32 research outputs found

    Learning, Moving, And Predicting With Global Motion Representations

    Get PDF
    In order to effectively respond to and influence the world they inhabit, animals and other intelligent agents must understand and predict the state of the world and its dynamics. An agent that can characterize how the world moves is better equipped to engage it. Current methods of motion computation rely on local representations of motion (such as optical flow) or simple, rigid global representations (such as camera motion). These methods are useful, but they are difficult to estimate reliably and limited in their applicability to real-world settings, where agents frequently must reason about complex, highly nonrigid motion over long time horizons. In this dissertation, I present methods developed with the goal of building more flexible and powerful notions of motion needed by agents facing the challenges of a dynamic, nonrigid world. This work is organized around a view of motion as a global phenomenon that is not adequately addressed by local or low-level descriptions, but that is best understood when analyzed at the level of whole images and scenes. I develop methods to: (i) robustly estimate camera motion from noisy optical flow estimates by exploiting the global, statistical relationship between the optical flow field and camera motion under projective geometry; (ii) learn representations of visual motion directly from unlabeled image sequences using learning rules derived from a formulation of image transformation in terms of its group properties; (iii) predict future frames of a video by learning a joint representation of the instantaneous state of the visual world and its motion, using a view of motion as transformations of world state. I situate this work in the broader context of ongoing computational and biological investigations into the problem of estimating motion for intelligent perception and action

    Low latency modeling of temporal contexts for speech recognition

    Get PDF
    This thesis focuses on the development of neural network acoustic models for large vocabulary continuous speech recognition (LVCSR) to satisfy the design goals of low latency and low computational complexity. Low latency enables online speech recognition; and low computational complexity helps reduce the computational cost both during training and inference. Long span sequential dependencies and sequential distortions in the input vector sequence are a major challenge in acoustic modeling. Recurrent neural networks have been shown to effectively model these dependencies. Specifically, bidirectional long short term memory (BLSTM) networks, provide state-of-the-art performance across several LVCSR tasks. However the deployment of bidirectional models for online LVCSR is non-trivial due to their large latency; and unidirectional LSTM models are typically preferred. In this thesis we explore the use of hierarchical temporal convolution to model long span temporal dependencies. We propose a sub-sampled variant of these temporal convolution neural networks, termed time-delay neural networks (TDNNs). These sub-sampled TDNNs reduce the computation complexity by ~5x, compared to TDNNs, during frame randomized pre-training. These models are shown to be effective in modeling long-span temporal contexts, however there is a performance gap compared to (B)LSTMs. As recent advancements in acoustic model training have eliminated the need for frame randomized pre-training we modify the TDNN architecture to use higher sampling rates, as the increased computation can be amortized over the sequence. These variants of sub- sampled TDNNs provide performance superior to unidirectional LSTM networks, while also affording a lower real time factor (RTF) during inference. However we show that the BLSTM models outperform both the TDNN and LSTM models. We propose a hybrid architecture interleaving temporal convolution and LSTM layers which is shown to outperform the BLSTM models. Further we improve these BLSTM models by using higher frame rates at lower layers and show that the proposed TDNN- LSTM model performs similar to these superior BLSTM models, while reducing the overall latency to 200 ms. Finally we describe an online system for reverberation robust ASR, using the above described models in conjunction with other data augmentation techniques like reverberation simulation, which simulates far-field environments, and volume perturbation, which helps tackle volume variation even without gain normalization

