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Abstract

Modeling natural language is among fundamental challenges of artificial intelligence and
the design of interactive machines. It has applications spanning across various domains,
such as dialogue systems, text generation and machine translation among others and has
been studied extensively in the past decades. Among problems that are common to most
applications of language is to model the distribution over a vocabulary of words that could
follow a given sequence of words or the context.

The simplest of models in the literature are based on frequency counts. Since the size
of the vocabulary is large, many possible sentences are never observed leading to sparse
sampling or data sparsity. This causes overestimation of observed sequences and underesti-
mation of the unobserved ones. Thus it is necessary to use prior knowledge to appropriately
modify the distribution. Frequency counts are commonly modified using smoothing tech-
niques. Learning-based methods are an alternative to frequency-based methods that fit
an appropriate model to the data. Numerous learning techniques have been applied to
build language models; generative models (Dirichlet, Pitman-Yor and hierarchical Pitman-
Yor processes), discriminative models (maximum entropy, conditional random fields) and
distributional representations (neural networks, Boltzman machines, log-bilinear models).

We propose a discriminatively trained log-linear model to learn the distribution of words
following a given context. Due to data sparsity, it is necessary to appropriately regularize
the model using a penalty term. However, simple choices for regularization (like `2

2

and `
1

penalties) fail to capture long range dependencies. They overfit severely with increasing
context length because they are agnostic to the sequential structure of the problem. We
show that it is necessary to design a penalty term that properly encodes the structure of the
feature space to avoid overfitting and improve generalization while appropriately capturing
long range dependencies. Some nice properties of specific structured penalties can be used
to reduce the number of parameters required to encode the model. The outcome is an
efficient model that suitably captures long dependencies in language without a significant
increase in time or space requirements.

In a log-linear model, both training and testing become increasingly expensive with
growing number of classes. This is because the normalization factor involved in computing
the probabilities grows linearly with the number of classes or categories in the problem.
The number of classes in a language model is the size of the vocabulary which is typically
very large. A common trick is to cluster classes and apply the model in two-steps; the first
step picks the most probable cluster and the second picks the most probable word from
the chosen cluster. This idea can be generalized to a hierarchy of larger depth with mul-
tiple levels of clustering. However, the performance of the resulting hierarchical classifier
depends on the suitability of the clustering to the problem and building a ‘good’ hierarchy
is non-trivial. We study different strategies to build the hierarchy of categories from their

i



ii

observations. We observe that the choice of the algorithm to build a hierarchy should
depend on the data and that in certain situations a hierarchical classifier could improve
performance over a simple multi-class classifier.



Résumé

La modélisation de la langue naturelle est l’un des défis fondamentaux de l’intelligence
artificielle et de la conception de systèmes interactifs. Ses applications s’étendent à travers
divers domaines, tels que les systèmes de dialogue, la génération de texte et la traduction
automatique, et a été largement étudié au cours des derni ères décennies. Le problème
commun à la plupart des applications du langage est la modélisation de la distribution
d’un mot étant donné son contexte, généralement constitué d’une séquence de mots voisins
dans le texte.

Les modèles de langue les plus simples sont basés sur la fréquence d’apparition de mots
ou de séquences de mots. Comme la taille du vocabulaire est en genérale importante,
de nombres occurences de phrase probables ne sont jamais observées dans un corpus de
textes, donnant lieu a un un problème d’estimation ou le nombre de paramètres est large-
ment supérieur à la taille de l’échantillon d’apprentissage. Cela entraine une surestimation
de la probabilité des séquences observées et une sous-estimation des séquences non ob-
servées. Ainsi, il est nécessaire d’utiliser des connaissances a priori avant de modifier de
maniére appropriée la distribution. Les fréquences empiriques sont souvent corrigées grâce
à des techniques de lissage. Les méthodes d’apprentissage statistiques basées sur la min-
imisation d’un coût empirique correspondent à un modèle approprié aux données et sont
une alternative interessante aux méthodes basés sur les fréquences. De nombreuses tech-
niques d’apprentissage ont été appliquées à la construction de modèles de langue; modèles
génératifs (Dirichlet, Pitman-Yor et les processus Pitman-Yor hiérarchiques), les modèles
discriminants (entropie maximale, conditional random fields) et les représentations de dis-
tribution (réseaux de neurones, machines de Boltzman, modéles log-bilinéaire).

Nous proposons un modèle log-linéaire discriminatif donnant la distribution des mots
qui suivent un contexte donné. En raison de la parcimonie des données, il est nécessaire de
régulariser de manière approprièe le modèle en utilisant un terme de pénalité. Cependant,
des choix simples de régularisation (comme `2

2

et `
1

pénalités) ne parviennent pas à cap-
turer les dépendances longues: ils sur-apprennent sur les données lorsqu’on augmente de
la longueur de contexte, car ils sont agnostiques à la structure séquentielle du problème.
Nous montrons qu’il est nécessaire de concevoir un terme de pénalité qui code correcte-
ment la structure de l’espace fonctionnel pour éviter le sur-apprentissage et d’améliorer
la généralisation, tout en capturant de manière appropriée les dépendances à long terme.
Quelques propriétés intéressantes de pénalités structurés spécifiques peuvent être utilisés
pour réduire le nombre de paramètres requis pour coder le modèle. Le résultat est un
modèle efficace qui capte suffisamment les dépendances longues sans occasionner une forte
augmentation des resources en espace ou en temps.

Dans un modèle log-linéaire, les phases d’apprentissage et de tests deviennent de plus
en plus chères avec un nombre croissant de classes. Cela est dû au fait que le facteur de
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normalisation impliqué dans le calcul des probabilités croît linéairement avec le nombre de
classes ou de catégories dans le problème. Le nombre de classes dans un modèle de langue
est la taille du vocabulaire, qui est généralement très importante. Une astuce courante
consiste à appliquer le modèle en deux étapes: la première étape identifie le cluster le
plus probable et la seconde prend le mot le plus probable du cluster choisi. Cette idée
peut être généralisée à une hiérarchie de plus grande profondeur avec plusieurs niveaux de
regroupement. Cependant, la performance du système de classification hiérarchique qui en
résulte dépend du domaine d’application et de la construction d’une bonne hiérarchie n’est
pas triviale. Nous étudions différentes stratégies pour construire la hiérarchie des catégories
de leurs observations. Nous observons que le choix de l’algorithme pour construire une
hiérarchie devrait dépendre des données et que, dans certaines situations, un classificateur
hiérarchique peut améliorer les performances par rapport à un classificateur multi-classe
simple.



Détail des contributions

Les modèles de langue probabilistes sont utilisés fréquemment pour une grande variété de
tâches de traitement du langage et constituent une composante cruciale dans de nombreuses
applications, comme le traitement de la parole, les systèmes de dialogues et la traduction
automatique (cf. Jurafsky and Martin, 2008; Manning and Schutze, 1999). Ces mod-
èles ont été développés depuis une vingtaine d’années et emploient des techniques comme
les fréquences d’apparition de mots, des méthodes basées sur le maximum de vraisem-
blance, des méthodes Bayésiennes, des réseaux de neurones ou des modèles basés sur des
représentations distribuées. Les méthodes les plus simples utilisent des estimations des
fréquences d’apparition à partir d’un corpus de texte (Chen and Goodman, 1998); les es-
timateurs obtenus par optimisation ont été développés à partir des méthodes basées sur
les fréquences d’apparition par apprentissage de paramètres d’un modèle statistique aussi
à partir de corpus (Chen and Rosenfeld, 2000). Malgré la litérature considérable sur ces
nombreux modèles, leur intégration dans un cadre d’apprentissage permettant d’obtenir
une information pertinente à partir de corpus de textes reste un défi.

Les méthodes basées sur l’optimisation sont plus génériques et permettent plus naturelle-
ment que les méthodes basées sur les fréquences de regrouper l’information venant de
sources multiples (Lau, 1994; Della Pietra et al., 1997). Cependant, une utilisation naïve
de ces modèles ne permet de généraliser au-delà des exemples d’apprentissage. Ceci est dû
au problème classique de sur-apprentissage des modèles statistiques de grande dimension
appris à partir d’un échantillon trop faible (Hastie et al., 2009). Une solution classique
est alors de restreindre l’espace des modèles pour contrôler l’erreur de généralisation, une
technique courante étant la régularisation, ou pénalisation (Vapnik, 1998). Cependant,
les choix standards de pénalisation ne sont pas satisfaisants pour les probèmes dont les
paramètres ont des contraintes topologiques naturelles (Bach et al., 2012). Les pénalités
doivent alors ètres construites pour prendre en compte cette structure. Dans ce manuscrit,
nous étudions de telles pénalités pour la modélisation du langage, mais nos techniques
s’appliquent plus généralement à la modélisation de séquences.

