w(0, t)2 + αk2w(1, t)2 =

∫ 1

0
−γw2(w2 − r)dx. (4.28)

Then we obtain

1
2
d
dt‖w‖

2
L2 + α

∫ 1

0
w2
xdx+ αk1w(0, t)2 + αk2w(1, t)2

=rγ
∫ 1

0
w2dx− γ

∫ 1

0
w4dx

≤rγ‖w‖2
L2 ,

(4.29)

which implies that

d
dt‖w‖

2
L2 ≤ −2α‖w‖2

H1 + 2rγ‖w‖2
L2

≤ −2(λ1 − rγ)‖w‖2
L2 .

(4.30)
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Therefore, ‖w‖L2 decays to 0 exponentially if λ1 − rγ > 0.

4.2.2.2 Stability of Boundary Controlled Fisher’s Equation
Fisher’s equation is a reaction diffusion equation and can be used to describe some phe-
nomenons in biology [106]. Consider the following boundary controlled Fisher’s equation:

wt − αwxx = rw(1− w), x ∈ (0, 1), t ∈ [0,∞),

wx(0, t) = k1w(0, t), wx(1, t) = −k2w(1, t),

w(x, 0) = ϕ,

(4.31)

where r, k1 and k2 are positive constants, and ϕ is the initial condition.

We provide below a local stability result for Fisher’s equation.

Theorem 4.3. Let λ1 > r, where λ1 is the first eigenvalue of the operator A, and the initial
data ϕ ∈ L2(0, 1). Then, there exists a constant ρ1 > 0 such that for any ‖ϕ‖L2 ≤ ρ1, the
system (4.31) is exponentially stable in the sense of L2-norm.

Proof. Multiply both sides of (4.31) by w to obtain

∫ 1

0
wtwdx = α

∫ 1

0
wxxwdx+

∫ 1

0
rw2(1− w)dx. (4.32)

Due to the boundary conditions and making integration by parts, it yields

∫ 1

0
wtwdx+ α

∫ 1

0
wxwxdx+ αk1wx(0, t)2 + αk2wx(1, t)2 =

∫ 1

0
rw2(1− w)dx. (4.33)

Then we have

1
2
d
dt‖w‖

2
L2 + α

∫ 1

0
w2
xdx+ αk1w(0, t)2 + αk2w(1, t)2

=r
∫ 1

0
w2dx− r

∫ 1

0
w3dx

≤r‖w‖2
L2 + rη3‖w‖

1
2
H1‖w‖

5
2
L2

≤r‖w‖2
L2 + α1/4rη3

λ
1/4
1
‖w‖H1‖w‖2

L2

≤r‖w‖2
L2 + ε‖w‖2

H1 + α1/2r2η6

4ελ1/2
1
‖w‖4

L2 ,

(4.34)
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which implies that

d
dt‖w‖

2
L2 ≤ −2(α− ε)‖w‖2

H1 + 2r‖w‖2
L2 + 2α

1/2r2η6

4ελ1/2
1
‖w‖4

L2

≤ −2(λ1 − r − ελ1α
−1)‖w‖2

L2 + 2α
1/2r2η6

4ελ1/2
1
‖w‖4

L2 .

(4.35)

Therefore, we choose a ε > 0 such that α(λ1−r)
λ1

> ε. Applying Lemma 4.2, there exits a
constant ρ1 > 0, so that if ‖ϕ‖L2 ≤ ρ1, then ‖w‖L2 decays to 0 exponentially.

4.3 Zero Dynamics Inverse-based In-domain Control Design

For in-domain control, we resort to the method of zero dynamics inverse-based output regula-
tion. In this section, we will establish first the zero dynamics corresponding to the semi-linear
PDEs with in-domain control, from which the dynamic control will be deduced. For the im-
plementation of the dynamic control scheme, we need to solve the zero dynamics, which will
be achieved by using the Adomian decomposition method.

4.3.1 Asymptotic Output Regulation and Zero Dynamics

To establish the zero dynamics, we first transform (4.1) into an equivalent form:

wt − αwxx = f(w), x ∈ Ω, t > 0,

wx(0, t) = k1w(0, t), wx(1, t) = −k2w(1, t),

[w(x, t)]x=xi = 0, i = 1, . . . , n,

Biw = [wx(x, t)]x=xi = ui, i = 1, . . . , n,

w(x, 0) = ϕ,

Ciw = w(xi, t), i = 1, . . . , n,

(4.36)

where Ω , (0, x1) ∪ (x1, x2) ∪ · · · ∪ (xn−1, xn) ∪ (xn, 1), and [v(x)]x=xi = v(x+
i )− v(x−i ), with

v(x+
i ) and v(x−i ) denoting, respectively, the right and the left limits of v(x) at the point

xi. Note that the equivalence between the formulations given in (4.1) and (4.36) have been
assessed in Reference [145] using the technique presented in Reference [114].

Zero dynamics are defined by a system that constrains its outputs toward the reference
signals. Specifically, let ydi , i = 1, . . . , n, be the desired outputs at the set-point and yri (t),
i = 1, . . . , n, be the reference signals that the outputs w(xi, t), i = 1, · · · , n, should track to
attain their desired set-point values ydi , i = 1, · · · , n, namely, yri (t) → ydi as t → ∞. The
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objective of output regulation is to find in-domain control laws with which the tracking errors
of the system (4.1)

ei(t) = w(xi, t)− yri (t), i = 1, . . . , n, (4.37)

converge to 0 asymptotically:

lim
t→∞

ei(t) = 0, i = 1, . . . , n. (4.38)

The zero dynamics can then be expressed as

ξt − αξxx = f(ξ), x ∈ Ω, t > 0,

ξx(0, t) = k1ξ(0, t), ξx(1, t) = −k2ξ(1, t),

Ciξ = ξ(xi, t) = yri (t), i = 1, . . . , n,

[ξ(x, t)]x=xi = 0, i = 1, . . . , n,

ξ(x, 0) = 0,

Biξ = [ξx(x, t)]x=xi = ui, i = 1, . . . , n.

(4.39)

Note that the initial condition of the zero dynamics can be arbitrary. Obviously, the most
convenient one is to set it to 0. Note also that the outputs of the zero dynamics ui(t),
i = 1, . . . , n, are the in-domain control signals. The schematic diagram of the closed-loop
control system is shown in Fig. 4.1.

Figure 4.1 Zero-dynamic inverse-based in-domain control.

In order that the in-domain control generated by the zero dynamics can achieve an asymptotic
output regulation, we need to guarantee that the original system converge to the correspond-
ing zero dynamics. Again, as it is in general not possible to assess this convergence for the
generic setting of semi-linear parabolic PDEs, we will study the cases for Chaffee-Infante
equation and Fisher’s equation, respectively.
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4.3.2 Asymptotic Output Regulation of Chaffee-Infante Equation

For the convergence of the solution to Chaffee-Infante equation to that of its zero dynamics
as t tends to ∞, we have the following result.

Theorem 4.4. Let λ1 > rγ + 3γ‖ξ‖2
∞,∞, where λ1 is the first eigenvalue of the operator A,

and the initial data ϕ ∈ H1(0, 1). Then there exists a constant ρ2 > 0 such that for any
‖ϕ‖L2 ≤ ρ2, the solution to the in-domain controlled Chaffee-Infante equation exponentially
converges to that of its zero dynamics as t tends to ∞ in space H1(0, 1). Furthermore,
limt→∞ ei(t) = 0, i = 1, . . . , n.

Proof. Let w and ξ be the solutions to the in-domain controlled Chaffee-Infante equation
and its zero dynamics, respectively. We denote ‹w = w − ξ. By subtracting the in-domain
controlled Chaffee-Infante equation to its zero dynamics, we have‹wt − α‹wxx = rγ‹w − γ ((‹w + ξ)3 − ξ3

)
,‹wx(0, t) = k1‹w(0, t), ‹wx(1, t) = −k2‹w(1, t),‹w(x, 0) = ϕ(x).

(4.40)

Multiplying both sides of (4.40) by ‹w and taking the L2(0, 1) inner product, we have

1
2
d
dt‖
‹w‖2

L2 + α‖‹w‖2
H1 = rγ‖‹w‖2 − γ

∫ 1

0

(‹w4 + 3‹w3ξ + 3‹w2ξ2
)
dx. (4.41)

By Lemma 4.1 and Young inequality [65], we get

d
dt‖
‹w‖2

L2 + 2α‖‹w‖2
H1 ≤2rγ‖‹w‖2

L2 + 6γ‖ξ‖∞
∫ 1

0
|‹w|3dx+ 6γ‖ξ‖2

∞

∫ 1

0
‹w2dx

≤
(
2rγ + 6γ‖ξ‖2

∞

)
‖‹w‖2

L2 + ε1‖‹w‖2
H1 + 9α1/2γ2η6‖ξ‖2

∞

ε1λ
1/2
1

‖‹w‖4
L2 ,

(4.42)

which implies that

d
dt‖
‹w‖2

L2 ≤ −
(
(2α− ε1)α−1λ1 − 2rγ − 6γ‖ξ‖2

∞,∞

)
‖‹w‖2

L2 +
9α1/2γ2η6‖ξ‖2

∞,∞

ε1λ
1/2
1

‖‹w‖4
L2 .

(4.43)

Thus, choosing ε1 > 0 such that 2αλ1−α(2rγ+6γ‖ξ‖2
∞,∞)

λ1
> ε1, due to Lemma 4.2, there exists

a constant ρ2, k3 > 0 such that for ‖ϕ‖L2 ≤ ρ2, w converges to 0 exponentially in L2-norm,
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namely,
‖‹w(·, t)‖2

L2 ≤ e−k3t‖ϕ‖2
L2 , t ∈ [0,∞). (4.44)

Multiplying (4.42) by e 1
2k3t yields

d
dt
(
e

1
2k3t‖‹w‖2

L2

)
+
(

2α−
2rγ + 6γ‖ξ‖2

∞,∞

λ1
− ε1

)
e

1
2k3t‖‹w‖2

H1

≤1
2k3e

1
2k3t‖‹w‖2

L2 +
9α1/2γ2η6‖ξ‖2

∞,∞

ε1λ
1/2
1

e
1
2k3t‖‹w‖4

L2

≤1
2k3e

− 1
2k3t‖ϕ‖2

L2 +
9α1/2γ2η6‖ξ‖2

∞,∞

ε1λ
1/2
1

e−
3
2k3t‖ϕ‖4

L2 .

(4.45)

Integrating from 0 to t, we have
∫ t

0
e

1
2k3s‖‹w(·, s)‖2

H1ds ≤M3(‖ϕ‖L2), t ∈ [0,∞), (4.46)

where M3(‖ϕ‖L2) depends on ‖ϕ‖L2 . Take the L2-inner product of (4.40) with −‹wxx to
obtain

−
∫ 1

0
‹wt‹wxxdx+ α

∫ 1

0
‹w2
xxdx = −rγ

∫ 1

0
‹wxx‹wdx+ γ

∫ 1

0

(‹wxx‹w3ξ + 3‹wxx‹w2ξ + 3‹wxx‹wξ2
)
dx.

(4.47)



61

Based on Lemma 4.1, we obtain

d
dt‖
‹w‖2

H1 + 2α‖‹wxx‖2
L2 =− 2rγ

∫ 1

0
‹wxx‹wdx+ 2γ

∫ 1

0

(‹wxx‹w3ξ + 3‹wxx‹w2ξ + 3‹wxx‹wξ2
)
dx

≤ε2‖‹wxx‖2
L2 + r2γ2

ε2
‖‹w‖2

L2 + ε3‖‹wxx‖2
L2 + γ2

ε3
‖ξ‖2

∞

∫ 1

0
‹w6dx

+ ε4‖‹wxx‖2
L2 + 9γ2

ε4
‖ξ‖2

∞

∫ 1

0
‹w4dx+ ε5‖‹wxx‖2

L2 + 9γ2

ε5
‖ξ‖4

∞‖‹w‖2
L2

≤ (ε2 + ε3 + ε4 + ε5) ‖‹wxx‖2
L2 +

(
r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞

)
‖‹w‖2

L2

+ γ2

ε3
‖ξ‖2

∞

∫ 1

0
‹w6dx+ 9γ2

ε4
‖ξ‖2

∞

∫ 1

0
‹w4dx

≤ (ε2 + ε3 + ε4 + ε5) ‖‹wxx‖2
L2 +

(
r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞

)
‖‹w‖2

L2

+ γ2

ε3
η6‖ξ‖2

∞‖‹w‖2
H1‖‹w‖4

L2 + 9γ2

ε4
η4‖ξ‖2

∞‖‹w‖H1‖‹w‖3
L2

≤ (ε2 + ε3 + ε4 + ε5) ‖‹wxx‖2
L2 +

(
r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞

)
‖‹w‖2

H1

+
(
αγ2

ε3λ1
η6‖ξ‖2

∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ
3/2
1

η4‖ξ‖2
∞

)
‖‹w‖4

H1 ,

(4.48)

where we have already used the fact that
∫ 1

0 ‹wtx‹wx =
∫ 1
0 ‹wxt‹wxdx in the above inequality,

which can be derived as follows: Choose a sequence {‹wm}∞m=1 ⊂ C∞((0, T ) × (0, 1)) such
that ‹wm → ‹w in H1(0, T,H2(0, 1)). For every ‹wm, the following equality holds,

∫ 1
0 ‹wmtx‹wmx =∫ 1

0 ‹wmxt‹wmx dx. Thus, ∫ 1
0 ‹wtx‹wx =

∫ 1
0 ‹wxt‹wxdx as m→∞.