    Modeling language with structured penalties

    Get PDF
    La modélisation de la langue naturelle est l¿un des défis fondamentaux de l¿intelligence artificielle et de la conception de systèmes interactifs, avec applications dans les systèmes de dialogue, la génération de texte et la traduction automatique. Nous proposons un modèle log-linéaire discriminatif donnant la distribution des mots qui suivent un contexte donné. En raison de la parcimonie des données, nous proposons un terme de pénalité qui code correctement la structure de l¿espace fonctionnel pour éviter le sur-apprentissage et d¿améliorer la généralisation, tout en capturant de manière appropriée les dépendances à long terme. Le résultat est un modèle efficace qui capte suffisamment les dépendances longues sans occasionner une forte augmentation des ressources en espace ou en temps. Dans un modèle log-linéaire, les phases d¿apprentissage et de tests deviennent de plus en plus chères avec un nombre croissant de classes. Le nombre de classes dans un modèle de langue est la taille du vocabulaire, qui est généralement très importante. Une astuce courante consiste à appliquer le modèle en deux étapes: la première étape identifie le cluster le plus probable et la seconde prend le mot le plus probable du cluster choisi. Cette idée peut être généralisée à une hiérarchie de plus grande profondeur avec plusieurs niveaux de regroupement. Cependant, la performance du système de classification hiérarchique qui en résulte dépend du domaine d¿application et de la construction d¿une bonne hiérarchie. Nous étudions différentes stratégies pour construire la hiérarchie des catégories de leurs observations.Modeling natural language is among fundamental challenges of artificial intelligence and the design of interactive machines, with applications spanning across various domains, such as dialogue systems, text generation and machine translation. We propose a discriminatively trained log-linear model to learn the distribution of words following a given context. Due to data sparsity, it is necessary to appropriately regularize the model using a penalty term. We design a penalty term that properly encodes the structure of the feature space to avoid overfitting and improve generalization while appropriately capturing long range dependencies. Some nice properties of specific structured penalties can be used to reduce the number of parameters required to encode the model. The outcome is an efficient model that suitably captures long dependencies in language without a significant increase in time or space requirements. In a log-linear model, both training and testing become increasingly expensive with growing number of classes. The number of classes in a language model is the size of the vocabulary which is typically very large. A common trick is to cluster classes and apply the model in two-steps; the first step picks the most probable cluster and the second picks the most probable word from the chosen cluster. This idea can be generalized to a hierarchy of larger depth with multiple levels of clustering. However, the performance of the resulting hierarchical classifier depends on the suitability of the clustering to the problem. We study different strategies to build the hierarchy of categories from their observations.PARIS-JUSSIEU-Bib.électronique (751059901) / SudocSudocFranceF

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Simple low cost causal discovery using mutual information and domain knowledge

    Get PDF
    PhDThis thesis examines causal discovery within datasets, in particular observational datasets where normal experimental manipulation is not possible. A number of machine learning techniques are examined in relation to their use of knowledge and the insights they can provide regarding the situation under study. Their use of prior knowledge and the causal knowledge produced by the learners are examined. Current causal learning algorithms are discussed in terms of their strengths and limitations. The main contribution of the thesis is a new causal learner LUMIN that operates with a polynomial time complexity in both the number of variables and records examined. It makes no prior assumptions about the form of the relationships and is capable of making extensive use of available domain information. This learner is compared to a number of current learning algorithms and it is shown to be competitive with them

    Temporal models for mining, ranking and recommendation in the Web

    Get PDF
    Due to their first-hand, diverse and evolution-aware reflection of nearly all areas of life, heterogeneous temporal datasets i.e., the Web, collaborative knowledge bases and social networks have been emerged as gold-mines for content analytics of many sorts. In those collections, time plays an essential role in many crucial information retrieval and data mining tasks, such as from user intent understanding, document ranking to advanced recommendations. There are two semantically closed and important constituents when modeling along the time dimension, i.e., entity and event. Time is crucially served as the context for changes driven by happenings and phenomena (events) that related to people, organizations or places (so-called entities) in our social lives. Thus, determining what users expect, or in other words, resolving the uncertainty confounded by temporal changes is a compelling task to support consistent user satisfaction. In this thesis, we address the aforementioned issues and propose temporal models that capture the temporal dynamics of such entities and events to serve for the end tasks. Specifically, we make the following contributions in this thesis: (1) Query recommendation and document ranking in the Web - we address the issues for suggesting entity-centric queries and ranking effectiveness surrounding the happening time period of an associated event. In particular, we propose a multi-criteria optimization framework that facilitates the combination of multiple temporal models to smooth out the abrupt changes when transitioning between event phases for the former and a probabilistic approach for search result diversification of temporally ambiguous queries for the latter. (2) Entity relatedness in Wikipedia - we study the long-term dynamics of Wikipedia as a global memory place for high-impact events, specifically the reviving memories of past events. Additionally, we propose a neural network-based approach to measure the temporal relatedness of entities and events. The model engages different latent representations of an entity (i.e., from time, link-based graph and content) and use the collective attention from user navigation as the supervision. (3) Graph-based ranking and temporal anchor-text mining inWeb Archives - we tackle the problem of discovering important documents along the time-span ofWeb Archives, leveraging the link graph. Specifically, we combine the problems of relevance, temporal authority, diversity and time in a unified framework. The model accounts for the incomplete link structure and natural time lagging in Web Archives in mining the temporal authority. (4) Methods for enhancing predictive models at early-stage in social media and clinical domain - we investigate several methods to control model instability and enrich contexts of predictive models at the “cold-start” period. We demonstrate their effectiveness for the rumor detection and blood glucose prediction cases respectively. Overall, the findings presented in this thesis demonstrate the importance of tracking these temporal dynamics surround salient events and entities for IR applications. We show that determining such changes in time-based patterns and trends in prevalent temporal collections can better satisfy user expectations, and boost ranking and recommendation effectiveness over time

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources
    corecore