L’optimisation d’une fonction objectif dédiée à l’apprentissage d’un modèle permet d’apprendre
les paramètres à partir des données d’entrainement. Le processus de test permet alors une
évaluation sur d’autres données du modèle appris. A la fois entrainer et tester deviennent
très coûteux en présence d’un nombre important de catégories. Le nombre de classes pour
un modèle de langue est la taille du vocabulaire, qui peut être très grande, typiquement
de l’ordre de 10

4 mots ou plus. Ceci rend l’utilisation de modèles statistiques particulière-
ment astreignante en pratique. Une technique simple pour surpasser le problème est de
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regrouper certaines classes (ici des mots) en “clusters” et d’appliquer un modèle à deux
niveaux. En généralisant cette idée, il est possible de construire une hiérarchie de clusters
et d’appliquer le modèle séquentiellement le long de cette hiérarchie. Un avantage immé-
diat d’une telle organisation est un gain significatif en temps de calcul pour la phase de
test. Cette technique de construction de taxonomie à base d’arbres est générique et a des
applications au-delà des modèles de langue.

La première contribution de ce manuscrit est le développement d’un modèle de langue
avec une pénalité structurée qui permet une meillleure performance de généralisation que les
méthodes précédentes. Un cadre d’optimisation efficace est aussi introduit et donne lieu à
des résultats plus compacts qu’avec les méthodes traditionnelles. La deuxième contribution
est un cadre algorithmique pour organiser automatiquement un problème multi-classe en
une structure d’arbre. Plusieurs méthodes de construction d’arbres sont introduites, à
partir de principes “top-down” ou “bottom-up”. Ces méthodes sont alors testées sur des
jeux de données de langage et de vision artificielle.

En Section 0.1, le problème de modélisation du langage est décrit; les méthodes tradi-
tionnelles (méthodes de lissages et méthodes par maximum d’entropie) sont présentées en
Section 0.2. Enfin, les motivations sous-jacentes au travail effectué sont présentées en Sec-
tion 0.3. Finalement, les contributions de cette thèse sont décrites en détail en Section 0.4.

0.1 Modélisation de la langue naturelle

La modélisation du langage correspond à estimer des lois de probabilité sur des séquences
de mots tirés d’un vocabulaire fini V . Soit s = (s1, s2, · · · , s|s|) une séquence de mots
si 2 V avec |s| la longueur de la séquence. Nous utilisons la notation s = (xy) pour décrire
une séquence composée d’un mot y 2 V suivant le contexte x 2 V |s|�1. Le suffixe d’une
séquence x de longueur m est noté xm et est la sous-séquence composée des m derniers
mots de x. Notre but est de développer un algorithme A permettant d’apprendre une loi
P(s) sur les séquences à partir d’un corpus (i.e., une collection de séquences de mots de
V ).

Etant donné le grand nombre de séquences d’une taille donnée, un corpus C de taille
raisonnable ne peut pas contenir toutes les séquences grammaticalement correctes (qui sont
déjà beaucoup moins nombreuses que l’ensemble des séquences). Ceci rend l’estimation
d’une loi P(s) très difficile. Dans cette thèse nous allons étudier le problème plus simple
d’estimation de la loi conditionnelle P(y | x) d’un mot y suivant le contexte x. La distribu-
tion jointe d’une séquence sera obtenue en prenant des produits de ces lois conditionnelles.
En pratique la taille des contextes considérés est bornée par le modélisateur: Les mod-
èles “m-gram” correspondent à des séquences de taille au plus m. Dans les modèles de
langue que nous considérons ci-après, la longueur m des contextes est utile pour tabuler
les occurences de séquences.
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Considérons le modèle d’ordre m pour des séquences d’ordre |s| = m + 1. Le modèle
simple considère les fréquences d’apparition empiriques

PML(y|xm) =
c(xmy)

c(xm)
, (1)

où c(s) est le nombre de fois où s est observé dans C, que nous dénommerons “compte”.
En prenant le produit des probabilités conditionnelles, on obtient une loi

PML(s) =
Y

(xy)2{(s1,··· ,si)}|s|i=1

P(y|xm).

Ceci permet de donner une probabilité à tout le corpus C:

PML(C) =
Y

s2C
P(s).

Il s’avère que le modèle défini en (1) maximise la probabilité PML(C) ci-dessus par rap-
port aux modèles de langage d’ordre m (c’est l’estimateur de maximum de vraisemblance).

Ce modèle simple ne donne cependant pas satisfaction: soit m est trop petit et le modèle
est trop pauvre pour prendre en compte les dépendances longues; soit m est trop grand, et il
n’y pas assez de données pour apprendre tous ces paramètres avec de plus un comportement
particulièrement problématique: une séquence jamais observée dans le corpus aura toujours
une probabilité égale à zéro pour le modèle. Plusieurs techniques ont été développées pour
résoudre ces problèmes.

0.2 Méthodes existantes

Dans cette section, nous décrivons les méthodes classiques permettant d’apprendre effi-
cacement des modèles avec des longueurs de contexte m plus ou moins élevées.

0.2.1 Méthodes par lissage

Les méthodes de lissage sont basées sur l’estimateur en (1), i.e., sur des estimations em-
piriques des fréquences d’apparition, mais changent les lois de prédiction, soit en redis-
tribuant la masse de probabilité, soit en mélengeant les distributions venant de plusieurs
ordres (voir Chen and Goodman, 1996, 1998, pour une description complète de ces méth-
odes).

Redistribution de la masse de probabilité.

Le lissage additif consiste à rajouter de faux exemples pour tous les contextes (comme si
ils avaient été observés dans C). Ceci correspond au lissage classique de Laplace pour les
données discrètes (Lidstone, 1920; Jefreys, 1948):

PLP (y|xm) =
c(xmy) + d

c(xm) + |V |d, avec 0 < d  1. (2)
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pour un certain d. Toutes les séquence non observées ont alors la même masse. Alterna-
tivement, l’estimateur de Good-Turning redistribue la masse plus harmonieusement (Good,
1953).

Lissage par marche arrière.

Afin d’estimer P(y|xm), une méthode simple pour éviter les zéros est de rechercher des
contextes plus petits avec au moins une observation dans C. C’est le lissage par marche
arrière proposé par Katz (1987). Dans le cas extrème, le plus petit contexte possible m
est égale à zéro et le modèle utilise alors la probabilité “uni-gram”, où aucun contexte n’est
observé. Afin d’obtenir une loi de probabilité sommant à un, un poids bien choisi ⌘(xm)

doit être utilisé et on a la définition récursive suivante:

PKZ(y|xm)=

(

P(y|xm) utiliser le modèle d’ordre supérieur si c(xmy) > ⌧

⌘(xm)PKZ(y|xm�1

) sinon,
(3)

où ⌧ est un certain seuil. Les poids ⌘(xm) peuvent alors être calculés récursivement.

Lissage par interpolation.

Une extension du lissage par marche arrière consiste a combiner linéairement les distribu-
tions d’ordres faibles et élevés. Ceci a été proposé par Jelinek and Mercer (1980) avec une
loi définie récursivement comme suit

PJM(y|xm) = �(xm)P(y|xm) + (1� �(xm))PJM(y|xm�1

),

pour des poids bien choisis �(xm). Ceux-ci peuvent être estimés à partir de données en
reduisant le nombre de paramêtres à apprendre par regroupements (Bahl et al., 1983).

Lissage de Kneser-Ney.

Une alternative à l’interpolation linéaire est (a) de soustraire explicitement les comptes des
ordres élevés des comptes d’ordres inférieurs et (b) de repondérer les distributions obtenues.
La méthode introduite par Ney et al. (1994) a la forme suivante:

PAD(y|xm) =
max{c(xm)� �, 0}

c(xm�1

)

+ (1� �(xm))PAD(y|xm�1

).

Kneser and Ney (1995) ont étendu cette technique en utilisant des comptes modifiés pour
les petits ordres de telle sorte que le lissage est optimisé pour les situations où les comptes
d’ordres élevés sont petits.

Discussion sur les méthodes de lissage.

Ces méthodes donnent de bonnes performances et sont encore préférées à d’autres modèles
moins attractifs en termes de temps de calcul, avec une utilisation classique du lissage de
Kneser-Ney (et ses variantes). Cependant, l’absence de paramètres statistiques explicites
peut s’avérer limitante car elle ne permet pas d’étendre ces méthodes naturellement à des
situations plus complexes, en particulier lorsque certaines tâches precises de traitement du
langage naturel sont considérées. Les méthode par maximum d’entropie constituent alors
une classe d’alternatives intéressantes.
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0.2.2 Entropie maximale et maximum de vraisemblance

Considérons un modèle de langue d’ordre (m+1) qui nécessitent d’estimer la loi condition-
nelle PME(y|xm). Chaque séquence s de longueur inférieure à (m+1) dans le corpus C
définit un “feature” (descripteur) :

S = {s | s 2 C ^ |s|  m+ 1}.
Un paramètre !s est associée à chacun des features s dans S donnant lieu à un modèle
avec potentiallement un grand nombre d = |S| de paramètres.