By choosing the constants ε2, ε3, ε4, ε5 > 0 such that 2α > ε2 + ε3 + ε4 + ε5, then we have

d
dt‖
‹w‖2

H1 ≤
(
r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞,∞

)
‖‹w‖2

H1 +
(
αγ2

ε3λ1
η6‖ξ‖2

∞,∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ
3/2
1

η4‖ξ‖2
∞,∞

)
‖‹w‖4

H1 .

(4.49)

Multiplying by e 1
2k3t, we obtain

d
dt
(
e

1
2k3t‖‹w‖2

H1

)
≤
(
r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞,∞

)
e

1
2k3t‖‹w‖2

H1 + 1
2k3e

1
2k3t‖‹w‖2

H1

+
(
αγ2

ε3λ1
η6‖ξ‖2

∞,∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ3/2 η
4‖ξ‖2

∞,∞

)
e

1
2k3t‖‹w‖4

H1 .

(4.50)
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By Gronwall’s inequality [86] and the inequality (4.46), we get

e
1
2k3t‖‹w‖2

H1 ≤
(
‖ϕ‖2

H1 +
(

1
2k3 + r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞,∞

)∫ t

0
e

1
2k3s‖‹w(·, s)‖2

H1ds
)

× exp
((

αγ2

ε3λ1
η6‖ξ‖2

∞,∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ3/2 η
4‖ξ‖2

∞,∞

)∫ t

0
‖‹w(·, s)‖2

H1ds
)

≤
(
‖ϕ‖2

H1 +
(

1
2k3 + r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞,∞

)
M3(‖ϕ‖L2)

)

× exp
((

αγ2

ε3λ1
η6‖ξ‖2

∞,∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ
3/2
1

η4‖ξ‖2
∞,∞

)
M3(‖ϕ‖L2)

)
,

(4.51)

which implies that

‖‹w(·, t)‖2
H1 ≤

(
‖ϕ‖2

H1 +
(

1
2k3 + r2γ2

ε2
+ 9γ2

ε5
‖ξ‖4

∞,∞

)
M3(‖ϕ‖L2)

)

× exp
((

αγ2

ε3λ1
η6‖ξ‖2

∞,∞‖ϕ‖2
L2 + 9α3/2γ2

ε4λ
3/2
1

η4‖ξ‖2
∞,∞

)
M3(‖ϕ‖L2)

)
e−

1
2k3t,

t ∈ [0,∞).
(4.52)

Thus, ‖‹w‖H1 converges to 0 exponentially as t tends to ∞. Due to the fact that H1(0, 1) ↪→
C(0, 1), we conclude that limt→∞ ei(t) = 0, i = 1, . . . , n.

Note that to derive the dynamic in-domain control signals for the system (4.1), we need to
solve its zero dynamics (4.39).

4.3.3 Asymptotic Output Regulation of Fisher’s Equation

For the convergence of the solution to Fisher’s equation to that of its zero dynamics as t
tends to ∞, we have the following result.

Theorem 4.5. Let λ1 > r+2r‖ξ‖∞,∞, where λ1 is the first eigenvalue of the operator A, and
the initial data ϕ ∈ H1(0, 1). Then there exists a constant ρ3 > 0 such that for ‖ϕ‖L2 ≤ ρ3,
the solution to the in-domain controlled Fisher’s equation exponentially converges to that of
its zero dynamics in H1-norm, as t tends to ∞. Furthermore, limt→∞ ei(t) = 0, i = 1, . . . , n.

Proof. Let w and ξ be the solution to the in-domain controlled Fisher’s equation and its
zero dynamics, respectively. We denote ‹w = w− ξ. By subtracting the in-domain controlled
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Fisher’s equation to its zero dynamics, we have‹wt − α‹wxx = r‹w − r‹w(2ξ + ‹w)‹wx(0, t) = k1‹w(0, t), ‹wx(1, t) = −k2‹w(1, t),‹w(x, 0) = ϕ(x).

(4.53)

Multiplying both sides of (4.53) by ‹w and taking L2(0, 1) the inner product, we have

1
2
d
dt‖
‹w‖2

L2 + α‖‹w‖2
H1 =

∫ 1

0

(
r‹w2 − r‹w2(2ξ + ‹w)

)
dx. (4.54)

By Lemma 4.1, we get

d
dt‖
‹w‖2

L2 + 2α‖‹w‖2
H1 ≤ 2

∫ 1

0

(
r‹w2 − r‹w2(2ξ + ‹w)

)
dx

≤ (2r + 4r‖ξ‖∞) ‖‹w‖2
L2 − 2r

∫ 1

0
‹w3dx

≤ (2r + 4r‖ξ‖∞) ‖‹w‖2
L2 + 2rη3‖‹w‖ 1

2
H1‖‹w‖ 5

2
L2

≤ (2r + 4r‖ξ‖∞) ‖‹w‖2
L2 + 2α1/4rη3

λ
1/4
1

‖‹w‖H1‖‹w‖2
L2

≤ (2r + 4r‖ξ‖∞) ‖‹w‖2
L2 + ε6‖‹w‖2

H1 + α1/2r2η6

ε6λ
1/2
1
‖‹w‖4

L2 ,

(4.55)

which implies that

d
dt‖
‹w‖2

L2 ≤ − (2α− ε6) ‖‹w‖2
H1 + (2r + 4r‖ξ‖∞,∞) ‖‹w‖2

L2 + α1/2r2η6

ε6λ
1/2
1
‖‹w‖4

L2

≤ −
(
2λ1 −

(
2r + 4r‖ξ‖∞,∞ + α−1λ1ε6

))
‖‹w‖2

L2 + α1/2r2η6

ε6λ
1/2
1
‖‹w‖4

L2 .

(4.56)

Therefore, choosing ε6 > 0 such that α(2λ1−2r−4r‖ξ‖∞,∞)
λ1

> ε6, by Lemma 4.2, there exists a
constant ρ3, k4 > 0 such that for any ‖ϕ‖L2 ≤ ρ3, ‖‹w‖L2 −→ 0 exponentially, as t −→∞, i.e.

‖‹w‖2
L2 ≤ e−k4t‖ϕ‖2

L2 . (4.57)

By a similar argument to the one in the proof of Theorem 4.4, ‹w can be estimated by
∫ t

0
e

1
2k4s‖‹w(·, s)‖2

H1ds ≤M4(‖ϕ‖L2), t ∈ [0,∞), (4.58)

where M4(‖ϕ‖L2) depends on the norm ‖ϕ‖L2 .
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Taking the L2-inner product of (4.53) with −‹wxx yields

−
∫ 1

0
‹wt‹wxxdx+ α

∫ 1

0
‹w2
xxdx = −r

∫ 1

0
‹wxx‹wdx+ r

∫ 1

0
‹wxx‹w(2ξ + ‹w)dx. (4.59)

By Lemma 4.1, we have

d
dt‖
‹w‖2

H1+2α‖‹wxx‖2
L2 = −2r

∫ 1

0
‹wxx‹wdx+ 2r

∫ 1

0
‹wxx‹w(2ξ + ‹w)dx

≤ ε7‖‹wxx‖2
L2 + r2

ε7
‖‹w‖2

L2 + ε8‖‹wxx‖2
L2 + r2

ε8

∫ 1

0
‹w2(2ξ + ‹w)2dx

≤ (ε7 + ε8)‖‹wxx‖2
L2 +

(
r2

ε7
+ 4r2

ε8
‖ξ‖2

∞

)
‖‹w‖2

L2 + 2r2

ε8

∫ 1

0
‹w4dx

≤ (ε7 + ε8)‖‹wxx‖2
L2 +

(
r2

ε7
+ 4r2

ε8
‖ξ‖2

∞

)
‖‹w‖2

L2 + 2r2

ε8
η4‖‹w‖H1‖‹w‖3

L2

≤ (ε7 + ε8)‖‹wxx‖2
L2 +

(
αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞

)
‖‹w‖2

H1 + 2α3/2r2

ε8λ
3/2
1

η4‖‹w‖4
H1 .

(4.60)

Choosing appropriate constants ε7, ε8 > 0 such that 2α > ε7 + ε8, we get

d
dt‖
‹w‖2

H1 ≤
(
αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞,∞

)
‖‹w‖2

H1 + 2α3/2r2

ε8λ
3/2
1

η4‖‹w‖4
H1 . (4.61)

Multiplying by e 1
2k4t, we obtain

d
dte

1
2k4t‖‹w‖2

H1 ≤
1
2k4e

1
2k4t‖‹w‖2

H1 +
(
αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞,∞

)
e

1
2k4t‖‹w‖2

H1

+ 2α3/2r2

ε8λ
3/2
1

η4e
1
2k4t‖‹w‖4

H1 .

(4.62)

By Gronwall’s inequality [86] and (4.58), the above inequality yields

e
1
2k4t‖‹w‖2

H1 ≤
(
‖ϕ‖2

H1 +
(

1
2k4 + αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞,∞

)∫ t

0
e

1
2k4s‖‹w(·, s)‖2

H1ds
)

× exp
(

2α3/2r2

ε8λ
3/2
1

η4
∫ t

0
‖‹w(·, s)‖2

H1ds
)

≤
(
‖ϕ‖2

H1 +
(

1
2k4 + αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞,∞

)
M4(‖ϕ‖L2)

)

× exp
(

2α3/2r2

ε8λ
3/2
1

η4M4(‖ϕ‖L2)
)
,

(4.63)
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which implies that

‖‹w(·, t)‖2
H1 ≤

(
‖ϕ‖2

H1 +
(

1
2k4 + αr2

ε7λ1
+ 4αr2

ε8λ1
‖ξ‖2

∞,∞

)
M4(‖ϕ‖L2)

)

× exp
(

2α3/2r2

ε8λ
3/2
1

η4M4(‖ϕ‖L2)
)
e−

1
2k4t, t ∈ [0,∞).

(4.64)

Therefore, the solution to the in-domain controlled Fisher’s equation exponentially converges
to that of its zero dynamics in H1-norm, as t tends to∞. Based on the fact that H1(0, 1) ↪→
C(0, 1), we conclude that limt→∞ ei(t) = 0, i = 1, . . . , n, which completes the proof.

4.3.4 Adomian Decomposition Method for the Solution to Zero Dynamics

Note that as the zero dynamics (4.39) is also a nonlinear PDE, it is almost impossible to
obtain an explicit form of its solution. In order to overcome this difficulty, we apply the
Adomian decomposition method to obtain a solution to the zero dynamics under a series
form.

In next section, we will show the use of the Adomian methodology to obtain the solution to
the zero dynamics (4.39) in terms of a infinite series.

4.3.4.1 Introduction to the Adomian Decomposition Method

In this section, we briefly introduce the Adomian decomposition method. The detailed pre-
sentation of the ADM and its applications can be found in the literature [4, 62,107].

Consider an abstract initial-value problem expressed in the following form:

Lξ +Rξ +Nξ = φ(x, t),

ξ(0) = ϕ,
(4.65)

where L : X → Y is an invertible linear operator from a Banach space X to a Banach space
Y , Rξ and Nξ are linear and nonlinear terms, respectively, and φ is the non-homogeneous
term. To apply the ADM, we write (4.65) in an operator form

ξ = ψ + L−1φ− L−1Rξ − L−1Nξ, (4.66)

where the term ψ can be determined by the initial data ϕ. The nonlinear term can be
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expressed in terms of a iteration series Nξ = ∑∞
m=0Am, where Am is given by

Am =
[

1
m!

dm

dλmN
( ∞∑
i=0

λiξi

)]∣∣∣∣∣
λ=0

, m = 0, 1, 2, · · · (4.67)

When ψ + L−1φ(x, t) is defined as ξ0, we have

ξ0 = ψ + L−1φ(x, t),

ξ1 = −L−1Rξ0 − L−1A0,

...

ξm+1 = −L−1Rξm − L−1Am.

(4.68)

The solution to the nonlinear abstract equation (4.65) can then be expressed as an Adomian
series:

ξ(x, t) =
∞∑
i=0

ξi(x, t). (4.69)

4.3.4.2 Convergence of the Adomian Series Solution of the Zero Dynamics
Based on the ADM, we express the nonlinear term in (4.39) as

f(ξ) =
∞∑
i=0

Ai(ξ0, ξ1, . . . , ξi), (4.70)

and the solution to (4.39) as a series of the form given in (4.69). Let ξ0 complies with the
following linear parabolic equation:

ξ0t − αξ0xx = 0, x ∈ Ω, t > 0,

ξ0x(0, t) = k1ξ0(0, t), ξ0x(1, t) = −k2ξ0(1, t),

[ξ0(x, t)]x=xi = 0, i = 1, . . . , n,

ξ0(xi, t) = yri,0(t), i = 1, . . . , n,

ξ0(x, 0) = 0.

(4.71)

The first component u0,i of in-domain controllers can be obtain as

u0,i(t) = [ξ0x(x, t)]x=xi , i = 1, . . . , n. (4.72)
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Using the recursive formula (4.67), we obtain the explicit form of ξi, for example:

A0(ξ0) = f(ξ0), A1(ξ0, ξ1) = ξ1f
′(ξ0),

A2(ξ0, ξ1, ξ2) = ξ2f
′(ξ0) + 1

2f
(2)(ξ0)(ξ1)2.