Les méthodes de maximum d’entropie correspondent à modéliser PME(y|xm) comme le
logarithme d’une fonction linéaire et de maximiser la vraisemblance (voir Rosenfeld, 1998;
Lau, 1994; Lau et al., 1993; Rosenfeld, 1996; Ratnaparkhi, 1998; Berger et al., 1996). Avec
la définition suivante pour s 2 S

I(xmy, s) =

⇢

1 if xky = s pour un 0  k  m,
0 sinon,

la probabilité conditionnelle s’écrit

PME(y|xm;!) =
1

Z(xm;!)
e
P

s2S !sI(xmy,s),

avec la constante de normalisation (fonction de partition):

Z(xm;!) =
X

v2V
e
P

s2S !sI(xmv,s). (4)

On obtient alors la probabilité L(C;!) du corpus :

L(C;!) = PME(C;!) =
Y

{xmy}2C
PME(y|xm;!) =

X

{xmy}2C

e
P

s2S !iI(xmy,s)

Z(xm;!)
. (5)

Le problème du maximum de vraisemblance devient donc:

L(C;!) = �
X

{xmy}2C
lnPME(y|xm), et

!⇤
= argmin

!2Rd

L(C;!). (6)

L’optimisation pour le problème convexe en (6) peut être résolu à l’aide de méthodes du
premier ordre convergeant vers le minimum global.

Relations avec les méthodes de lissage.

Contrairement aux méthodes de lissage, les méthodes par maximum d’entropie font une
modélisation explicite de la loi avec optimisation de paramètres. Ceci permet une certaine
flexibilité et ces méthodes ont été appliquées à de nombreuses tâches en traitement du
langage naturel. Cependant, elles sont deux problèmes classiques: le sur-apprentissage et
l’inefficacité computationnelle.
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Sur-apprentissage et régularisation.

Etant donné le grand nombre de paramêtres, ces méthodes peuvent sur-apprendre. Il est
alors classique d’utiliser des pénalités supplémentaires pour réduire la capacité du mod-
èle (Chen and Rosenfeld, 2000).

Les pénalités classiques sont la norme `
2

(Della Pietra and Della Pietra, 1993; Chen
and Rosenfeld, 1999), la norme `

1

(Goodman, 2004) qui n’offre que peu d’avantage (la
parcimonie n’est pas un bon a priori), alors qu’une combinaison donne lieu à des amélio-
rations (Kazama and Tsujii, 2003; Chen, 2009). Notre but est d’aller au-delà.

Calcul du facteur de normalisation.

En présence de grands vocabulaires, le calcul de Z en (4) est nécessaire à chaque étape
des algorithmes d’optimisation, ce qui s’avère très coûteux. Des approches basées sur des
caches (Wu and Khudanpur, 2000) ou des regroupements de termes (Goodman, 2001) sont
possibles pour réduire le temps de calcul. Dans cette thèse nous proposons une alternative
en contruisant une hiérarchie de classes automatiquement à partir des données.

0.2.3 Méthodes récentes.

Depuis quelques années, des modèles de langage ont été développés en utilisant des tech-
niques d’inférence Bayésienne (modèles génératifs basés sur de processus de Dirichlet ou de
Pitman-Yor et les processus Pitman-Yor hiérarchiques) ou des reśeaux de neurones (ma-
chines de Boltzman, modéles log-bilinéaire). Voir la description dans le corps du manuscrit.

0.3 Motivations

En résumé, de nombreuses méthodes ont été développées pour modéliser le langage. Elles
ont toutes des avantages et des inconvénients et certaines sont plus adaptées que d’autres
pour certaines tâches.

Alors que la plupart des méthodes se focalisent sur la modélisation de la probabilité
conditionnelle d’un mot étant donné les mots le précédant, certaines méthodes rendent la
tâche de modélisation plus aisée. Une application typique des modèles de langue nécessite
plusieurs couches de traitement de l’information. Dans de telles situations, de nombreux
facteurs rentrent en jeu pour déterminer l’applicabilité d’un modèle particulier. Des con-
sidérations comme la facilité d’intégration, des aspects de temps de calculs ou de coût en
mémoire (à accès rapide ou lent), ou la possibilité d’intégrer des informations supplémen-
taires, sont importantes en pratique.

Notre principale motivation pour poursuivre le travail sur ces modèles et en proposer
des améliorations est de pouvoir appliquer ces modèles à des problèmes discriminatifs, qui
constituent une classe particulière des modèles présentés en Section 0.2.2, pour lesquels la
probabilité d’un mot dépend non seulement des mots précédents mais aussi potentiellement
de variables exogènes. Dans ce qui suit, nous utiliserons la génération de texte dans des
applications multi-media comme exemple. Nous décrirons ensuite les aspects des modèles
discriminatifs que nous étudierions et enfin résumerons les contributions de la thèse.
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Modélisation discriminative de données multi-modales.

Dans le contexte global de la compatibilité des modèles pour les applications, nous voyons
les modèles discriminatifs comme les modèles permettant la flexibilité nécessaire à des
scénarios applicatifs classiques où il est important de faire de la prédiction à partir de
plusieurs sources d’informations, typiquement en combinant linéairement les descripteurs.

Par exemple, dans les applications multi-modales, le langage naturel peut être une des
modalités (typiquement la modalité cible). Les autres modalités peuvent être un signal au-
dio, une image ou une séquence vidéo (typiquement des modalités sources). La génération
automatique de résumés décrivant une image est une application simple à fort impact.

En effet, le problème de la génération automatique de légendes textuelles destinées
aux humains est un problème en pleine croissance (voir, par exemple, Gupta et al., 2009;
Farhadi et al., 2010; Kulkarni et al., 2011; Yang et al., 2011; Mitchell et al., 2012). Les
premiers modèles proposés utilisaient des constructions basées sur des modèles-types de
phrases dont le choix était appris à partir de certaines informations dans l’image (obtenues
par des techniques de vision artificielle) (Kulkarni et al., 2011). Ces méthodes basées sur
des modèles-types sont connues pour être sous-optimales quand des variations textuelles
sont nécessaires (Reiter and Dale, 1997). Ces techniques ont depuis été améliorées avec des
méthodes qui génèrent directement des arbres syntaxiques permetant ensuite de produire
un texte grammaticalement correct (Mitchell et al., 2012; Yang et al., 2011).

Cependant, ces méthodes traitent les deux modalités séparément avec un échange
d’information uni-directionnel qui (a) résume une image en quelques mots, souvent des an-
notations de l’image avec quelques étiquettes et une certaine organisation spatiale (Mitchell
et al., 2012; Yang et al., 2011; Farhadi et al., 2010; Ordonez et al., 2011), puis (b) envoie ces
informations au modèle de langage pour créer une phrase. Le rôle du modèle de langage
est alors de regrouper ces informations trop simples et de former une phrase cohérente
en rajoutant typiquement beaucoup de mots autour des mots obtenus de l’image. Les
phrases obtenues peuvent alors être cohérentes et grammaticalement correctes, mais ne
correspondent plus à ce qu’il se passe réellement dans l’image ou la video (Mitchell et al.,
2012).

Produire des phrases grammaticalement correctes et qui expriment correctement les
signaux sources nécessite un modèle permettant d’utiliser à bon escient les grands corpus
de textes (Li et al., 2011). Par ailleurs, ces modèles doivent pouvoir traiter les signaux
sources en prédisant directement les distributions de mots sans passer par des étapes sur-
simplificatrices causant des pertes d’information. Dans de telles tâches, nous considérons les
modèles discriminatifs comme naturellement adaptés: en effet, on peut utiliser un modèle
de langue obtenus de sources variées que nous pouvons utiliser pour apprendre un modèle
conditionnel pour nos données multi-modales. De plus, ces modèles discriminatifs peuvent
gérer naturellement des aspects importants du langage, comme les variations de style ou
de ton, en changeant certains termes dans les fonctions objectifs à optimiser.

Codage de contextes longs pour la modélisation discriminative.

La génération de phrases complètes dans un cadre discriminatif requiert le traitement
adéquat des contextes longs, avec dans certains cas très longs si plusieurs phrases sont
impliquées. Ceci pourrait être nécessaire pour plusieurs raisons. Par exemple, il pour-
rait s’avérer intéressant de supprimer certaines informations des phrases précédentes afin
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d’éviter des répétitions, ou de réduire la ré-utilisation de mêmes mots dans les mêmes
phrases afin de maintenir une bonne lisibilité, ou de contrôler l’ordre dans lequel le con-
tenu est délivré, etc. Dans de telles situations, un modèle discriminatif doit pouvoir coder
de grandes phrases efficacement. C’est un des aspects que nous considérons dans notre
travail.

Modèles log-linéaires avec grand nombre de classes.

Ce problème est d’importance plus générale que les modèles de langue, mais il est partic-
ulièrement important pour le langage naturel car le nombre de classes est égal au nombre
de mots dans le vocabulaire (typiquement supérieur à 10

4). Le verrou computationnel est
alors le calcul de la constante de normalisation pour lequel le nombre de produits scalaires
à calculer croît linéairement avec le nombre de classes. Ceci ralentit l’apprentissage car à
chaque étape d’une méthode de descente de gradient, il faut calculer cette constante.

Afin d’obtenir une complexité logarithmique dans le nombre de classes, il est classique
d’organiser les classes dans un arbre pour accélérer à la fois l’entrainement et le test. La
difficulté est de construire une telle hiérarchie sans détériorer la performance de prédiction.
Dans notre travail, nous proposons différentes méthodes pour construire de telles hiérarchies
et testons leur performance pratique.

0.4 Contributions et plan de la thèse

Cette thèse revisite les approches traditionnelles décrites ci-dessus à la lumière d’avancées
récentes sur les pénalités structurées et l’optimisation convexe à grande échelle. En partic-
ulier, nous nous focalisons sur deux problèmes liées aux modèles de langage discriminatifs:
(a) le sur-apprentissage et l’explosion du temps de calcul face à des contextes longs et (b)
la nécessité de modèles de sortie hiérarchiques (il est intéressant de noter que les deux
contributions utilisent des arbres mais que ces arbres n’y ont pas la même signification).
Nos contributions peuvent être résumées comme suit.

0.4.1 Pénalités structurées pour la modélisation du langage

Les modèles de langage discriminatifs sont connus pour sur-apprendre en présence de con-
textes longs. En effet, le nombre de paramètres grandit rapidement avec la longueur du
contexte. Les techniques classiques de régularisation (par pénalité `

2

, `
1

ou leur combinai-
son) ne sont alors pas effectives, comme le montrent les performances prédictives obtenues
lors de nos simulations sur un sous-ensemble du corpus “AP-news” (voir Chapitre 3).

Nous étudions ce problème de régularisation inadéquate en reformulant le modèle comme
une distribution catégorielle avec une vraisemblance tres proche du modèle de maximum
d’entropie en (5) mais avec une contrainte en plus. Un point-clé est que la structure séquen-
tielle des phrases peut alors être interprétée comme une structure de données en arbre de
suffixes. Nous pouvons alors naturellement utiliser une pénalité convexe adaptée à cette
structure d’arbre. Cette pénalité permet d’introduire un a priori nouveau: un contexte
long ne peut être choisi que si tous les contextes plus petits sont impliqués dans le pré-
dicteur. Cette pénalité est non seulement adaptée statistiquement (meilleure performance
de prédiction pour les longs contextes) mais aussi peut être utilisé à un moindre coût
supplémentaire en utilisant finement la structure d’arbre de suffixes.
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Les différents modèles à pénalité structurée que nous considérons sont implémentés
et comparés aux modèles non-structurés. Cette évaluation montre des améliorations sig-
nificatives en performance de prédiction quand le contexte augmente. Nous proposons
aussi une analyse fine des résultats obtenus en groupant les mots suivant différents critères
permettant de mieux comprendre les gains de performance. Cette analyse suggère des
améloriations pour des travaux futurs.

Du côté des performances numériques, augmenter les longueurs de contexte augmente de
manière très significative le nombre de descripteurs (car la taille du vocabulaire est grande).
Sans utiliser la structure d’arbre de suffixes, la complexité serait trop importante. Dans
le Chapitre 3, nous étudions la complexité numérique des différentes pénalités considérées
et montrons comment certaines d’entre elles peuvent être utiliseées avec des contextes de
très grande taille (en utilisant les arbres de suffixes, comme fait pour le lissage de Kneser-
Ney). En particulier, nous proposons un nouvel algorithme qui améliore le temps de calcul.
Ce travail a été publié au congrès Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

0.4.2 Apprentissage de la taxonomie

L’idée de grouper des mots en “clusters” afin de rendre l’entrainement et le test plus efficaces
en termes de temps de calcul a déjà été explorée dans différents modèles (voir (Goodman,
2001) pour les modèles à maximum d’entropie, (Morin and Bengio, 2005) pour les réseaux
de neurones “feed-forward”, (Mikolov et al., 2011) pour des réseaux récurrents et (Mnih
and Hinton, 2008) pour les modèles log-bilinéaires).

Cependant, la méthode de construction des clusters de mots dans les modèles ci-dessus
est soit aléatoire soit ad-hoc, à l’exception de la technique de partitionement de Brown.
Nous proposons plusieurs méthodes permettant de grouper les mots en utilisant leurs con-
textes. Ces méthodes sont génériques avec des applications à tous les problèmes avec
beaucoup de classes, que les données soient séquentielles ou non (comme des problèmes
à descripteurs continus, communément utilisés pour la reconnaisance d’objets dans les
images).

Nous proposons deux approches. Dans l’approche “bottom-up”, les classes sont re-
groupées petit à petit en utilisant un algorithme Hongrois avec un critère de corrélation
entre classes. Dans l’approche “top-down”, les classes sont divisées récursivement. Afin de
diviser un groupe de classes en deux morceaux ou plus, nous utilisons des résultats récents
de “clustering” discriminatif, où le but est de séparer les classes en deux morceaux, de
telle sorte que si un séparateur linéaire est appris sur ces classes, alors la séparation est
maximale. Cette approche donne lieu à une formulation en programmation semi-définie
qui peut se résoudre efficacement.

Nous étudions le comportement de ces méthodes sur des jeux de données de textes et
d’image et détaillons comment ces méthodes de constructions d’arbres doivent être choisies
avec soin afin de ne pas perdre de performance prédictive par rapport à la structure plate.
Il est intéressant de noter que dans certains cas, au-delà d’obtenir une meilleure complexité
numérique, la performance de prédiction est aussi améliorée.



xiv DÉTAIL DES CONTRIBUTIONS

0.4.3 Plan de la thèse.

Le manuscrit est organisé comme suit. Le Chapitre 2 décrit le cadre de minimisation du
risque empirique et la nécessité de régulariser avec un accent particulier sur les pénal-
ités permettant d’incorporer la structure. Aussi, les différents algorithmes d’optimisation
convexe adaptés à ces pénalités sont présentés. Le Chapitre 3 détaille les contributions nou-
velles sur les pénalités structurées et leur utilisation efficace pour les modèles de langue.
Le Chapitre 4 décrit les différentes nouvelles méthodes de regroupement des classes pour
obtenir un arbre de classes. Nous résumons les contributions de la thèse et concluons en
Chapitre 5, où sont aussi présentées des pistes pour des travaux futurs.
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Chapter 1

Introduction

Probabilistic language models are used extensively in a variety of language processing tasks
and remain at the core of various applications like speech processing, dialogue systems,
and machine translation (see Jurafsky and Martin, 2008; Manning and Schutze, 1999).
These models emerged over the last couple of decades and employ techniques like modi-
fied frequency counts, likelihood methods, Bayesian methods, neural networks and models
involving distributed representations. The simplest method uses frequency estimates from
a text corpus (Chen and Goodman, 1998). Optimization-based estimators were developed
following frequency-based methods that train models by learning their parameters on a
corpus (Chen and Rosenfeld, 2000). Despite the considerable literature available with nu-
merous models, the ease to integrate these models into a learning framework to derive
high-level information from text corpora remains challenging.

Optimization-based methods are more generic and amenable to absorb information from
multiple sources (Lau, 1994; Della Pietra et al., 1997) than frequency-based methods. How-
ever, a naively designed model fit to a dataset does not generalize to unseen examples. This
is due to a problem common to statistical models involving high dimensional spaces with
sparse sampling (Hastie et al., 2009). The solution is to restrict the set of models so that
the generalization error is controlled. This is called regularization or penalization (Vap-
nik, 1998). However, standard choices of penalization are not sufficient for problems with
parameters involving specific patterns (Bach et al., 2012). Penalization needs to be de-
signed in a such a manner that it is aware of the structure within the problem. We study
such structure-aware penalization for modeling language or discrete structures in general
to improve generalization performance.

The optimization of an objective designed to learn the parameters of a model from
some observed data is called training. The process of testing involves evaluation of the
trained model on data (not overlapping with the training set) to measure generalization
performance. Both training and testing become increasingly expensive with a growing
number of categories or classes involved in the problem. The number of classes for language
models is the size of the vocabulary which is very large, typically of the order 104 or above.
This makes the use of statistical models computationally demanding for practical use. A
simple technique to overcome this problem is to group together classes (or words) into
clusters and then apply the same model at two levels. Generalizing this idea, one can

1
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build a hierarchy of such clusters and apply the model successively along the hierarchy. An
immediate advantage of such hierarchical organization of classes is the significant gain in
speed when the resulting model is applied to test data. This technique to build taxonomic
trees from samples is generic and has applications beyond language modeling.

The first contribution of this work is a language model with a suitable structured penalty
that offers better generalization performance than earlier methods. We also present a
framework that is quicker to optimize and results in a more compact model than traditional
approaches. Our second contribution is a framework to organize classes in a large-scale
multi-class problem into a tree structure. We study different tree-building methods in this
framework including both top-down and bottom-up procedures to grow such trees. We
test these methods on datasets of images and language. In Section 1.1, we introduce the
problem of language modeling. We present traditional approaches to modeling language,
namely smoothing techniques and maximum entropy models in Section 1.2. In Section 1.3
we present more recent approaches to this problem based on Bayesian framework and
neural networks. We motivate the purpose of our work and describe our contributions in
Section 1.5.