(4.73)

In order to facilitate the analysis of Adomian series, the Adomian’s polynomials (4.67) will
be rearranged (see, e.g., Reference [55]). Thus, let A represent the rearranged Adomian’s
polynomial, which can be reformulated as follow:

A0 = f(ξ0), A0 + A1 = f(ξ0 + ξ1). (4.74)

By induction we have for any m ≥ 0,

m∑
i=0

Ai(ξ0, . . . , ξi) = f

(
m∑
i=0

ξi

)
, (4.75)

which implies that

Am = f

(
m∑
i=0

ξi

)
− f

(
m−1∑
i=0

ξi

)
, m = 1, . . . ,∞. (4.76)

Therefore, the general term ξm,m = 1, . . . ,∞, can be written with

ξm =
∫ t

0
e−A(t−τ)Am−1dτ, m = 1, . . . ,∞, (4.77)

which complies with the following parabolic equation:

ξmt − αξmxx = Am−1, x ∈ Ω, t > 0,

ξmx(0, t) = k1ξm(0, t), ξmx(1, t) = −k2ξm(1, t),

[ξm(x, t)]x=xi = 0, i = 1, . . . , n,

ξm(xi, t) = yri,m(t), i = . . . , n,

ξm(x, 0) = 0.

(4.78)

The m-th component um,i(t) of the in-domain controllers ui(t) can be written as

um,i(t) = [ξmx(x, t)]x=xi , i = 1, . . . , n. (4.79)

The solution to zero dynamics (4.39) and the reference signal yri (t) can be expressed as,
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respectively,

ξ(x, t) =
∞∑
m=0

ξm(x, t), ξ(xi, t) = yri (t) =
∞∑
m=0

yri,m(t), i = 1, . . . , n. (4.80)

We obtain the in-domain controls ui from (4.71), (4.78), and (4.80):

ui(t) =
∞∑
m=0

um,i(t) =
∞∑
m=0

[ξmx(x, t)]x=xi , i = 1, . . . , n. (4.81)

Note that the use of the rearranged Adomian polynomials provide a convenient way to prove
the convergence of the Aomian series solution to the zero dynamics (4.39).

Theorem 4.6. Assume that the in-domain control signals ui ∈ C1(R), i = 1, . . . , n, are
bounded. Let ξm, i = 0, . . . ,m, be defined by (4.68). Define two parameters

M5 = max
|x|≤ηα1/42−(k−1)λ

−1/4
1 +‖ξ0‖∞,∞

|f ′(x)|, (4.82)

and
M = max

{
4kπ‖f(ξ0)‖2

∞,∞

α
,

4πM2
5

λ1

}
. (4.83)

There exists k ∈ Z+, such that M < L. Then the m-th partial sum of the Adomian series
Sm = ∑m

i=0 ξi(x, t) converges to ξ in C([0,∞), H1(0, 1)). Furthermore, ξ is the solution to
the zero dynamics (4.39).

Remark 4.2. The nonlinear term in Chaffee-Infante equation (f(x) = −γx(x2 − r)) and
that in Fisher’s equation (f(x) = rx(1− x)) satisfy the assumption of Theorem 4.6 when the
quantity of ‖ξ0‖∞ is small enough. For example, when 0 ≤ ξ0(x, t) ≤ 0.8, α = 6, r = γ = 1,
then choosing k = 3, Chaffee-Infante equation meets the conditions of Theorem 4.6.

Proof. Based on the rearrangement of the Adomain series (4.75), to prove the convergence
of the rearranged Adomian series, we should estimate the bound of every term of the series.
The procedure to find the first term ξ0 will be presented in Subsection 4.4.2. According to the
proof of Theorem 4.1, ξ0 ∈ C([0,∞), H1(0, 1)) is bounded, i.e. ‖ξ0‖∞,∞ <∞. The estimates
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of the second term ξ1 and the third term ξ2 are given by

‖ξ1‖H1 = (
√
α)−1

∥∥∥A1/2ξ1

∥∥∥
L2
≤ (
√
α)−1

∫ t

0

∥∥∥A1/2e−A(t−τ)A0(ξ0)
∥∥∥
L2

dτ

≤ (
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ)

∥∥∥A0(ξ0)
∥∥∥
L2

dτ

≤ (
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ) ‖f(ξ0)‖∞ dτ

≤ (
√
α)−1‖f(ξ0)‖∞,∞

∫ ∞
0

t−1/2e−Ltdt

≤ (
√
α)−1‖f(ξ0)‖∞,∞

√
π

L
<

1
2k ,

(4.84)

and

‖ξ0 + ξ1‖∞ ≤
ηα1/4

λ
1/4
1
‖ξ1‖H1 + ‖ξ0‖∞ ≤

ηα1/4

2kλ1/4
1

+ ‖ξ0‖∞,∞. (4.85)

Applying Lemma 4.1 yields

‖ξ2‖H1 =(
√
α)−1

∥∥∥A1/2ξ2

∥∥∥
L2
≤ (
√
α)−1

∫ t

0

∥∥∥A1/2e−A(t−τ)A1(ξ0, ξ1)
∥∥∥
L2

dτ

≤(
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ)

∥∥∥A1(ξ0, ξ1)(τ)
∥∥∥
L2

dτ

≤(
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ) ‖f(ξ0 + ξ1)− f(ξ0)‖L2 dτ

≤(
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ) ‖f ′(ξ0 + θ1ξ1)ξ1‖L2 dτ (0 < θ1 < 1)

≤(
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ)‖f ′(ξ0 + θξ1)‖∞‖ξ1‖L2dτ

≤λ−1/2
1

∫ t

0
(t− τ)−1/2e−L(t−τ)‖f ′(ξ0 + θ1ξ1)‖∞‖ξ1‖H1dτ

≤λ−1/2
1

√
π

L

M5

2k ≤
1

2k+1 ,

(4.86)

and

‖ξ0 + ξ1 + ξ2‖∞ ≤ η‖ξ1 + ξ2‖1/2
H1 ‖ξ1 + ξ2‖1/2

L2 + ‖ξ0‖∞

≤ ηα1/4

λ
1/4
1

(‖ξ1‖H1 + ‖ξ2‖H1) + ‖ξ0‖∞ ≤
3

2k+1
ηα1/4

λ
1/4
1

+ ‖ξ0‖∞,∞.
(4.87)

By induction, we assume that ‖ξm‖H1 ≤ 1
2k+m−1 , ‖

∑m
i=0 ξi‖∞ ≤ ηα1/4

2k−1λ
1/4
1

+ ‖ξ0‖∞,∞, i =
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1, . . . ,m, then obtain

‖ξm+1‖H1 = (
√
α)−1

∥∥∥A1/2ξm+1

∥∥∥
L2
≤ (
√
α)−1

∫ t

0

∥∥∥A1/2e−A(t−τ)Am(ξ0, ξ1, . . . , ξm)
∥∥∥
L2

dτ

≤ (
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ)

∥∥∥Am(ξ0, ξ1, . . . , ξm)(τ)
∥∥∥
L2

dτ

≤ (
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ) ‖f(ξ0 + · · ·+ ξm)− f(ξ0 + · · ·+ ξm−1)‖L2 dτ

≤ (
√
α)−1

∫ t

0
(t− τ)−1/2e−L(t−τ) ‖f ′(ξ0 + · · ·+ ξm−1 + θmξm)ξm‖L2 dτ (0 < θm < 1)

≤ λ
−1/2
1

∫ t

0
(t− τ)−1/2e−L(t−τ)‖f ′(ξ0 + · · ·+ θmξm)‖∞‖ξm‖H1dτ

≤ λ
−1/2
1

√
π

L

M5

2k+m−1 ≤
1

2k+m ,

(4.88)

and∥∥∥∥∥
m+1∑
i=0

ξi

∥∥∥∥∥
∞
≤ ηα1/4

λ
1/4
1

m+1∑
i=1
‖ξi‖H1 + ‖ξ0‖∞ ≤

ηα1/4

λ
1/4
1

m+1∑
i=1

1
2k+i−1 + ‖ξ0‖∞ ≤

ηα1/4

2k−1λ
1/4
1

+ ‖ξ0‖∞,∞ .

(4.89)

The difference between Sm and Sm+l can be estimated in space H1(0, 1) as

‖Sm+l − Sm‖H1 ≤
l∑

i=1
‖ξm+i‖H1 ≤ 1

2m+k−1 , ∀m, l ∈ Z+. (4.90)

Thus, ξm, i = 1, . . . ,∞, constitute a Cauchy sequence in H1(0, 1) at almost every time,
which implies that there exists a function ξ such that the m-th partial sum of the Adomian
series Sm = ∑m

k=0 ξ
k(x, t) converges to ξ in C([0,∞), H1(0, 1)). Based on the construction of

Aomian series, we have

ξ = w0 +
∫ t

0
e−A(t−τ)f(ξ(τ))dτ, t > 0. (4.91)

Therefore, ξ is the solution to the zero dynamics (4.39).

Remark 4.3. From the proof of Theorem 4.6, the theorem can be adapted to the case of
f ∈ C∞.

Theorem 4.6 ensures that the solution to the zero dynamics (4.39) can be expressed in terms
of an Adomain series. Moreover, the proof of Theorem 4.6 indicates that when the conditions
in Theorem 4.6 hold, the solution to the zero dynamics (4.39) generated by ADM will be
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convergent around the linear part ξ0 of the Adomian series. The conditions of Theorem 4.6 is
indeed weaker than the case where f is globally Lipschitz. Note that although the restriction
of Theorem 4.6 is still very conservative, it is enough for the development of the proposed
control scheme.

4.4 Differential Flatness-based Set-point Control and Trajectory Planing

Based on Theorems 4.4 and 4.5, the in-domain control problem can be reduced to finding the
solution to the corresponding zero dynamics (4.39), which can be expressed by an Adomain
series. Due to the recursive procedure, the computation of the Adomain amounts mainly to
determining the linear part, ξ0, which will considerably simplify the implementation of the
dynamic control scheme.

4.4.1 Smoothness of the Solution to the Zero Dynamics

We present first the following property on the smoothness of the trajectory of the zero
dynamics (4.39) with in-domain actuation, which enables us to obtain the in-domain control
of the system (4.96) from the linear part ξ0 of the Adomian series.

Theorem 4.7. Assume βi, i = 1, . . . , P , are some constants, and u0,i ∈ C2(R). Then the
outputs of the zero dynamics (4.39), ui(t), i = 1, . . . , n, depend only on the linear part of the
Adomian series solution, i.e. ui = u0,i = ξ0x(x+

i , t)− ξ0x(x−i , t), i = 1, . . . , n.

Remark 4.4. It is straightforward to verify that the nonlinear term f(w) specified in The-
orem 4.7 can cover the nonlinearity of Chaffee-Infante equation (f(w) = −γw(w2 − r)) and
that of Fisher’s equation (f(w) = rw(1− w)).

Proof. In order to obtain the regularity of the solution to (4.39), it suffices to analyse the regu-
larity of every term ξi in the corresponding Adomian series. First, we investigate the first term
ξ0, which can be expressed as (4.98). It is easy to see that ξ0 belongs to C([0,∞), H1(0, 1)).
Consider the second term ξ1, which is the solution to the following PDE:

ξ1t − αξ1xx = f(ξ0), x ∈ (0, 1), t ∈ [0,∞),

ξ1x(0, t) = k1ξ1(0, t), ξ1x(1, t) = −k2ξ1(1, t),

ξ1(xi, t) = yri,1(t), i = 1, . . . , n,

ξ1(x, 0) = 0.

(4.92)
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By Lemma 4.1, the non-homogeneous therm f(ξ0) of (4.92) can be estimated as

‖f(ξ0)‖L2 =
∥∥∥∥∥
P∑
i=1

βi(ξ0)i
∥∥∥∥∥
L2

≤
P∑
i=1
|βi|‖(ξ0)i‖L2 ≤

P∑
i=1
|βi|ηi‖ξ0‖iθiL2‖ξ0‖i(1−θi)H1 ,

(4.93)

where θi = 1
2 −

1
2i , and

‖f(ξ0)x‖L2 =
∥∥∥∥∥
P∑
i=1

βi(ξ0)ix
∥∥∥∥∥
L2

≤
P∑
i=1

i|βi|‖(ξ0)i−1ξ0x‖L2 ≤
P∑
i=1

i|βi|‖ξ0‖i−1
∞ ‖ξ0x‖L2

≤
P∑
i=1

i|βi|ηi−1‖ξ0‖(i+1)/2
H1 ‖ξ0‖(i−1)/2

L2 .

(4.94)

Thus, f(ξ0) belongs to C([0,∞), H1(0, 1)). Based on the classical regularity theory for
parabolic equations [85], we conclude that ξ1 belongs to C1([0,∞), H2(0, 1)) ↪→ C1([0,∞), C1(0, 1)).
For the general term ξm, by induction and assuming that ξi ∈ C1((0,∞), C1(0, 1)), i =
1, . . . ,m− 1, ξm is a solution to the following PDE:

ξmt − αξmxx = Ai(ξ0, . . . , ξm−1), x ∈ (0, 1), t ∈ [0,∞),

ξmx(0, t) = k1ξm(0, t), ξmx(1, t) = −k2ξm(1, t),

ξm(x, 0) = 0.