1.1 Problem of modeling language

Language modeling involves estimating probability distributions of sequences of words.
Consider a vocabulary V from which words are drawn to make discrete sequences. Let
s = (s1, s2, · · · , s|s|) be a sequence with words si 2 V and |s| being the length or the
number of words in the sequence. We use s = (xy) to denote a split of the sequence where
y 2 V is the word following the context x 2 V |s|�1. The suffix of a sequence x of length m
is denoted by xm which is the subsequence with the last m words of x. We wish to design
an algorithm A that will learn the probability distribution P(s) over the sequences from
a corpus. A corpus is a collection of sequences of words from V . The input to A is a text
corpus C that is used to learn the parameters of the model. Apart from the training set
C, we will additionally need a validation set, also called held-out data, distinct from C to
tune any necessary parameters. We distinguish the training set C from the test set Ct that
is used to compare performance of different models.

The corpus C is a sampling from the space of sequences, however, space of C is signifi-
cantly smaller than the complete space of sequences. This is particularly true for language
where numerous possibilities are either meaningless or grammatically incorrect and have
zero probability. Further, the space of meaningful and grammatically correct sequences is
so varied that this space cannot be sampled sufficiently. This makes the estimation of joint
distribution of words in a sequence P(s) very hard. Hence, the focus is usually the much
simpler problem of estimating the following conditional distribution P(y | x) of a word y
following the context x. The joint distribution of a sequence is inferred by taking the prod-
uct of the conditionals which is equivalent to predicting one word of the sentence at a time
in that order. This makes sense for language modeling since the Markovian assumption
applies naturally to data of discrete sequences. In practice, one prescribes the maximal
length of dependence in the sequences that restricts the distance along the sequence that
a word can influence. This is also called the order of the language model. Using sequences
of length at most m leads to an m-gram language model which is also called the (m � 1)
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order language model. A context of length (m� 1) is used to predict the following word in
such models. In the language models that we will consider in the next section, the order
is useful to tabulate occurrences of sequences.

Consider the (m + 1)-gram model with sequences |s| = m + 1. A simple model that
counts the number of occurrences to assign a probability from frequency estimates is,

PML(y|xm) =
c(xmy)

c(xm)
, (1.1)

where c(s) is the number of times s was observed in C. Taking the product of the proba-
bilities for predicting each of the words in a sequence s, we get the joint probability,

PML(s) =
Y

(xy)2{(s1,··· ,si)}|s|i=1

P(y|xm).

The product of the probabilities of predicting all the sequences in a corpus C gives the
probability of generating C or the likelihood of C,

PML(C) =
Y

s2C
P(s).

The probability estimate from the distribution defined in (1.1) maximizes the probability
PML(C) of generating the corpus C for a given language order m and hence has the name
maximum likelihood estimate.

However, the goal is not to maximize the likelihood of generating a given training corpus
C but to minimize the errors in predictions on test set Ct. They are not equivalent since the
test set typically has data not seen during training and the maximum likelihood estimator
in (1.1) typically assigns them small or zero probabilities because the estimator fits the
training set too well. This situation is called overfitting and the resulting error also referred
to as generalization error. Overfitting is common in problems where the enough data cannot
be collected to learn parameters by simply maximizing the likelihood like in equation (1.1).
This is referred to as data sparsity and there is significant amount of work in statistics and
machine learning communities to handle this issue for various models.

The distribution from the estimator in (1.1) varies with the value of m. Models with
smaller m have fewer parameters to estimate from more data in comparison to those with
larger m that will have more parameters. A more confident estimate can be made when a
parameter sees more data, a property characterized by smaller variance (often referred to
as estimation error), which is the case when m is small. However, a small m assumes short
dependence along the sequence discarding information available from the data leading to
high bias (also called approximation error) in the estimate.

The assumption of short dependence does not hold since randomly drawing words inde-
pendent of their context will return meaningfuless sequences. On the contrary, a large m
uses more information available from the training data resulting in smaller bias but since
there are fewer observations with longer context lengths the variance of the estimate shoots
up. Bias and variance are two competitive properties of an estimator both of which are
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directly proportional to the generalization error. Estimates from larger m will have higher
variance and lower bias and vice versa. It is important to balance bias and variance so
that the resulting generalization error is small.

Generalization error can be improved for a fixed amount of data without costing us
variance. This is achieved by an appropriately chosen modification of the estimator referred
to as regularization or smoothing. The trick is to design models that trade some bias to
significantly reduce the variance and eventually improve generalization. The trade-off
between bias and variance is central to statistical models and will be dealt with in detail
in Chapter 2 as approximation and estimation errors. In the following section, we will
study such modifications to the estimator in (1.1) called smoothing models that improve
generalization. We will also study parametric models called maximum entropy models
that optimize the likelihood to learn the distributions P(y|xm) from the data. These are
approaches that have been traditionally investigated in the language processing literature.
In Section 1.3 we will study some recently introduced models for the same problem.

1.2 Traditional approaches

We will see in this section that the statistical estimation process in language modeling
suffers from the high dimensionality of the problem, often called the curse of dimensionality.
It leads to the problem of data sparsity where the datasets are a sparse sampling of the
space of sequences. This motivated the design of models that improve performance over
the simple estimator in (1.1) for the same amount of data. Traditionally, this has been
achieved through smoothing techniques that modify the distribution estimated by (1.1)
and regularization in parametric maximum entropy models. We discuss data sparsity and
these models in this section.

Data sparsity. In the ideal case of infinitely large number of samples or sufficiently large
dataset, the estimator in (1.1) is sufficient to make an estimate with low variance and very
good generalization. However, it not possible to acquire a sufficiently large dataset for
high dimensional problems. This is because the space of all possible sequences is too large
to be sampled sufficiently. Specifically in the case of language, the space of all possible
sequences of length m with a vocaulary of size |V | is |V |m. Consider a modestly sized
vocabulary of the order 10

4 with a relatively short dependence at m = 3 and we already
have an unmanagably large space of 1012 possible sequences. This is the problem of data
sparsity where the feature space is too large to be finitely summarized in a statistically
representative dataset. A theoretically sound way to handle data sparsity is to exploit
the bias-variance trade-off discussed in the previous section. The idea is to design biased
estimators that significantly reduce variance and hence improve generalization. We briefly
discuss smoothing methods from the literature that achieve this for m-gram models by
applying different variations of the estimator in (1.1) above.

1.2.1 Smoothing models

Consider estimating the probability of a sequence xmy that was never seen in training
corpus C. We assume there are no words out of the vocabulary V . The estimator in (1.1)
simply sets its probability to zero which is inappropriate since the training data has not
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seen all possible sequences. It often overestimates the probability for sequences observed
in C and underestimates it for unseen sequences. This overfitting to training data degrades
predictive performance of the model. Smoothing models adjust for this overfitting by mod-
ifying the predictive distributions. They achieve this in two different ways; redistribution
of probability mass and mixing distributions of multiple orders. Methods that redistribute
mass explicitly modify the counts by some chosen heuristic. Models that mix multiple
orders rely on lower orders when higher orders are unobserved. We briefly mention some of
these methods here that are detailed in the Appendix A.1 (see Chen and Goodman, 1996,
1998, for a complete survey comparing various smoothing models).

Redistribute probability mass. Additive smoothing is the technique of adding some fake
samples to original frequencies as if they were observed in C. This is the classical Laplace
smoothing for categorical data which is a kind of shrinkage estimator (Lidstone, 1920;
Jefreys, 1948) and has the following form:

PLP (y|xm) =
c(xmy) + d

c(xm) + |V |d, with 0 < d  1. (1.2)

where d is chosen arbitrarily. For d > 0, all unobserved sequences are assigned some mass
but Gale and Church (1994) argued that this is poor choice for smoothing. Alternatively,
the Good-Turning estimator redistributes the probability mass of sequences that occurred
exactly (k + 1) times in C among the sequences with frequency k,

PGT ( y|xm, c(xmy)=k ) / (k + 1)

Ck+1

E[Ck]
, (1.3)

where Ck is the number of sequences with frequency k and E[ · ] denotes expectation. It
redistributes the mass of unit frequency sequences to sequences that we might encounter
at test but were never seen in C. This, however, requires us to make an estimate of the
number of unseen sequences that we might encounter at testing phase. Good (1953, 2000)
explains the details of this estimator.

Back-off smoothing. In estimating P(y|xm), the simplest way to avoid zero counts is to
lower the order m and look for a smaller context in C. This is the back-off model proposed
by Katz (1987) and the order is lowered until xmy is found in C. In the extreme case,
m goes to zero and it uses the unigram probability of predicting y when no context is
observed. This has to be done such that the resulting values sum to one over all y 2 V
for any given context. This requires weighting the lower orders by ⌘(xm). The resulting
distribution takes the following recursive form,

PKZ(y|xm) =

(

P(y|xm) use highest order model if c(xmy) > ⌧

⌘(xm)PKZ(y|xm�1

) otherwise,
(1.4)

where ⌧ is a threshold chosen to avoid assigning mass to sequences that occur too few times.
The value for ⌧ could be chosen by cross-validating performance on held-out data but it
is not very critical and is often set to zero (Chen and Goodman, 1996). The probabilities
P(y|xm) at the highest order can come from any estimator with uniform distribution for
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the null-context (m = 0), P(y) = 1/|V |. The weighting function ⌘(xm) is computed by
redistributing the left-over mass from the highest order distributions to the lower order
distributions,

⌘(xm) =
�(xm)

P

v2{z|c(xmz)⌧}PKZ(v|xm�1

)

| {z }

redistributed to lower-order model

, �(xm) = 1�
X

v2{z|c(xmz)>⌧}
P(v|xm)

| {z }

left-over mass

.

Interpolation smoothing. A natural extension of the back-off model is a weighted combi-
nation of the highest order and the lower order distributions. This was proposed by Jelinek
and Mercer (1980) in their linear interpolation model that results in a distribution of the
following recursive form,

PJM(y|xm) = �(xm)P(y|xm) + (1� �(xm))PJM(y|xm�1

).

We can recover the back-off equation in (1.4) for weighting 1 � �(xm) = ⌘(xm) when
the corresponding lowest order distribution is P(y|xm�1

). The weights �(xm) are learned
using held-out data and they should take values that increase with the frequency of the
context xm. But since there are too many values to be learned, they are pooled into
buckets and all weights in a bucket are assigned the same value (Bahl et al., 1983).
Witten and Bell (1991) argue that the interpolation weight �(xm) for a certain con-
text xm should be proportional to the number of distinct words following the context,
C

1+

(xm•) = | {z | c(xmz) � 1} | with the • mapping to any word in V (also see Bell et al.,
1990).

Kneser-Ney smoothing. A straightforward alternative to linear interpolation is to ex-
plicitly subtract some counts from the highest order distribution and appropriately reweigh
the lower order distribution. This method introduced by Ney et al. (1994) is called absolute
discounting and has the following form,

PAD(y|xm) =
max{c(xm)� �, 0}

c(xm�1

)

+ (1� �(xm))PAD(y|xm�1

),

where � is the discount parameter tuned on validation dataset. The weighting function for
the lower orders takes the form

1� �(xm) =
�C

1+

(xm•)
c(xm)

,

so that the mass of the resulting distribution adds to one. Performances of absolute dis-
counting were comparable to that of linear interpolation with fewer parameters to tune
(single parameter of �) and it also agrees with intuition of Witten and Bell (1991) for
weighting interpolated models. Kneser and Ney (1995) extended absolute discounting by
using modified counts for the lower order distribution so that it is optimized for situations
where the higher order counts are small. This modification follows the idea that the lower
order probability should be proportional to the number of unique words preceding the
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sequence. The resulting Kneser-Ney smoothing formulae are,

PKN(y|xm) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

abs. disc.

z }| {

max{c(xmy)� �, 0}
c(xm�1

)

+

back-off term

z }| {

�C
1+

(xm•)
c(xm)

PKN(y|xm�1

)

largest m s.t.
c(xmy) > 0,

max{C
1+

(•xm�1

y)� �, 0}
C

1+

(•xm�1

•)
| {z }

modified lower order dist.

+

�C
1+

(xm�1

•)
C

1+

(•xm�1

•)PKN(y|xm�1

)

| {z }

interpolation term

otherwise,

where C
1+

(•xmy) = | {z | c(z xmy) � 1} | counts the number of unique words preceding
xmy and C

1+

(•xm�1

•) = | {(z
1

, z
2

) | c(z
1

xm�1

z
2

) � 1} | counts the number of distinct
pairs sandwiching xm�1

. When xm�1

is null, C
1+

(••) takes the number of bigrams in C as
it value. The discount parameter � is chosen by tuning on validation dataset or set using
heuristics (Ney et al., 1994). This formulation when applied recursively up to unigrams
is called interpolated Kneser-Ney. Kneser-Ney smoothing has been shown to consistently
outperform other smoothing models (Chen and Goodman, 1996). Chen and Goodman
(1998) also observe that varying the discount factor � with the length of the sequence
|xmy| it is applied on further improves performance.

Discussion on smoothing techniques. Smoothing techniques have long delivered good
performance and are still preferred over other models for time intensive applications. Vari-
ants of Kneser-Ney are preferred over other methods owing to their superior performance.
However, the suitability of a method depends on various factors like the amount of training
data available, constraints on response time and so on. For example, Brants et al. (2007)
show how they achieve performance close to Kneser-Ney for machine translation with a
computationally cheaper and faster back-off model by significantly increasing the amount
of data.

On the positive side, smoothing models are very well engineered and thoroughly studied
models that are used in numerous applications but they lack certain desirable properties.
Chen and Goodman (1996) study various smoothing models and observe that the flex-
ibility offered by models with more parameters is one important aspect that improves
performance. These models with parameters that are tuned on held-out data are observed
to perform better than other ones. While this is the case with some conventional m-gram
models, the flexibility they offer is very limited. The necessity of parametric models that
can learn from data goes beyond improvements in predictive performance. They open
possibilities to custom design models for specific tasks and fine tune them using data. We
further discuss this in Section 1.5. This requirement motivates the modeling of language
using parametric models. In the next section we describe such parametric modeling of
language using the maximum entropy principle.

1.2.2 Maximum entropy models

The task is to estimate a distribution explaining the given data using a parametric model.
‘Explaining data’ is used to imply that the distribution must be similar to the empirical dis-
tribution observed from the data but not equivalent to avoid overfitting. More precisely,
the expectation of random variables under the distribution should equal their empirical
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observations from the data. There could be multiple such distributions with expectations
matching empirical observations for any given dataset. The principle of maximum entropy
states that from among various candidate distributions for a dataset, the one with high-
est entropy must be chosen. Entropy is the measure of uncertainty in a random process
and a uniform distribution has the highest entropy. A distribution chosen by this cri-
terion is closest to uniform distribution that satisfies the above said constraint for that
dataset. Maximum entropy methods have been studied extensively in the statistical lan-
guage processing literature (see Rosenfeld, 1998; Lau, 1994; Lau et al., 1993; Rosenfeld,
1996; Ratnaparkhi, 1998; Berger et al., 1996). Maximum entropy models bear relation to
Gibbs and Boltzmann distributions in statistical physics, log-linear models and Markov
random fields in probability theory and Boltzmann machines in neural networks. They
offer interesting properties as described by Della Pietra and Della Pietra (1993).

Let {�i(s)}di=1

be a set of binary random variables or features defined over sequences s.
We use contextual features where �i(s) indicates the occurrance of a certain suffix in the
sequence s that we describe shortly. Alternatively, one could use a different feature set and
build other models. For example, Lau (1994) uses the occurance of certain words called
triggers in s to build a trigger-based language model. In a more generic setting, �i could
take any non-negative value that quantifies a certain property like, for example, a quantity
proportional to the length of s. If PME is the maximum entropy distribution then the
expectation of �i(s) must satisfy,

X

s2C
PME(s)�i(s) =

X

s2C
PML(s)�i(s), (1.5)

where PML is the empirical distribution from equation (1.1). The maximum entropy
distribution is one that satisfies all such constraints laid down by C and has the maximum
entropy among them. Essentially, these methods choose a distribution that makes no
assumptions beyond that of the data, in our case C, and the choice of representation. We
now describe a model based on this maximum entropy principle.

Consider a model with one parameter !i associated to each feature �i. Define an event
T associated with a subset of the random variables ST ⇢ {�i}di=1

. The maximum entropy
model assigns a probability to T that is proportional to the product of the exponentials of
all parameters !i corresponding to relevant features ST or,

PME(T ) /
Y

i2ST

e!i . (1.6)

The parameters of the model are estimated by maximizing the probability of observing the
training data. We now look at the specific set of features and the estimation method for
modeling language.

Maximum entropy language model. Consider a language model of order m that requires
estimating PME(y|xm). Let each sequence s of length at most (m+1) in the training corpus
C be a feature,

S = {s | s 2 C ^ |s|  m+ 1}.



1.2. TRADITIONAL APPROACHES 9

Associate a parameter !i to each feature in S resulting in a model with d = |S| number of
parameters. The feature set gets richer upon increasing the amount of data but so do the
number of parameters that need to be estimated.

Given a sequence (xmy), our features {�i(xmy)} are occurrences of S as suffixes of (xmy).
This can be described by an indicator function I(xmy, i) that assigns one to �i(xmy) if Si

and xmy have a common non-null suffix, i.e., if xky = Si for some 0  k  m. The indicator
function I(xmy, i) takes the following form:

�i(xmy) = I(xmy, i) =

⇢

1 if xky = Si for some 0  k  m,
0 otherwise.

Now, we need to write the probability PME(y|xm) as defined in equation (1.6). This
requires us to sum all parameters of features relevant to the event of y following the
context xm. The conditional probability is the exponential of this sum,

PME(y|xm;!) / e
Pd

i=1 !iI(xmy,i).