(4.95)

Due to the regularity in ξi, i = 1, . . . ,m− 1, A(ξ0, ξ1, . . . , ξm−1) = f(ξ0 + · · ·+ ξm−1)− f(ξ0 +
· · · + ξm−2) can be dominated by the estimates similar to that of f(ξ0). Indeed, the non-
homogeneous term A(ξ0, ξ1, . . . , ξm−1) belongs to C([0,∞), H1(0, 1)). Therefore, ξm belongs
to C1([0,∞), H2(0, 1)) ↪→ C1((0,∞), C1(0, 1)). By repeating the above process recursively,
it can be shown that ξm,m = 1, . . . ,∞, will always belong to C1((0,∞), C1(0, 1)). Therefore,
for every internal point xi ∈ (0, 1), i = 1, . . . , n, ξmx+(xi, t) − ξmx−(xi, t) = 0,m = 1, . . . ,∞,
which implies that ξm,m = 1, . . . ,∞, have no contribution to the output signals ui of the
zero dynamics (4.39), i.e. um,i = 0, i = 1, . . . , n. Thus, the in-domain control ui, i = 1, . . . , n
are generated solely by the linear part ξ0, i.e., ui(t) = u0,i = ξ0x(x+

i , t) − ξ0x(x−i , t), i =
1, . . . , n.

By Theorem 4.7, the implementation of the in-domain controls requires only to solve the
linear part ξ0 of the Adomain series solution to the zero dynamics (4.39), which can be
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achieved by using the technique of flat systems as shown in the next section.

4.4.2 Flatness-Based In-domain Control Design

Differential flatness is a powerful tool for achieving closed-form solutions to a wide class of
PDEs. We use this method to obtain the solution to the zero dynamics (4.39) for set-point
regulation problem. For this purpose, we change first the time scale from t to αt, while still
using t as the time variable. The linear part of (4.71) is converted into the following form:

ξ̃0t − ξ̃0xx = 0, x ∈ (0, 1),

ξ̃0x(0, t) = k1ξ̃0(0, t), ξ̃0x(1, t) = −k2ξ̃0(1, t),[
ξ̃0(x, t)

]
x=xi

= 0, i = 1, . . . , n,

ξ̃0(xi, t) = yr0,i(t/α), i = 1, . . . , n,

Biξ̃0 =
[
ξ̃0x(x, t)

]
x=xi

= vi, i = 1, . . . , n,

ξ̃0(x, 0) = 0,

(4.96)

where vi(t), i = 1, . . . , n, are the control inputs in the new time-scale, which can be trans-
formed into the original in-domain control signals ui(t), i = 1, . . . , n, after control synthe-
sis. Due to the linearity of the heat equation, we divide the system ξ̃0 into n subsystems
ξ̃i0(x, t), i = 1, . . . , n, in a manner that all the subsystem are parallel connected. Hence, ξ̃0

can be expressed as ξ̃0 = ∑n
i=1 ξ̃

i
0, where ξ̃i0 is governed by

ξ̃i0t − ξ̃i0xx = 0, x ∈ (0, xi) ∪ (xi, 1),

ξ̃i0x(0, t) = k1ξ̃
i
0(0, t), ξ̃i0x(1, t) = −k2ξ̃

i
0(1, t),

ξ̃i0(xi, t) = yr0,i(t/α), i = 1, . . . , n,

ξ̃i0(0, t) = 0,[
ξ̃i0x
]
x=xi

= vi(t), i = 1, . . . , n.

(4.97)

In order to generate the trajectory of the system (4.97), we resort to the concept of basic
outputs, which are also termed as flat outputs, for flat systems. A particular feature of this
method is that the states and the inputs of a flat system can be represented in terms of
basic outputs and their time-derivatives without involving integration. Denote by hi(t), i =
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1, . . . , n, the basic outputs. The solution to (4.97) is given in a previous work [145]:

ξ̃i0 =
(
k1k2

∞∑
n=0

n∑
k=0

x2k+1(xi − 1)2(n−k)+1

(2k + 1)!(2(n− k) + 1)!h
(n)
i − k1

∞∑
n=0

n∑
k=0

x2k+1(xi − 1)2(n−k)

(2k − 1)!(2(n− k))!h
n
i

+k2

∞∑
n=0

n∑
k=0

x2k(xi − 1)2(n−k)+1

(2k)!(2(n− k) + 1)!h
(n)
i −

∞∑
n=0

n∑
k=0

x2k(xi − 1)2(n−k)

(2k)!(2(n− k))! h
(n)
i

)
χ(0,xi)

+
(
k1k2

∞∑
n=0

n∑
k=0

x2k+1(x− 1)2(n−k)+1

(2k + 1)!(2(n− k) + 1)!h
(n)
i − k1

∞∑
n=0

n∑
k=0

x2k+1
i (x− 1)2(n−k)

(2k + 1)!(2(n− k))!h
(n)
i

+k2

∞∑
n=0

n∑
k=0

x2k
i (x− 1)2(n−k)+1

(2k)!(2(n− k) + 1)!h
(n)
i −

∞∑
n=0

n∑
k=0

x2k+1
i (x− 1)2(n−k)

(2k)!(2(n− k))! h
(n)
i

)
χ[xi,1]

(4.98)

where χ is the characteristic function. Thus, the control inputs of the system (4.97) are given
by [145]

vi(t) = k1k2

∞∑
n=0

h
(n)
i (t)

(2n+ 1)! + (k1 + k2)
∞∑
n=0

h
(n)
i (t)
(2n)! +

∞∑
n=0

h
(n+1)
i (t)

(2n+ 1)! , i = 1, . . . , n. (4.99)

Therefore, the control inputs of the system (4.71) can be expressed as

ui(t) = k1k2

∞∑
n=0

h
(n)
i (αt)

(2n+ 1)! + (k1 + k2)
∞∑
n=0

h
(n)
i (αt)
(2n)! +

∞∑
n=0

h
(n+1)
i (αt)

(2n+ 1)! , i = 1, . . . , n. (4.100)

In order to make sure that the above controller is well-defined, the basic output hi(t) should
be C∞-smooth. We choose then the following function ψ(t) as a component of basic outputs:

ψ(t) =



0, if t ≤ 0,∫ t
0 exp(−1/(τ(1− τ)))εdτ∫ T
0 exp(−1/(τ(1− τ)))εdτ

, if 0 < t < T,

1, if t ≥ T,

(4.101)

which is known as Gevrey function of order σ = 1 + 1
ε
, ε > 0. The form of basic outputs hi(t)

can be expressed as
hi(t) = µiψ(t), i = 1, . . . , n, (4.102)

where µi are constants to be determined later. In order to find appropriate reference trajec-
tories to track the desired set-points ydi , the unknown parameters µi of flat outputs hi(t) will
be determined by the steady nonlinear differential equation of the system (4.1). Consider



75

the following steady nonlinear differential equation of the system (4.1)

0 = αwxx + f(w) +
n∑
i=1

δiγi,

wx(0) = k1w(0), wx(1) = −k2w(1),

ydi = w(xi) = Ciw(x), i = 1, . . . , n,

(4.103)

where γi, i = 1, . . . , n, are the input parameters for the steady-state parabolic equation.

The parameter γi, i = 1, . . . , n, can be determined by the Green functions Gi, which comply
with the following differential equations

AGi = δi, i = 1, . . . , n,

Gix(0) = k1Gi(0), Gix(1) = −k2Gi(1).
(4.104)

The Green’s functions Gi(x), i = 1, . . . , n, can be explicitly expressed as [145]

Gi(x) =


(1− k2xi + k2)(k1x+ 1)

α(k1 + k2 + k1k2) , 0 ≤ x ≤ xi,

(1− k2x+ k2)(k1xi + 1)
α(k1 + k2 + k1k2) , xi < x < 1.

(4.105)

Then, using the operator A, the steady system (4.103) can be represented in an abstract
form:

Aw =
n∑
i=1

δiγi + f(w). (4.106)

Multiplying the operator A−1 on both sides of (4.106) yields

w =
n∑
i=1

A−1δiγi + A−1f(w). (4.107)

Let wr be a function satisfying
wr = A−1f(w), (4.108)

which gives

− αd
2wr
dx2 = f(w). (4.109)

Furthermore, substituting (4.108) into (4.106) and recalling that Gi(x) = A−1δi, we have

w =
n∑
i=1

Gi(x)γi + wr. (4.110)
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Denoting

G =


C1G1 C1G2 C1G3 . . . C1Gn

C2G1 C2G2 C2G3 . . . C2Gn

... ... ... . . . ...
CnG1 CnG2 CnG3 . . . CnGn

 (4.111)

and noting that G is an invertible n× n matrix [145], we obtain

γ1

γ2
...
γn

 = G−1


yd1 − C1wr

yd2 − C2wr
...

ydn − Cnwr

 . (4.112)

According to (4.100), we have

lim
t→∞

ui(t) = (k1k2 + k1 + k2)µi = γi, i = 1, . . . , n. (4.113)

Therefore, we choose the basic inputs as

hi(t) = ψ(t)
k1k2 + k1 + k2

γi. (4.114)

With such basic inputs, the control ui(t), i = 1, . . . , n, given in (4.100) can allow the in-
domain controlled Chaffee-Infante equation or Fisher’s equation to achieve an asymptotic
regulation with respect to the desired outputs ydi , i = 1, . . . , n. In summary, we have the
following result.

Theorem 4.8. Suppose that the conditions of Theorem 4.4 (resp. Theorem 4.5) and The-
orem 4.6 hold and the in-domain controls ui(t), i = 1, . . . , n, are set as (4.100). Then the
regulation errors with respect to the desired set-point ydi , i = 1, . . . , n, for the in-domain con-
trolled Chaffee-Infante equation (resp. Fisher’s equation) converge to 0 as t→∞.

Remark 4.5. The developed method can be extended to a wider class of semi-linear parabolic
equations provided their stability can be guaranteed.

4.5 Simulation

In this section, we provide the simulation results for in-domain controlled Chaffee-Infante
equation and Fisher’s equation to illustrate the effectiveness and the efficiency of the proposed
control scheme.
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We consider first Fisher’s equation with α = 5 and k1 = k2 = 7. The initial condition is set
to w(x, 0) = 0.4 sin(πx/2). The desired steady state profile is a curve expressed by:

wref(x) = a1
0 +

3∑
i=1

a1
i sin(iθx) + b1

i cos(iθx) (4.115)

where θ = 5.4, a1
0 = 0.36, a1

1 = 0.13, a1
2 = −0.17, a1

3 = 0.04, b1
1 = 0.03, b1

2 = 0.04, b1
3 = 0.01.

The objective is to drive the trajectory of the system to track the prescribed profile given in
(4.115).

In general, the desired profile wref(x) can be any functions that may not be a solution to the
static PDE (4.103). Consequently, the regulation accuracy along the domain is affected by
the number of in-domain inputs. To illustrate this property, we consider in the simulation
2 different settings with, respectively, 9 and 19 in-domain actuators. The performance of
interpellation accuracy of these 2 settings are shown in Fig. 4.2(a). The corresponding static
controls are computed by using the numerical scheme presented in Section 4.4.2 as shown in
Fig. 4.2(b). It can be seen that the increase of the number of in-domain actuators will improve
the regulation accuracy while reduce the amplitude of static control signals. However, it will
require more computational effort. The solution surface of Fisher’s equation with 19 in-
domain actuators is displayed in the Fig. 4.3(a), and the evolution of the deviation between
the actual state and its desired static solution given by (4.115) on space and time are shown
in Fig. 4.3(b). The simulation results show that that developed in-domain control scheme
exhibits a satisfactory performance. In the simulation of in-domain controlled Chaffee-
Infante equation, the system parameters are set to r = γ = 1, α = 6, and k1 = k2 = 8, and
the initial condition is chosen to be w(x, 0) = 0.7 cos(πx/2). The desired static profile wref(x)
is the same given by (4.115). The interpolation errors for the settings with, respectively, 9 and
19 in-domain controllers and the corresponding static control signals are shown in Fig. 4.4(a)
and Fig. 4.4(b), respectively. The setting with 19 actuators is used in the simulation of the
in-domain controlled Chaffee-Infante equation. It can be seen from Fig. 4.5(a) and Fig. 4.5(b)
that the system asymptotically tracks the desired output and the regulation errors tend to
zero identically along the domain.

4.6 Conclusion

To tackle the problem of asymptotic output regulation for some in-domain controlled semi-
linear parabolic PDEs, we have developed in this work an approach for control synthesis and
implementation, which is a combination of zero dynamics inverse design, Adomian decom-
position method, and trajectory planning of flat systems. An advantage of this approach is
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(a)

(b)

Figure 4.2 Simulation results: (a) interpolation of the reference signal wref; (b) steady-state
control signals of Fisher’s equation.
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(a)

(b)

Figure 4.3 Simulation results: (c) solution surface of the in-domain controlled Fisher’s equa-
tion; (d) surface of regulation errors.
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(a)

(b)

Figure 4.4 Simulation results: (a) interpolation of the reference signal; (b) steady-state control
signals of Chaffee-Infante equation.
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(a)

(b)

Figure 4.5 Simulation results: (c) solution surface of Chaffee-Infante equation; (d) surface of
regulation errors.
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that for the considered problem, the obtained in-domain controls can be expressed in closed
form and hence, early truncations can be avoided in control design. A rigourous analysis on
the basic properties of the considered control systems has also been provided to grantee the
validity of the developed method. Due to the complexity of PDEs, Chaffee-Infante equation
and Fisher’s equation are considered in stability and convergence analysis. Nevertheless,
the proposed approach is applicable to a wider class of semi-linear parabolic PDEs, which
constitutes a subject of our future work. Finally, as the techniques of ADM and flat systems
are used in the implementation of the zero dynamics-based control scheme, the developed
approach in this paper can also be extended to systems with non-collocated input and output
by applying, e.g., the method proposed in the work [33].



83

CHAPTER 5 ARTICLE 3: A DYNAMIC COMPENSATOR FOR
IN-DOMAIN CONTROL OF BURGERS’ EQUATION

This chapter is reproduced from the paper [141].

Authors: Kaijun Yang and Guchuan Zhu.

Abstract— This paper addresses the problem of output regulation control of a Burgers’
equation under pointwise in-domain actuation. A dynamic compensator that generates the
in-domain control is developed for output regulation of the considered system. A nonlinear
boundary feedback control is used to ensure the closed-loop stability of the Burgers’ equation.
The proposed control scheme is implemented by means of Adomian decomposition method
and flatness-based trajectory planning. A numerical simulation study is carried out, and the
obtained results demonstrate the efficiency and the effectiveness of the proposed approach.

Index Terms—Burgers’ equation; Nonlinear feedback control; Dynamic compensator; Ado-
mian decomposition method; Differential flatness.

5.1 Introduction

Burgers’ equation is one of the most elaborated parabolic partial differential equations
(PDEs), which involves the effects of both nonlinear propagation and diffusion. This PDE was
originally developed for modeling a one-dimensional turbulence and has been applied to differ-
ent problems arising in physics, engineering, mathematical biology, etc. (see, e.g., [98, 135]).
The broad range of application of Burgers’ equations motivated extensive investigations on
the control of this type of PDEs in the literature and many solutions have been developed
for different problems, such as linear boundary feedback control [36, 44], backstepping con-
trol [80, 92], optimal control [71], and adaptive control [93]. It should be noted that the
exponential stability (locally or globally) of PDEs is an essential requirement for asymptotic
tracking control [28]. However, as Burgers’ equation is a nonlinear PDE, a linear feedback
control can usually achieve only a local stability, which may be a performance restriction.
In [36, 41], the local exponential stability for Burgers’ equation is obtained by using the
classical energy method under some assumptions on initial data and the nonhomogeneous
terms. A nonlinear boundary feedback control is introduced in [78], which can achieve a
global exponential stability of the Burgers’ equation.

Most of the existing work on the control of Burgers’ equation is concerned with boundary
control [28, 29, 32, 36, 46, 78, 84, 102], while where are only few results on in-domain control
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of this type of PDEs, which is indeed a multiple input-multiple out problem under the
setting of multiple pointwise in-domain actuation and sensing, have been reported in the
literature. A convenient method, called zero dynamics inversion, that can be used to tackle
the problem of asymptotic output regulation of PDEs under in-domain control is the one
developed in a series work presented in, e.g., [13, 31, 34, 35]. The method of zero dynamics
inversion design will lead to a dynamic compensator that can be applied to PDEs for which
the control is located either on the boundary or in the domain. However, the implementation
of the dynamic compensator requires to solve inline a PDE of the same type as the original
system, which may not be computationally tractable. Thus, static controls derived from the
solution of steady-state zero dynamics are often used (see, e.g., [13]). Another solution that
allows reducing the computational burden while providing a deterministic implementation
scheme is the one proposed in [139, 145], which amounts to combining the zero dynamics
inversion design with flatness-based trajectory planning in the implementation of the dynamic
compensator for asymptotic output teaching control. This approach is applicable to the in-
domain control of a wide range of linear PDEs. Nevertheless, due to the fact that the
currently available techniques for flatness-based trajectory planning are limited to linear
PDEs [119] or boundary controlled nonlinear PDEs [102], this method is still not applicable
to in-domain controlled nonlinear PDEs. To overcome this difficulty, a recent work reported
in [140] proposed to employ the Adomian decomposition method (ADM) to achieve a semi-
analytical implementation of the dynamic compensator for in-domain control. ADM is a
classical numerical approach that provides a means for constructing solutions to nonlinear
PDEs expressed as an infinite series with a fast convergence rate [1, 3, 109,134].

In the present work, we develop a scheme for output regulation control of Burgers’ equation
based on an approach that can be seen as an extension of the one proposed in [140] in the
sense that the dynamic compensator does not correspond exactly to the zero dynamics of
the original system. It should be noted that different from the semi-linear parabolic PDEs
(Chaffee-Infante equation and Fisher’s equation) considered in [140], the nonlinear term in
Burgers’ equation is not smooth enough and hence, the in-domain control does not depend
only on its linear part. To ensure the global exponential stability of the boundary controlled
Burgers’ equation, a nonlinear boundary feedback control law is used. This dynamic compen-
sator has a simpler structure, and the system performance can be guaranteed by convergence
analysis of tracking errors and closed-loop stability.

The rest of the paper is organized as follows. Section 5.2 presents the setting of the consid-
ered in-domain controlled Burgers’ equation. Section 5.3 details the design of the dynamic
compensator along with convergence assessment of tracking errors. Issues related to the im-
plementation of the developed the dynamic compensator are addressed in Section 5.4 and
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Section 5.5. Some simulation results are illustrated in Section 5.6, followed by some conclud-
ing remarks presented in Section 5.7.

5.2 Problem Formulation

We first introduce the following notations that are frequently used in this paper:

• L2(0, 1) represents the Lebesgue space of square integrable functions on (0, 1) with the
norm ‖v‖L2 =

(∫ 1
0 |v(x)|2dx

)1/2
.

• H1(0, 1) denotes the Sobolev space equipped with the norm

‖v‖H1 =
√
‖v‖2

L2 + ‖vx‖2
L2 , v ∈ H1(0, 1). (5.1)

• L∞(0, 1) denotes the space of all bounded measurable functions on (0, 1) equipped with
the norm ‖v‖L∞ = ess supx∈(0,1) |v(x)|.

• Ck[0, 1] is the space of all k-times continuously differentiable functions on the interval
[0, 1].

• Let X be a Banach space with the norm ‖ · ‖X . Then L((0,∞),X) denotes the Banach
space consisting of all measurable functions on (0, 1)× (0,∞) with a finite norm

‖v‖L∞((0,∞);X) = ess sup
t∈(0,∞)

‖v‖X , v ∈ L((0,∞),X). (5.2)

The considered Burgers’ equation with in-domain control is of the following form:

wt − αwxx + wxw +
n∑
i=1

δxiui(t) = 0, x ∈ (0, 1), t > 0,

wx(0, t) = Blw, wx(1, t) = Brw,

w(x, 0) = ϕ(x),

yi(t) = Ciw = w(xi, t), i = 1, . . . , n.

(5.3)

where α > 0, Bl andBr are, respectively, the left and the right boundary control operators, δxi
is the Dirac function supported at the points xi ∈ (0, 1), i = 1, . . . , n, and ui(t), i = 1, . . . , n,
are the in-domain controls, which are located on the spatial point xi ∈ (0, 1), i = 1, . . . , n,
respectively. Ci, i = 1, . . . , n, are the output operators and yi(t), i = 1, . . . , n denotes the
outputs.
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The objective is to establish in-domain control laws that can drive the system (5.3) to track
the desired set-points ydi , i = 1, . . . , n. Specifically, let

ei(t) = yi(t)− ydi , i = 1, . . . , n, (5.4)

be the output regulation errors. Then in closed-loop, we should have

lim
t→∞

ei(t) = 0, i = 1, . . . , n. (5.5)

To facilitate the dynamic compensator design, the in-domain controlled Burgers’ equation
(5.3) can be reformulated under a serially connected form:

wt − αwxx + wxw = 0, i = 1, . . . , n, x ∈ Ω, t > 0,

[w(x, t)]x=xi = 0, i = 1, . . . , n,

[wx(x, t)]x=xi = ui(t),

wx(0, t) = Blw, wx(1, t) = Brw,

w(x, 0) = ϕ(x),

yi(t) = Ciw = w(xi, t), i = 1, . . . , n.

(5.6)

where Ω , (0, x1)∪(x1, x2)∪· · ·∪(xn−1, xn)∪(xn, 1). [w(x, t)]x=xi = w(x+
i , t)−w(x−i , t), where

w(x+
i , t) and w(x−i , t) represent the right and left limits of w at the point (xi, t), respectively.

Note that the equivalence between (5.3) and (5.6) can be verified by the technique in the
references [114,145].

5.3 Dynamic Compensator for In-domain Control

Asymptotic set-point control of in-domain controlled PDEs can be achieved by using a scheme
of input-output inversion. Specifically, let yri (t), 1, . . . , n, be reference trajectories satisfying
yri (t) → ydi , as t → ∞. Then, the in-domain control ui(t), i = 1, . . . , n, may be generated
by a dynamic system, usually of infinite dimension, with yri (t), 1, . . . , n, as inputs. It has
been shown that zero-dynamics inversion is a convenient tool for this purpose (see, e.g.,
[13, 28, 31, 139, 140, 145]). It is shown in [32] that the solution of the zero dynamics of
a boundary controlled Burgers’ equation with linear boundary feedback converges to the
solution to the original system. As the considered problem in this work is an in-domain
controlled Burgers’ equation with nonlinear boundary feedback, the results given in [32]
cannot be directly applied. For this raison, we consider a dynamic compensator of the
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following form:

ξt − αξxx + ξξx = 0, x ∈ Ω, t > 0,

[ξ(x, t)]x=xi = 0, i = 1, . . . , n,

ξ(0, t) = 0, ξ(1, t) = 0,

ξ(xi, t) = yri (t), i = 1, . . . , n,

ξ(x, 0) = 0,

[ξx(x, t)]x=xi = ui(t), i = 1, . . . , n,

(5.7)

which is indeed the zero dynamics of the system (5.3) (or (5.6)) with (forced) homogeneous
boundary conditions. It should be noted that the inputs to the dynamic compensator are
the reference trajectories yri , i = 1, . . . , n, and its outputs are the in-domain controls ui, i =
1, . . . , n.

In the following, we will first investigate the stability of the dynamic compensator (5.7)
in L2-norm and H1-norm, which is crucial for stability analysis of the controlled Burgers’
equation (5.3).

Proposition 5.1. Assume that yri (t) and yrit(t), i = 1, · · · , n, are uniformly bounded in [0,∞).
Then the system (5.7) is stable in L2-norm, i.e.,

‖ξ‖2
L2 ≤C1

n∑
i=1
|yri (0)|2e−α2 t + C2

n∑
i=1
‖yrit(·)‖2

L∞(0,∞)

+ C3

n∑
i=1
‖yri (·)‖2

L∞(0,∞) + C4

n∑
i=1
‖yri (·)‖4

L∞(0,∞)

(5.8)

where C1, C2, C3, and C4 are constants independent of yri (t), i = 1, · · · , n.

Proof. The dynamic compensator (5.7) consists of n serially connected PDEs, which can be
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formulated as: 
ξ0
t − αξ0

xx + ξ0ξ0
x = 0, x ∈ (0, x1), t > 0,

ξ0(0, t) = 0, ξ0(x1, t) = yr1(t),

ξ0(x, 0) = 0;

(5.9)



ξit − αξixx + ξiξix = 0, x ∈ (xi, xi+1), t > 0,

ξi(xi, t) = yri (t), ξi(xi+1, t) = yri+1(t),

ξi(x, 0) = 0,

i = 1, . . . , n− 1;

(5.10)


ξnt − αξnxx + ξnξnx = 0, x ∈ (xn, 1), t > 0,

ξn(1, t) = 0, ξn(xn, t) = yrn(t).

ξn(x, 0) = 0;

(5.11)

Therefore, the solution to the dynamic compensator (5.7) can be expressed as:

ξ = χ(0,x1]ξ
0 +

n−1∑
i=1

χ(xi,xi+1]ξ
i + χ(xn,1)ξ

n, (5.12)

where χI denotes the characteristic function supported on the interval I.

We will then estimate the upper bound of ‖ξi‖L2 , i = 0, 1, . . . , n, by using the standard
procedure for establishing the a prior estimates of the solutions to parabolic PDEs (see [85]).