Actual probabilities are computed by taking ratios with the normalization factor, also
called the partition function, that comes from marginalization of y over all V ,

Z(xm;!) =
X

v2V
e
Pd

i=1 !iI(xmv,i). (1.7)

The corresponding probability of generating a corpus which is also the likelihood of the
corpus L(C;!) would be,

L(C;!) = PME(C;!) =
Y

{xmy}2C
PME(y|xm;!) =

Y

{xmy}2C

e
Pd

i=1 !iI(xmy,i)

Z(xm;!)
. (1.8)

The optimal set of parameters is recovered by maximizing L(C;!) which is usually done
by first taking the logarithm. The negative of the log of the likelihood takes the following
form:

L(C;!) = �
X

{xmy}2C
lnPME(y|xm;!), and

!⇤
= argmin

!2Rd

L(C;!), (1.9)

where !⇤ is the set of optimal parameters in Rd. We briefly review below the methods to
solve the optimization in (1.9).

Iterative scaling methods. The optimization described in (1.9) is convex with a unique
minimum and any suitable optimization method could be applied depending on the size
of the problem. The earliest technique used is the iterative scaling introduced by Darroch
and Ratcliff (1972). This method involves minimizing the difference in the likelihood at
two different parameter estimates separated by �!,

err = L(! +�!)� L(!). (1.10)
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Method Update equation �! := U(!, C, i)
GIS �!i :=

1

I# ln

⇣

P

C I(xmy,i)
P

C PME(y|xm)I(xmy,i)

⌘

IIS
P

C I(xmy, i) =
P

C PME(y|xm)I(xmy, i)e�!iI#(xmy)

SCIS �!i :=
1

IM (i)
ln

⇣

P

C I(xmy,i)
P

C PME(y|xm)I(xmy,i)

⌘

CD
P

C I(xmy, i) =
P

C
EP(v|xm)[e

�!iI(xmv,i)
�!iI(xmv,i)

]

EP(v|xm)[e
�!iI(xmv,i)

]

Table 1.1: Update equations for three different iterative scaling algorithms; generalized iterative
scaling (GIS), improved iterative scaling (IIS), sequential conditional generalized iterative scaling
(SCIS) and coordinate descent (CD) (see Huang et al., 2010).

Algorithm 1 Minimization in maximum entropy models (see Huang et al., 2010).
A. Parallel update (GIS and IIS)
A1 Input: C,! := 0

A2 repeat until termination
A3 for i = 1 to d
A4 �!i = U(!, C, i) #8i as in Table 1.1
A5 !  ! +�!

B. Sequential update (SCIS and coordinate descent)
B1 Input: C,! := 0

B2 repeat until termination
B3 for i = 1 to d
B4 �!i = U(!, C, i) #8C as in Table 1.1
B5 !i  !i +�!i

Typically, the error is not easy to minimize and is replaced by a surrogate function that
bounds the error from above and is easier to minimize (see Lange et al., 2000, on using
surrogates for optomization). The derivative of the surrogate is then set to zero to derive
the update equation. The update is applied iteratively until some termination condition is
met. There are different variations of this approach depending how the surrogate is derived
from the error function.

The original method proposed by Darroch and Ratcliff (1972) is called generalized
iterative scaling (GIS). Della Pietra and Della Pietra (1993) proposed a different surrogate,
they refer to as the improved iterative scaling (IIS). Both, GIS and IIS, lead to update
equations that can be applied in parallel, meaning all parameters can be updated at each
iteration of the optimization. Goodman (2002) derived another variation of the surrogate
that results in an algorithm called the sequential conditional generalized iterative scaling
(SCIS). This algorithm updates only one parameter at each iteration and cycles over the
list of the parameters it updates. Using the following definitions for I#, I#(xmv) and IM(i)
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as,

I#(xmv) =
X

i

I(xmv, i),

I# = max

C
I#(xmv) and

IM(i) = max

C
I(xmv, i),

the resulting update equations are tabulated in Table 1.1. The derivations leading to the
corresponding surrogates for these methods are described in Appendix A.2. Huang et al.
(2010) propose using coordinate descent (CD) as an alternative which directly minimizes
the error in (1.10). CD also leads to sequential updates like SCIS. They also show that
all these methods (iterative scaling and coordinate descent) converge to the optimum at a
linear rate.

These procedures for optimization with both parallel and sequential updates are sum-
marized in Algorithm 1. The parallel algorithm estimates the update for each parameter
in the vector ! and applies them together in step (A5) updating all entries at every itera-
tion. On the contrary, the update step (B5) for sequential algorithms is inside the for-loop
with only one parameter !i updated at each iteration and the update value for the next
parameter !i+1

is estimated with the new estimate of !.

Generic optimization methods. Generic function optimization techniques available in
the literature (see Nocedal and Wright, 2006) were later found to be more suitable than
iterative scaling to minimize the negative loglikelihood in (1.9). First order techniques use
gradients in the parameter space to minimize the objective. The steepest descent method
descends along the negative of the gradient with an appropriately chosen step size. In
contrast, conjugate gradient method finds directions that are orthogonal to previous steps.
Second order methods use the dense Hessian matrix to estimate an appropriately sized
descent step. They offer faster convergence at the expense of computational time and
memory. The number of entries in the Hessian grows quadratically with the size of the
feature set. Further, its inversion is required that is cubic in the number of features.

In quasi-Newton methods, the inverse of the Hessian is approximated efficiently to
overcome the computational burden of the Hessian. A rank-one approximation of the
inverse of the Hessian is computed by using the last few gradients, a method that is
popular as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.
Malouf (2002) and Minka (2003) compared various numerical optimizers and demonstrated
faster convergence of conjugate gradient methods and quasi-Newton methods over iterative
scaling methods. However, when the dataset has large number of samples estimating a
single gradient itself can be very time consuming. But it is unnecessary to use all available
samples to make a reliable estimate of the gradient. In such cases, the gradient at each
step is estimated stochastically from a small random subset of the dataset (or just one
sample at a time) making it significantly faster. Stochastic methods were found to be more
suitable for such optimization involving large data (see, for e.g., Finkel et al., 2008).

Relation to smoothing models. Unlike the smoothing models above, maximum entropy
models learn the distributions from the data by fitting an exponential model to it. Chen
and Goodman (1996) argue that this parameterization gives them significant advantage
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over conventional m-gram models. Despite the difference, models resulting from maximum
entropy estimation were shown by Chen and Rosenfeld (2000) to bear resemblance with
interpolated and back-off smoothing models described above. Maximum entropy models
also suffer from data sparsity and require smoothing of its estimates. Earliest works to
smooth the estimates would modify the constraint set (1.5) which are later superseded by
regularization of the parameters. We describe this in detail in the next section.

1.2.3 Predictive performance and computational efficiency

Maximum entropy models are simple and intuitive with flexibility to capture information of
various types. For example, the model described above captures the information encoded
in m-gram models and Lau et al. (1993) show how trigger-based models and cache models
can also be absorbed into this framework. These models have been used for various kinds of
language applications like disambiguation, sentence boundary identification, part-of-speech
tagging, and numerous others. However, there are two major issues with the framework
that need to be addressed; one relating predictive performance of the resulting model and
the other of its computational efficiency. We discuss these aspects in detail below.

1. Overfitting. The parameters recovered by minimizing L very well fit the data in C but
fitting it too well will cause it to degrade performance on any other sample C 0 that
deviates from C. This phenomenon of a model fitting the training data too well is
called overfitting. Smoothing of parameters, similar to conventional n-gram models
is used to avoid overfitting.

Regularization by constraint modification. Smoothing in maximum entropy mod-
els involves modifying the marginal equivalence constraint in (1.5). It is important to
note that if the modification leads to an inconsistent set of constraints, the problem
becomes infeasible and the solution space will be empty. Different modifications lead
to different changes in the feasibility set resulting in different solutions (Chen and
Rosenfeld, 2000).
The earliest choice studied for smoothing of parameter estimates was to drop some
of the constraints from the set described by the corpus C in (1.5). This widely
used method is called constraint exclusion and various variants of this idea have
been studied by Della Pietra and Della Pietra (1993); Lau (1994); Rosenfeld (1996)
and Della Pietra et al. (1997). Typically, constraints corresponding to sequences
with very low frequencies are the ones that are excluded. The resulting model is
observed to be very close to conventional n-gram models with a positive threshold on
the frequency count (Lau, 1994; Rosenfeld, 1996). Replacing the empirical estimate
on the right side of (1.5) with a discounted value is called Good-Turing smoothing
of maximum entropy models as described by Lau (1994) and Rosenfeld (1996). The
resulting model is known to be similar to Jelinek-Mercer interpolation smoothing for
conventional n-grams models described above (Lau, 1994). Alternatively, Newman
(1977) and Khudanpur (1995) relax the equality conditions in (1.5) to define an upper
and a lower bound on the marginals under the resulting distribution PME to smoothen
the estimates. The resulting inequalities are called fat constraints. An alternative is
to optimize the unconstrained objective in (1.9) with an additional penalty term that
adjusts for parameter smoothing.
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Regularization by penalization. Smoothing by adding a regularization term (also
called penalty) to the maximum likelihood formulation was considered as a simpler
and efficient alternative to modifying the constraint set. Various regularizers have
been tried in the context of maximum entropy models and a survey by Chen and
Rosenfeld (2000) reported that they perform better than models smoothed by con-
straint modifications.
Chen and Rosenfeld (1999) propose using a Gaussian prior on the parameters which is
equivalent to imposing an `