First, we deal with ξ0-system by transforming the inhomogeneous boundary at x = x1 of
(5.9) into homogeneous one. Using a new variable ζ0 = ξ0 − x

x1
yr1(t), we obtain

ζ0t − ζ0xx =− ζ0xζ0 −
x

x1
yr1t(t)−

x

x2
1
(yr1(t))2 − 1

x1
yr1(t)ζ0 −

x

x1
yr1(t)ζ0x, (5.13)

with the boundary condition and the initial value

ζ0(0, t) = ζ0(x1, t) = 0, (5.14)

ζ0(x, 0) = x

x1
yr1(0). (5.15)
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Multiplying (5.13) by ζ0 and integrating from 0 to x1 yields

d
dt

∫ x1

0
ζ2

0dx− α
∫ x1

0
ζ0xxζ0dx

=−
∫ x1

0
ζ0xζ

2
0dx−

∫ x1

0

x

x1
yr1t(t)ζ0dx−

∫ x1

0

x

x2
1
(yr1(t))2ζ0dx

−
∫ x1

0

1
x1
yr1(t)ζ2

0dx−
∫ x1

0

x

x1
yr1(t)ζ0xζ0dx

(5.16)

Making integration by parts and applying the boundary conditions, we have

d
dt

∫ x1

0
ζ2

0dx+ α
∫ x1

0
(ζ0x)2dx

=−
∫ x1

0

x

x1
yr1t(t)ζ0dx−

∫ x1

0

x

x2
1
(yr1(t))2ζ0dx

−
∫ x1

0

1
x1
yr1(t)ζ2

0dx−
∫ x1

0

x

x1
yr1(t)(ζ2

0 )xdx

≤α4

∫ x1

0
ζ2

0dx+ yr1t(t)2x1

3α + α

4

∫ x1

0
ζ2

0dx+ yr1(t)4

3αx1

(5.17)

Due to the fact that
∫ x1

0 ζ2
0dx ≤

∫ x1
0 ζ2

0xdx, it follows that

d
dt

∫ x1

0
ζ2

0dx+ α

2

∫ x1

0
ζ2

0dx ≤
yr1t(t)2x1

3α + yr1(t)4

3αx1
. (5.18)

Multiplying eα2 t, it yields

d
dt

(
e
α
2 t
∫ x1

0
ζ2

0dx
)
≤
(
yr1t(t)2x1

3α + yr1(t)4

3αx1

)
e
α
2 t. (5.19)

Integrating from 0 to t, we obtain

∫ x1

0
ζ2

0dx ≤
x1|yr1(0)|2

3 e−
α
2 t +

∫ t

0

(
yr1t(τ)2x1

3α + yr1(τ)4

3αx1

)
e−

α
2 (t−τ)dτ

≤ x1|yr1(0)|2
3 e−

α
2 t + 2

α

(
x1‖yr1t(·)‖2

L∞(0,∞)

3α +
‖yr1(·)‖4

L∞(0,∞)

3αx1

)
,

(5.20)

which implies that

∫ x1

0
(ξ0)2dx ≤2x1|yr1(0)|2

3 e−
α
2 t + 4x1

3α2‖y
r
1t(·)‖2

L∞(0,∞) + 2x1

3 ‖y
r
1(·)‖2

L∞(0,∞)

+ 4
3α2x1

‖yr1(·)‖4
L∞(0,∞).

(5.21)
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Using the transformation

ζi = ξi −
(
xi+1 − x
xi+1 − xi

yri (t) + x− xi
xi+1 − xi

yri+1(t)
)

(5.22)

and

ζn = ξn − 1− x
1− xn

yrn(t) (5.23)

for the subsystems defined in x ∈ (xi, xi+1), i = 1, . . . , n − 1, and x ∈ (xn, 1), respectively,
(5.10) and (5.11) can be transformed into

ζit − ζixx =− ζixζi − ζix
(
xi+1 − x
xi+1 − xi

yri (t) + x− xi
xi+1 − xi

yri+1(t)
)

− ζi
xi+1 − xi

(
yri+1(t)− yri (t)

)
− 1
xi+1 − xi

(
yri+1(t)− yri (t)

)( xi+1 − x
xi+1 − xi

yri (t) + x− xi
xi+1 − xi

yri+1(t)
)

− xi+1 − x
xi+1 − xi

yrit(t)−
x− xi
xi+1 − xi

(yri+1)t(xi+1, t),

(5.24)

with the homogeneous conditions and the initial value

ζi(xi, t) = ζi(xi+1, t) = 0, (5.25)

ζi(x, 0) = − xi+1 − x
xi+1 − xi

yri (0)− x− xi
xi+1 − xi

yri+1(0), (5.26)

and

ζnt − ζnxx =− ζnxζn − ζnx
1− x
1− xn

yrn(t) + ζn
1− xn

yrn(t)

+ 1− x
(1− xn)2 (yrn(0))2 − 1− x

1− xn
yrnt(0),

(5.27)

with the homogeneous conditions and the initial value

ζn(xn, t) = ζn(1, t) = 0, (5.28)

ζn(x, 0) = − 1− x
1− xn

yrn(0). (5.29)
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Applying the similar technique, we obtain the similar estimates for ξi, i = 1, · · · , n. Hence,

‖ξ‖2
L2 ≤

∫ x1

0
(ξ0)2dx+

n−1∑
i=1

∫ xi+1

xi
(ξi)2dx+

∫ 1

xn
(ξn)2dx

≤C1

n∑
i=1
|yri (0)|2e−α2 t + C2

n∑
i=1
‖yrit(·)‖2

L∞(0,∞)

+ C3

n∑
i=1
‖yri (·)‖2

L∞(0,∞) + C4

n∑
i=1
‖yri (·)‖4

L∞(0,∞),

(5.30)

where C1, C2, C3, and C4 are constants independent of yri (t). This completes the proof.

The following result is to confirm that the dynamic compensator is also stable in the sense
ISS (input-to-state stable). Specifically, a function γ(x) is said to belong to class K if γ :
[0, s) → [0,∞) is strictly increasing and γ(0) = 0, and a continuous function β(x, t) is said
to belong to class KL if β(·, t) belongs to K and β(x, ·) is monotonically decreasing in t with
limt→∞ β(x, t) = 0. We have then

Proposition 5.2. Under the assumptions of Proposition 5.1, the dynamic compensator given
in (5.7) is stable in H1-norm. Furthermore, there exist a function of class K, γ, and a
function of class KL, β, such that

‖ξ‖H1 ≤ β

(
n∑
i=1
|yr1(0)|, t

)
+ γ

(
n∑
i=1
‖yrit(·)‖L∞(0,∞) + ‖yri (·)‖L∞(0,∞)

)
. (5.31)

Proof. Due to Proposition 5.1 and applying the similar technique used in [28], the conclusion
on the claim follows directly.

Remark 5.1. Due to the Sobolev embedding theorem H1(0, 1) ↪→ C(0, 1) and Proposition 5.2,
we can also conclude that if yri (t) and yrit(t), i = 1, · · · , n, are bounded in [0,∞), then

‖ξ‖L∞(0,∞;L∞(0,1)) <∞. (5.32)

In order to stabilise the controlled Burgers’ equation (5.6) around the dynamic compen-
sator (5.7), we introduce the following nonlinear control:

Blw = (3α)−1w(0, t)2 + k1w(0, t) + ξx(0, t),

Brw = (3α)−1w(1, t)2 − k2w(1, t) + ξx(1, t)
(5.33)

By using the nonlinear boundary feedback control given in (5.33), the closed-loop system can
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be expressed as

wt − αwxx + wxw = 0, x ∈ Ω, t > 0,

[w(x, t)]x=xi = 0, i = 1, · · · , n,

[wx(x, t)]x=xi = ui(t), i = 1, · · · , n,

wx(0, t) = (3α)−1w(0, t)2 + k1w(0, t) + ξx(0, t),

wx(1, t) = (3α)−1w(1, t)2 − k2w(1, t) + ξx(1, t),

w(x, 0) = ϕ(x),

yi(t) = Ciw = w(xi, t), i = 1, . . . , n.

(5.34)

To facilitate stability analysis of (5.34), we introduce the following norm of the Sobolev space
H1(0, 1):

‖v‖H1 =
√∫ 1

0
v2
xdx+ k1|v(0)|2 + k2|v(1)|2, ∀v ∈ H1(0, 1). (5.35)

The following Sobolev inequality will be used in stability analysis of Burgers’ equation.

Lemma 5.1. [41] For any v ∈ H1(0, 1) and 2 ≤ q ≤ ∞, we have

‖v‖Lq ≤ η‖v‖θH1‖v‖1−θ
L2 , (5.36)

where θ = 1/2− 1/q , and η is independent of v.

Note that the norm defined in (5.35) is equivalent to the usual norm of the Sobolev space
H1(0, 1) given early [41].

To validate the proposed in-domain control scheme, we need to ensure that the solution
of the dynamic compensator (5.7) converges to that to the in-domain controlled Burgers’
equation (5.34). Before proceeding to study the stability of the controlled Burgers’ equation,
we introduce the operator Ak = −α d2

dt2 with the domain D(Ak) = {v ∈ H2(0, 1) : vx(0) =
k1v(0), vx(1) = −k2v(1)}. Let λ1 be the first eigenvalue associated to Ak. Then, for k1k2 >√
π, απ2 < λ1 < απ2 [41]. Moreover, ‖v‖2

L2 ≤ α
λ1
‖v‖2

H1 [41].

Theorem 5.1. Let α1/2λ
1/2
1 > ‖ξ‖L∞((0,∞),L∞(0,1)), k1k2 >

√
π, and the initial data ϕ ∈

H1(0, 1). Then the solution to the in-domain controlled Burgers’ equation (5.34) converges
to that of the dynamic compensator(5.7) as t tends to ∞ in space H1(0, 1). Furthermore,
lim
t→∞

ei(t) = 0.

Proof. Let w and ξ be the solution to the in-domain controlled Burgers’ equation (5.34)
and the dynamic compensator (5.7), respectively. We denote η = w − ξ. Subtracting the
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in-domain controlled Burgers’ equation (5.34) to the dynamic compensator (5.7), we have

ηt − αηxx = −ηηx − ηξx − ηxξ

ηx(0, t) = (3α)−1η2(0, t) + k1η(0, t),

ηx(1, t) = (3α)−1η2(1, t)− k2η(1, t),

η(x, 0) = ϕ.

(5.37)

Consider the Lyapunov function candidate:

V = 1
2

∫ 1

0
η(x, t)2dx. (5.38)

Taking the time derivative and integrating by parts, by Lemma 5.1 and Young’s inequality
(see, e.g., [65]), we have

V̇ =
∫ 1

0
η (αηxx − ηηx − ηξx − ηxξ)

≤− α
∫ 1

0
η2
xdx+ αηηx

∣∣∣1
0
− 1

3

∫ 1

0

(
η3
)
x
dx−

∫ 1

0
(η2ξ)xdx+

∫ 1

0
ηηxξdx

≤− α
∫ 1

0
η2
xdx− η(0, t)

(
αηx(0, t)−

1
3η(0, t)2

)
+ η(1, t)

(
αηx(1, t)−

1
3η(1, t)2

)
+ ‖ξ‖L∞‖η‖L2‖ηx‖L2 .

(5.39)

Applying the nonlinear boundary control (5.33) and the boundary conditions given in (5.37),
we get

V̇ ≤ −α
∫ 1

0
η2
xdx− αk1η(0, t)2 − αk2η(1, t)2 + α1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))‖η‖2

H1

≤ −α‖η‖H1 + α1/2λ
−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))‖η‖2

H1

≤ −
(
α− α1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))

)
‖η‖2

H1

≤ −2
(
α− α1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))

)
λ1α

−1V. (5.40)

Therefore, ‖η‖L2 is exponentially stable, i.e.,

‖η‖2
L2 ≤ e−k3t‖ϕ‖2

L2 , (5.41)

where k3 = 2
(
α− α1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))

)
λ1α

−1.
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Multiplying (5.40) by e 1
2k3t, we have

d
dt
(
e

1
2k3t‖η‖2

L2

)
+
(
2α− 2α1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))

)
e

1
2k3t‖η‖H1

≤ 1
2k3e

1
2k3t‖η‖2

L2 .

(5.42)

Integrating from 0 to t, we obtain

e
1
2k3t‖η‖2

L2 +
(
2α− 2λ1/2λ

−1/2
1 ‖ξ‖L∞(0,∞;L∞(0,1))

) ∫ t

0
e

1
2k3τ‖η(·, τ)‖H1dτ

≤ 1
2k3

∫ t

0
e

1
2k3τ‖η(·, τ)‖2

L2dτ

≤ k3

2 ‖ϕ‖
2
L2

∫ t

0
e−

1
2k3τdτ,

(5.43)

which implies that ∫ t

0
e

1
2k3τ‖η(·, τ)‖H1dτ ≤M1, t ∈ [0,∞), (5.44)

where M1 is a positive constant depending only on ‖ϕ‖L2 . In the following, we estimate the
bound of ‖η‖H1 . Multiplying −ηxx on both sides of (5.37) yields

1
2
d
dt‖η‖

2
H1 + α‖ηxx‖2

L2 =
∫ 1

0
(ηηxηxx + ηxxηξx + ηxxηxξ) dx

≤‖ηxx‖L2‖ηηx‖L2 + ‖ηxx‖L2‖ηξx‖L2 + ‖ηxx‖L2‖ηxξ‖L2

≤ε1‖ηxx‖2
L2 + (4ε1)−1‖ηηx‖2

L2 + ε2‖ηxx‖2
L2 + (4ε2)−1‖ηξx‖2

L2

+ ε3‖ηxx‖L2 + (4ε3)−1‖ηxξ‖2
L2

≤(ε1 + ε2 + ε3)‖ηxx‖2
L2 + (4ε1)−1‖η‖2

L∞‖ηx‖2
L2 + (4ε2)−1‖η‖2

L∞‖ξx‖2
L2

+ (4ε3)−1‖ξ‖2
L∞‖ηx‖2

L2

≤(ε1 + ε2 + ε3)‖ηxx‖2
L2 + η

4ε1
‖η‖L2‖η‖H1‖ηx‖2

L2

+ (4ε2)−1‖η‖L2‖η‖H1‖ξ‖2
H1 + (4ε3)−1‖ξ‖2

L∞‖η‖2
H1

≤(ε1 + ε2 + ε3)‖ηxx‖2
L2 + ηα1/2

4λ1/2
1 ε1

‖η‖4
H1 + α1/2

4λ1/2
1 ε2

‖ξ‖2
L∞(0,∞;H1(0,1))‖η‖2

H1

+ (4ε3)−1‖ξ‖2
L∞(0,∞;L∞(0,1))‖η‖2

H1 .

(5.45)

Next, we will estimate the H1-norm of η to show that ‖η‖H1 exponentially converges to 0 as
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t tends to ∞. Choosing constants ε1, ε2, ε3 such that ε1 + ε2 + ε3 < α, we have

d
dt‖η‖

2
H1 ≤

ηα1/2

2λ1/2
1 ε1

‖η‖4
H1 + α1/2

2λ1/2
1 ε2

‖ξ‖2
L∞(0,∞;H(0,1))‖η‖

2
H1

+ (2ε3)−1‖ξ‖2
L∞(0,∞;L∞(0,1))‖η‖2

H1 .

(5.46)

Multiplying (5.46) by e 1
2k3t, we have

d
dt
(
e

1
2k3t‖η‖2

H1

)
≤
(

1
2k3 + λ1/2

2λ1/2
1 ε2

‖ξ‖2
L∞(0,∞;H1(0,1)) + (2ε3)−1‖ξ‖2

L∞(0,∞;L∞(0,1)

)

× e
1
2k3t‖η‖2

H1 + ηα1/2

2λ1/2
1 ε1

e
1
2k3t‖η‖4

H1 .

(5.47)

By Gronwall’s inequality it yields

e
1
2k3t‖η‖H1 ≤

‖ϕ‖H1 +
(

1
2k3 + α1/2

2λ1/2
1 ε2

‖ξ‖2
L∞(0,∞;H1(0,1)) + (2ε3)−1‖ξ‖2

L∞(0,∞;L∞(0,1)

)

×
∫ t

0
e

1
2k3τ‖η(·, τ)‖2

H1dτ
 exp

(
ηα1/2

2λ1/2
1 ε1

∫ t

0
‖η(·, τ)‖2

H2dτ
)
,

(5.48)

which implies that

‖η‖2
H1 ≤

(
‖ϕ‖H1 +M1

(
1

ffl2k3 + α1/2

2λ1/2
1 ε2

‖ξ‖2
L∞(0,∞;H1(0,1)) + (2ε3)−1‖ξ‖2

L∞(0,∞;L∞(0,1)

))

× exp
(
ηα1/2

2λ1/2
1 ε1

M1

)
e−

1
2k3t, t ∈ [0,∞).

(5.49)

Therefore, ‖η‖H1 exponentially converges to 0 as t tends to ∞. Furthermore, based on the
fact that H1(0, 1) ↪→ C(0, 1), we can conclude that limt→∞ ei(t) = 0, i = 1, . . . , n.

Remark 5.2. As the dynamic compensator and the difference between the controlled Burgers’
equation and the dynamics of the compensator are stable in L2-norm and H1-norm, we can
deduce from the fact ‖w‖H1 ≤ ‖ξ‖H1 +‖η‖H1 that the system (5.34) is also stable in H1-norm.

5.4 ADM-based Control Implementation

The dynamic compensator (5.7) is a nonlinear PDE for which it is very difficult or almost
impossible to obtain the solution in closed form. In order to overcome this difficulty, we apply
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the Adomian decomposition method, which allows expressing the solution of the dynamic
compensator in a series form.

5.4.1 Introduction to the Adomian Decomposition Method

Consider the following abstract operator equation:

Lξ +Rξ +Nξ = f,

ξ(0) = ϕ,
(5.50)

where L : X → X is a linear operator from a Banach space X to a Banach space Y and
is reversible. Ru and Nu are linear and nonlinear terms in space X, respectively. f is
the homogeneous term. A variety of ordinary differential equations and partial differential
equations can be expressed by this abstract equation, such as the nonlinear Sturm-Liouville
equation, Fisher’s equation, and Burgers’ equation. Applying the inverse operator L−1 to
(5.50) yields

ξ = ψ + L−1f − L−1Rξ − L−1Nξ, (5.51)

where ψ is determined by the initial data ϕ. The scheme of Adomian decomposition can
generate the solution of the abstract equation (5.50) as an infinite series:

ξ =
∞∑
m=0

ξm, (5.52)

where 

ξ0 = ψ + L−1ξ,

ξ1 = −L−1Rξ0 − L−1A0,

...

ξm+1 = −L−1Rξm − L−1Am.

(5.53)

The nonlinear term can be expressed in terms of a iteration series, i.e., Nξ = ∑∞
m=0Am(ξ0, . . . , ξm),

where the polynomial Am can be computed from ξi, i = 1, . . . ,m, as follows [3, 134]:

Am(ξ0, . . . , ξm) = 1
m!

dm

dλm

[
N

( ∞∑
i=0

λiξi

)]
λ=0

. (5.54)
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5.4.2 Implementation of Dynamic Compensator

Based on the ADM, the nonlinear term of the dynamic compensator (5.7) can be expressed
as

ξxξ =
∞∑
i=0

Ai(ξ0, ξ1, . . . , ξi), (5.55)

where
Am(ξ0, · · · , ξm) = ξmξ0x + ξm−1ξ1x + · · ·+ ξ1ξ(m−1)x + ξ0ξmx. (5.56)

We chose a ξ0 that complies with the following linear parabolic equation:

ξ0t − αξ0xx = 0, x ∈ Ω, t > 0,

ξ0(0, t) = 0, ξ0(1, t) = 0,

[ξ0(x, t)]x=xi = 0, i = 1, . . . , n,

ξ0(xi, t) = yri,0(t), i = 1, . . . , n,

ξ0(x, 0) = 0.

(5.57)

The corresponding component u0,i(t) of the in-domain control is then given by

u0,i(t) = [ξ0x(x, t)]x=xi , i = 1, . . . , n. (5.58)

Using the recursive formula (5.54), ξ1 complies with

ξ1t − αξ1xx + ξ0xξ0 = 0, x ∈ Ω, t > 0,

ξ1(0, t) = 0, ξ1(1, t) = 0,

[ξ1(x, t)]x=xi = 0, i = 1, . . . , n,

ξ1(x, 0) = 0.

(5.59)

The corresponding component u1,i(t) of the in-domain control is:

u1,i(t) = [ξ1x(x, t)]x=xi , i = 1, . . . , n. (5.60)

Therefore, the general term ξm,m = 1, . . . ,∞, complies with the following parabolic equation:

ξmt − αξmxx + Am−1(ξ0, . . . , ξm−1) = 0, x ∈ Ω, t > 0,

ξm(0, t) = 0, ξm(1, t) = 0,

[ξm(x, t)]x=xi = 0, i = 1, . . . , n,

ξm(x, 0) = 0,

(5.61)
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and the m-th component um,i(t) of the in-domain control ui(t) is given by

um,i(t) = [ξmx(x, t)]x=xi , i = 1, . . . , n. (5.62)

Thus, the solution to the dynamic compensator (5.7) and the reference signal yri (t) can be
expressed, respectively, as

ξ(x, t) =
∞∑
m=0

ξm(x, t), yri (t) = yr0,i +
∞∑
i=1

ξm(xi, t), i = 1, . . . , n. (5.63)

Finally, the in-domain control ui can be derived from (5.58), (5.60), and (5.62), which takes
the form:

ui(t) =
∞∑
m=0

um,i(t) =
∞∑
m=0

[ξmx(x, t)]x=xi , i = 1, . . . , n. (5.64)

5.5 Motion Planning

The recursive procedure of the ADM starts by solving the linear parabolic equation (5.57). As
the considered problem is a set-point control, we resort to flatness-based trajectory planning
to compute ξ0. For this purpose, we first change the time scale from t to αt, while still using
t as the time variable, which leads to the following linear parabolic equation:

ξ0t − ξ0xx = 0, x ∈ (0, 1), t > 0

ξ0(0, t) = 0, ξ0(1, t) = 0,

[ξ0(x, t)]x=xi = 0, i = 1, . . . , n,

ξ0(xi, t) = yr0,i(t/α), i = 1, . . . , n,

Biξ0 = [ξ0x(x, t)]x=xi = vi(t), i = 1, . . . , n,

ξ0(x, 0) = 0,

(5.65)

where vi(t), i = 1, . . . , n, are the control inputs in the new time-scale. Due to the linearity
of (5.65), we can divide ξ0 into ξi0(x, t), i = 1, . . . , n, in a manner that all the subsystems are
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parallel connected. Hence, ξ0 can be expressed as ξ0 = ∑n
i=1 ξ

i
0, where ξi0 is governed by

ξi0t − ξi0xx = 0, x ∈ (0, xi) ∪ (xi, 1),

ξi0(0, t) = 0, ξi0(1, t) = 0,

ξi0(xi, t) = yr0,i(t/α),

ξi0(0, t) = 0,[
ξi0x
]
x=xi

= vi(t),

i = 1, . . . , n.

(5.66)

We split every system ξi0 into two sub-systems, i.e., for fixed xi ∈ (0, 1),

ξ−it (x, t)− ξ−ixx(x, t) = 0, x ∈ (0, xi), (5.67)

ξ−i (0, t) = 0, ξ−ix(0, t) = 0, (5.68)

and

ξ+
it (x, t)− ξ+

ixx(x, t) = 0, x ∈ (xi, 1), (5.69)

ξ+
i (0, t) = 0, ξ+

i (1, t) = 0, (5.70)

with the joint conditions

ξ−i (xi, t) = ξ+
i (xi, t), (5.71)

ξ+
ix(xi, t)− ξ−ix(xi, t) = vi(t). (5.72)

Applying Laplace transform to both sides of (5.67) with boundary conditions (5.68) and to
(5.69) with boundary conditions (5.70), it yields

s”ξ−i (x, s) = ‘ξ−ixx(x, s), x ∈ (0, xi),”ξ−i (0, s) = 0,
(5.73)

and

s”ξ+
i (x, s) = ‘ξ+

ixx(x, s), x ∈ (xi, 1),”ξ+
i (1, s) = 0.

(5.74)
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Then, (5.73) and (5.74) can be expressed as”ξ−i (x, s) = Ĉ1(s)φ1(x, s) + Ĉ2(s)φ2(x, s),”ξ+
i (x, s) = Ĉ3(s)φ1(ζ, s) + Ĉ4(s)φ2(ζ, s),

(5.75)

where ζ = x− xi, and

φ1(x, s) = sinh(
√
sx)√
s

, φ2(x, s) = cosh(
√
sx). (5.76)

Applying the technique used in [119], we derive

v̂i(s) = (φ1(1− xi, s)φ2(xi, s) + φ1(xi, s)φ2(1− xi, s)) ĥi(s)

= φ1(1, s)ĥi(s),
(5.77)

where ĥi(s)↔ hi(t) is the so-called flat output. Recalling that

sinh(x) =
∞∑
n=0

x2n+1

(2n+ 1)! , cosh(x) =
∞∑
n=0

x2n

(2n)! , (5.78)

we obtain

v̂i(s) =
∞∑
m=0

sm

(2m+ 1)! ĥi(s). (5.79)

Thus, applying the inverse Laplace transform, the in-domain control in time domain is given
by

vi(t) =
∞∑
m=0

h
(m)
i (t)

(2m+ 1)! , i = 1, . . . , n. (5.80)

Therefore, the in-domain control in the original time-scale can be expressed as

u0,i(t) =
∞∑
m=0

h
(m)
i (αt)

(2m+ 1)! , i = 1, . . . , n. (5.81)

In order to assure the convergence of the above series, the flat outputs hi(t), i = 1, . . . , n,
should be of C∞-smooth. We choose then the following function ψ(t) as a component of
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basic outputs:

ψ(t) =



0, if t ≤ 0,∫ t
0 exp(−1/(τ(1− τ)))εdτ∫ T
0 exp(−1/(τ(1− τ)))εdτ

, if 0 < t < T,

1, if t ≥ T,

(5.82)

which is known as the Gevrey function of order σ = 1 + 1
ε
, ε > 0. The form of basic outputs

hi(t) can be expressed as
hi(t) = µiψ(t), i = 1, . . . , n, (5.83)

where µi are constants.

In order to find appropriate reference trajectories to track the desired set-points ydi , the
unknown parameters µi of flat outputs hi(t) can be determined by the steady-state equation
corresponding to the system (5.7), which is of the following form:

− αξ̄xx + ξ̄ξ̄x = 0, x ∈ Ω,[
ξ̄(x)

]
x=xi

= 0, i = 1, . . . , n,

ξ̄(0) = 0, ξ̄(1) = 0,

ξ̄(xi) = ydi , i = 1, . . . , n,[
ξ̄x(x)

]
x=xi

= −γi, i = 1, . . . , n,

(5.84)

To find the solution to the static PDE (5.84), we still use the ADM with which the solution
is expressed as

ξ =
∞∑
m=0

ξm, (5.85)

and the nonlinear term can be written as

ξmξ
′
m = Am(ξ0, · · · , ξm) = ξmξ

′
0 + ξm−1ξ

′
1 + . . .+ ξ1ξ

′
m−1 + ξ0ξ

′
m. (5.86)
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Therefore, the first term ξ̄0 complies with the following linear parabolic equation:

− αξ̄0xx = 0, x ∈ Ω,

ξ̄0(0) = 0, ξ̄0(1) = 0,[
ξ̄0(x)

]
x=xi

= 0, i = 1, . . . , n,

ξ̄(xi) = ydi , i = 1, . . . , n,

[ξ̄0x]x=xi = ū0,i, i = 1, . . . , n.

(5.87)

Using the recursive formula (5.54), ξ̄1 is governed by

− αξ̄1xx + ξ̄0xξ̄0 = 0, x ∈ Ω,

ξ̄1(0) = 0, ξ̄1(1) = 0,[
ξ̄1(x)

]
x=xi

= 0, i = 1, . . . , n.
(5.88)

The second component ū1,i in γi is given by

ū1,i = [ξ̄1x(x)]x=xi , i = 1, . . . , n. (5.89)

Therefore, the general term ξ̄m,m = 1, . . . ,∞, complies with the following parabolic equation:

− αξ̄mxx + Am−1(ξ̄0, . . . , ξ̄m−1) = 0, x ∈ Ω,

ξ̄m(0) = 0, ξ̄m(1) = 0,[
ξ̄m(x)

]
x=xi

= 0, i = 1, . . . , n.
(5.90)

hus, The m-th component ūm,i in γi is given by

ūm,i =
[
ξ̄mx(x)

]
x=xi

, i = 1, . . . , n. (5.91)

The parameter γi, i = 1, . . . , n, can be decomposed as

γi =
∞∑
m=0

ūm,i =
∞∑
m=0

[
ξ̄mx(x)

]
x=xi

, i = 1, . . . , n. (5.92)

Therefore, according to (5.81), we choose the parameters µi, i = 1, . . . , n, such that

lim
t→∞

u0,i(t) = µi = ū0,i, i = 1, . . . , n. (5.93)
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Finally, the basic inputs are set as

hi(t) = ū0,iψ(t), i = 1, . . . , n. (5.94)

With such basic outputs, the control ui(t), i = 1, . . . , n, given in (5.61), (5.64), and (5.81),
can allow the in-domain controlled Burgers’ equation to achieve an asymptotic regulation
with respect to the desired outputs ydi , i = 1, . . . , n.

5.6 Simulation Study

To illustrate the proposed control scheme, we conduct a numerical simulation study of the
in-domain controlled Burgers’ equation with Matlab. In the simulation, the initial condition
is chosen as ϕ = 0.4 sin(πx), and the parameters are set as k1 = k2 = 7, and α = 1.

The desired static profile is described as

wref (x) = a1 exp
−(x− b1

c1

)2
+ a2 exp

−(x− b2

c2

)2
 (5.95)

where the parameters are set to a1 = 0.75, b1 = 0.65, c1 = 0.26, a2 = 0.17, b2 = 0.31, and
c2 = 0.25. Our aim is to drive the trajectory of the Burgers’ equation to track the desired
profile wref(x) via in-domain control. Due to the fact that wref(x) may not be the solution
of the Burgers’ equation (5.3) in steady-state, we illustrate in Fig. 5.1(a) the accuracy of
interpolation of a system with, respectively 9 and 19 in-domain actuators corresponding to
the desired curve (5.95). Clearly, the enhancement of the tracking performance of Burgers’
equation necessitates an adequate number of in-domain actuators. The setting with 19 in-
domain actuators at the point xi = i

20 , i = 1, . . . , 19, is used in performance evaluation. In the
simulation, we choose the 4-th partial sum of the Adomian series ξ4 = ∑4

i=0 ξi to approximate
solution of the dynamic compensator. Accordingly, the parameters γi, i = 1, . . . , 19, is also
computed by a 4-th order approximation of (5.92). The obtained control in steady state is
given in Fig. 5.1(b). The solution profile w(x, t) is shown in Fig. 5.2(a), and the evolution
of the regulation errors is depicted in Fig. 5.2(b). The simulation results show that the
developed control scheme can achieve the objective of asymptotic set-point control.

5.7 Conclusion

The present work dealt with the in-domain control of Burgers’ equation for output regulation.
A nonlinear boundary feedback control is used and, inspired by the zero dynamic inverse
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(a)

(b)

Figure 5.1 Simulation results: (a) interpolation of the reference signal wref ; (b) static control
signals.
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design, a dynamic compensator with homogeneous is applied to generate the in-domain
control signals. The closed-loop stability of the proposed control scheme is assessed through
a rigorous analysis. The method of Adomian composition combined with flatness-based
trajectory planning is used to implement the dynamic compensator. The results obtained
from numerical simulations illustrate the performance of the developed control scheme, which
confirms the validity of the proposed method.

(a)

(b)

Figure 5.2 Simulation results: (c) solution surface; (d) surface of regulation errors.
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CHAPTER 6 GENERAL DISCUSSION

In-domain control of PDE systems has been developed over the last few decades. However,
several problems remain to be investigated. One difficulty arose in in-domain control of
PDE systems is that the in-domain input operators are unbounded in the Sobolev space,
such as H1(Ω), to which the solutions to PDE systems belong. This means that the control
techniques developed for boundary control of PDE systems cannot be applied directly to the
in-domain control problems. To overcome this difficulty, dual spaces of the Sobolev space
have been introduced, on which the interior input operators are bounded, which makes it
possible to analyze the well-posedness and the regularity and enables control synthesis to
achieve the stability of linear and nonlinear PDE systems with multiple in-domain inputs.
Another difficulty is that the equivalence between the boundary control and the in-domain
control may not be established. Thus, the existing boundary control techniques cannot be
directly applied to in-domain control. We need to develop new methods to address in-domain
control of PDEs.

This thesis addresses the in-domain control of linear and nonlinear PDE systems, such as
Euler-Bernoulli equation and semi-linear parabolic equation, including Fisher’s equation,
Chaffee-Infante equation, and Burger’ equation. The classification of the considered PDEs
and the methods developed in this thesis for tackling the corresponding problems are sum-
marized in Fig.6.1. For the linear cases, zero dynamics are linear PDEs, whose solutions can
be easily derived using classical mathematical methods, such as Laplace transform, Fourier
transform, and separation of variables. For example, the solutions to the zero dynamics of
heat equations and Euler-Bernoulli equations with multiple interior actuations can be explic-
itly expressed as analytical series in terms of flat outputs. To improve in-domain control de-
sign, our earlier work utilized differential flatness to generate the desired trajectory and then
employed the Green’s function method to solve the motion planning problem. For nonlinear
cases, the zero dynamics of nonlinear PDEs with multiple interior actuations are governed by
nonlinear PDEs. We resort then the Adomian decomposition method (ADM) to investigate
the regularity of the zero dynamics of nonlinear semi-linear parabolic equations, which in turn
allows determining the effect that interior actuations exert on the nonlinear term of semi-
linear parabolic equations. Indeed, if the nonlinear term of a semi-linear parabolic equation
is sufficiently smooth, such as in Fisher’s equation and Chafee-Infante equation, then the
iterated terms of an Adomian series will preserve the smoothness at the level of the approx-
imation obtained in the previous steps. While the nonlinear term of semi-linear parabolic
equations is not smooth and is subject to in-domain control, the regularity of iterated terms
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Figure 6.1 In-domain control problems and corresponding methods.

will not exceed that of the previous items. For example, the nonlinear term of a Burgers’
equation involves the derivative on space, which indicates that the second or the consecutive
terms of the Adomian series of the Burgers’ equation degrades the smoothness, making the
solution much more oscillating compared with the Fisher’s equation or the Chafee-Infante
equation. This is why a different approach has to be developed to deal with the in-domain
control of Burgers’ equation. Due to the regularity of Fisher’s equation and Chafee-Infante
equation, higher-order terms of Adomian series have no impact on the regularity of their
systems. Therefore, in-domain control of Fisher’s equations and Chafee-Infanter equations
is reduced to the in-domain control design of their linear counterpart, which facilitates the
in-domain control design and implementation.

Systematic in-domain control design procedures for linear and semi-linear PDE systems are
proposed in this thesis to solve PDE systems with interior actuations. In-domain control of
Euler-Bernoulli equation, Fisher’s equation, Chafee-Infante equations, and Burgers’ equation
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are solved by using the proposed control algorithms. Furthermore, the proposed approaches
can be applied to other classes of PDE systems. Specifically, the proposed algorithms for
in-domain control of PDE systems can be generalized as follows. For linear cases, based on
the zero dynamics inverse, in-domain control design of linear PDEs can be reduced to that
of its zero dynamics. Then, using Laplace transform, the zero dynamics can be decomposed
into several subsystems governed by linear PDEs. The methods of differential flatness and
Green’s function are employed to produce the desired trajectories to solve the motion plan-
ning. For nonlinear cases, the ADM is used to analyze the regularity of the zero dynamics of
nonlinear PDE systems. When the nonlinear terms of the PDE systems are smooth, the in-
domain control of nonlinear PDEs can be reduced to that of their linear counterpart. When
the nonlinear terms of PDE systems involve high order derivative terms, the in-domain con-
trol will depend on both their linear and nonlinear terms, which requires the calculation of
more terms of Adomian series of the zero dynamics of the nonlinear PDEs to derive the in-
domain control. Furthermore, if nonlinear boundary feedback control is used to enhance the
performance of the system, such as the stability, dynamic compensators of particular form
should be considered to enable well-posedness and stability analysis. The design and imple-
mentation of the in-domain control have to be adjusted accordingly. Finally, the approaches
developed in this thesis belong to the category of late-lumping, which means that we deal
with the original PDE models in control design without using any approximation. Thus, the
truncations may happen only at the stage of implementation, which makes the control design
and implementation procedures computationally tractable with guaranteed performance.
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CHAPTER 7 CONCLUSION

7.1 Conclusion

In-domain control design is a challenging problem while representing a promising trend in
PDE control theory. A key aspect related to in-domain control is that it eliminates the
restriction on the location of actuations inherent to boundary control and simultaneously
provides profound insights into the manipulation of PDE systems. This thesis addresses in-
domain control of an Euler-Bernoulli equation and a class of semi-linear parabolic equations,
including Fisher’s equation, Chaffee-Infante equation, and Burgers’ equation.

Chapter 1 introduces the in-domain control of PDE systems and some tools that enable
systematic procedures for PDE control design, including backstepping control, boundary
feedback control, differential flatness, and zero dynamics inverse. This chapter includes also
a summary of the advances in in-domain control of PDE systems.

Chapter 2 presents an overview of the basis on PDE theory and introduces some notions
and tools used throughout this thesis, including the Sobolev space, the Hölder inequality and
the Sobolev inequalities, which play essential roles in establishing the a priori estimates of
the solutions to the PDEs. Some well-known results on the existence, the uniqueness, and
the regularity of linear elliptic equations and linear parabolic equations are recalled in this
chapter. The basic concepts of semigroup analysis are presented, and their applications are
illustrated with an example on how the semigroup theory can be leveraged for the control
of infinite-dimensional systems. Differential flatness is introduced, and in-domain control
of a heat equation is used to demonstrate differential flatness-based trajectory planning.
This chapter also discusses the Adomian decomposition method (ADM), and illustrates the
application of the ADM to a Fisher’s equation.

Chapter 3 addresses in-domain control of an Euler-Bernoulli equation using zero dynamics
inverse and differential flatness. Euler-Bernoulli equation features the flatness property, which
allows expressing the state variables and the control inputs in terms of flat outputs and
their time derivatives, thereby constructing the solution to the Euler-Bernoulli equation and
generating the in-domain control. To complete motion planning, the Green’s function of the
static equation of the Euler-Bernoulli equation is exploited to produce static control. The
desired control signals are constructed by the static control along with the desired trajectory
developed using differential flatness. The simulation results illustrate the validity and the
effectiveness of the proposed control strategy.
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Chapter 4 is devoted to in-domain control of a class of semi-linear parabolic equations,
including Fisher’s equation and Chaffee-Infante equation. The method of zero dynamics
inverse is employed to establish the in-domain control. The Adomian decomposition method
is leveraged to obtain a semi-analytic solution to the zero dynamics. Convergence analysis of
the Adomian series is conducted, which can guarantee that the solution derived by the ADM
can approach the exact solution to the zero dynamics. Due to the regularity analysis of the
considered semi-linear parabolic equations, we conclude that the interior actuations depends
only on the linear term of the Adomian series. This indicates that in-domain control can be
achieved by only the linear term of the Adomian series, greatly facilitating the control design
procedure.

Chapter 5 presents a novel in-domain control scheme based on a dynamic compensator for
a Burgers’ equation under nonlinear boundary feedback control. A dynamic compensator is
introduced to generate in-domain control, which can track the desired outputs. A Lyapunov
stability analysis confirms that the error between the outputs of the controlled Burgers’
equation and the desired output signals converge to zero over the time. Finally, the ADM
and the flatness are utilized in the implementation of the resulting in-domain control.

Chapter 6 provides a general discussion on in-domain control of PDE systems, the method-
ology employed along with the research of this thesis, and the achievements obtained in this
work.

7.2 Perspectives on Future Work

7.2.1 In-domain control of higher-dimensional PDEs

This thesis addressed in-domain control of one-dimensional PDE systems with multiple in-
terior actuations. A future work may be to extend the approaches developed for in-domain
control of one-dimensional PDEs to higher-dimensional PDEs. In-domain control of 2-
dimensional linear PDEs can be examined first, and in-domain control of other types of
PDEs will also be considered.

7.2.2 Tracking/Rejection of time-dependent signals

The objective of this thesis is to treat the multiple interior set-point problems of PDE systems
by dynamic control laws. However, large numbers of problems are formulated as tracking and
rejection of time-dependent desired signals. There is a significant difference between those
two types of problems from both theoretical and practical perspectives. Indeed, set-point
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control problems require only the PDE systems to retain the desired prescribed outputs by
manipulating the control inputs. Whereas, tracking the desired time-dependent signals and
disturbances rejection need to allow the controlled PDE systems to adjust the control signals
while varying the time. Hence, the control techniques developed in this thesis cannot yet be
directly extended to the cases where the prescribed outputs are time-dependent. More efforts
should be devoted to formulating in-domain control of PDE systems with time-dependent
references and to obtaining control laws based on available control techniques in order to
tackle these types of problems.
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