2

-norm on the parameters (Della Pietra and Della Pietra,
1993; Chen and Rosenfeld, 2000). Penalties similar to the `

1

-norm have been also
been attempted by Goodman (2004). A combination of the two penalties, `

1

and
`2
2

, similar to the elastic net has been tried by Kazama and Tsujii (2003) and Chen
(2009). The `

2

penalty and its combination with the `
1

-norm have shown improve-
ments (Chen, 2009; Alumae and Kurimo, 2010) while the `

1

penalty alone was less
satisfactory (Goodman, 2004) indicating that uniform sparsity is not an appropriate
prior for modeling language. These modifications lead to appropriate changes of the
update equations in Table 1.1. We discuss the issue of overfitting in detail in Chap-
ter 2 and then in Chapter 3, we propose using structure incorporating penalties to
steer the optimization to a more appropriate model.

2. Computation of the normalization factor. The update at every step of the optimiza-
tion in Table 1.1, requires estimating the expectation of some quantity under the
distribution PME(·) which depends on the current estimate !. This means, we will
need to recompute the expensive normalization factor Z at every iteration of the opti-
mization. Wu and Khudanpur (2000) present a trick that improves the time required
for computing Z by storing calculations that are common in multiple terms of Z. The
time complexity of Z is still linear in the vocabulary V . Goodman (2001) reduces
this dependence on V by clustering words. This breaks into into a two-stage prob-
lem of choosing the best cluster followed by picking the best word from the chosen
cluster. This idea can be generalized to multiple levels of hierarchy that in the ideal
case bring the complexity down to logarithmic in V . The hierarchy, however, should
be such that the resulting classifier has predictive performance close to the original
one. The hierarchy is usually built ad-hoc (Mnih and Hinton, 2008) or built using
the standard Brown clustering (Brown et al., 1992; Goodman, 2001) . In Chapter 4,
we propose an alternative to build this hierarchy that is very generic and applicable
to build taxonomies for various problems.

1.3 Recent trends

In the recent years, language models have been developed based on Bayesian techniques
and distributed representations (recurrent neural network, Boltzmann machine and others).
We review some of these methods below.

1.3.1 Bayesian models

Numerous smoothing methods described above have performed well but offer very little
insight in terms of the properties of word distributions they generate. It is well known
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Figure 1.1: Hierarchical Bayesian models for language.

that the distribution of word frequencies in natural language follows a power law with the
distribution decaying rather slowly, also called the heavy tail behavior (Zipf, 1932). This
is because there are a small number of higher frequency words and a significant number
of low frequency words occurring in every sampling of text. A generative model should be
able to mimic this behavior of the distribution by putting considerable mass in its tail.

Hierarchical Dirichlet language model. The power-law makes Gaussian-like distribu-
tions inappropriate to model language since they decay too quickly. Mackay and Peto
(1994) studied the suitability of Dirichlet distribution to generate heavy tails that could
match language’s behavior. They imposed a Dirichlet prior on the words and hierarchically
stacked multiple layers of Dirichlet to model the probability of a word following various
lengths of the context. Figure 1.1 shows a hierarchical model with three letter vocabulary
V ={a,b,c} where each node indicates a context. The distribution over the words in V
following that particular context is given by Gx with Gx(y) = P(y|x) for y 2 V . For exam-
ple, Gbc = [P(y|bc)]y2V is the vector describing the probabilities of words in V following
the context bc. Mackay and Peto (1994) proposed this distribution to be drawn from a
Dirichlet process, Gx ⇠ DP (↵x, Bx), with strength parameter ↵x controlling the mass in
the tail and Bx being the mean or base distribution (Ghosal, 2010). The base distribution
at any given node will be the conditional distribution at the parent node, for example,
Bbc = Gc and G?(y) = 1/|V |, the uniform distribution. This was the first work to develop
a Bayesian model with an appropriately chosen prior over the words for modeling language
and they reported favorable results. It was used develop an input mechanism that relies
on touchscreen gestures or eye-tracking (Ward, 2001).

Pitman-Yor’s power law. However, the Dirichlet process, despite being an improvement
over others, would not satisfactorily match the distribution of word frequencies. Goldwater
et al. (2006, 2011) showed that a Pittman-Yor process (Perman et al., 1992) is closer to the
empirical distribution of word frequencies. They build a two stage morphological model
to learn linguistic structure. The first stage is a generic model following any distribution,
a multinomial in their case. This is then followed by the second stage of processing that
produces distributions that are closer to natural language. They show that a Pitman-
Yor process for the second stage results in better power-law distributions and improved
performances. Pitman-Yor, unlike the Dirichlet, has no known closed form representation
and the induced distribution is handled using an appropriate Chinese restaurant process
or a stick-breaking process (Teh, 2006; Goldwater et al., 2011).
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Hierarchical Pitman-Yor language model. Teh (2006) extended the work of Goldwater
et al. (2006) to a language model by replacing the Dirichlet process in the hierarchical model
of Mackay and Peto (1994) by a Pitman-Yor process. The distributions are now drawn from
a Pitman-Yor process Gx ⇠ PY (�x,↵x, Bx) with discount parameter �x, strength parameter
↵x and mean distribution Bx. The resulting model with a Hierarchical Pitman-Yor process
(HPY process) prior was found to deliver results comparable to the Kneser-Ney and also
reveals interesting relations between them. The resulting equation of the HPY process
model describing the generative procedure for drawing words was observed to functionally
match that of the interpolated Kneser-Ney. This offers a principled derivation and an
understanding of the smoothing technique that was otherwise ad-hoc, though effective.

In the hierarchical structure of contexts as shown in Figure 1.1, there are often paths
of non-branching nodes. The conditional distribution at each of these nodes follows a
Pitman-Yor process. It is known that HPY processes are closed under marginalization
and the resulting conditional remains a Pitman-Yor process. This property was used to
marginalize out the non-branching nodes in the hierarchy to develop an infinite length
Markovian model (or a non-Markovian model) by Wood et al. (2010, 2011), which they
refer to as the sequence memoizer.

1.3.2 Distributed representations

Representing words often requires a 1-of-|V | encoding with a long vector of zeros containing
a single one indicating the occurrence of the word. This is because finding a continuous
space feature representation for words is non-trivial. However, it is a sensible thing to
do considering some words are semantically closer than others, something the 1-of-|V | en-
coding does not reflect. Methods like latent semantic analysis represent words in a vector
space (Deerwester et al., 1990) and are widely used in information retrieval and other areas.
However, language models learned on such word features were found to be underperform-
ing (Bengio et al., 2003). Models were designed to learn both the feature representation
and the probability function jointly. These are referred in the literature as distributed
representation models and offer competitive performances to traditional approaches. They
minimize a complex energy function of the data and are often implemented with a neural
network architecture. We will review three such models below.

Neural probabilistic language model. Bengio et al. (2003) propose the neural proba-
bilistic language model built on feed-forward neural networks. They represent words in
a finite d dimensional continuous feature space and express the joint probability of the
sequences in the corpus in terms of these feature vectors. The log-likelihood of the training
corpus under this model is maximized over the parameters of the feature representation
and that of the probability function. Figure 1.2 illustrates the architecture of the network
with the notation. It is a three layered network with input to hidden layer connections,
hidden to output layer connections and also input to output layer connections.

Consider s = (xmy) with the context xm = (s
1

, · · · , sm). Each word in xm is mapped to
a Rd⇥1 as Xi = C(si) which are concatenated into X 2 Rmd⇥1 vector. The X vector makes
the input that is mapped with W

1

to the output layer and with W
2

to the hidden layer.
Offsets defined by vectors b

1

and b
2

are used in the two mappings. The hidden layer has h
units and applies a hyperbolic tangent ⌧(·) to its values which are then mapped onto the
output space with W

3

. The output layer has |V | nodes, one per word in the vocabulary
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Figure 1.2: Network architecture of the neural probabilistic language model and the corresponding
notation.

and contains the unnormalized probabilities of the target words (/ P(y|xm)). These scores
could be used straight away for some applications (Bengio and Senecal, 2003), but when
probabilities are required a softmax �(·) is applied to the vector.

The parameters of this model ✓ are estimated using updates from the back-propagation
algorithm. This neural model offered competitive performance to smoothing techniques
outperforming Kneser-Ney. Additionally, the model returns a vector space representation
for words which is a deviation from standard frequency tables. Smooth representation
for words has the advantage of compactness and semantic meaningfulness but becomes
challenging with polysemous words. The neural model has significantly more parameters
than the traditional methods and has longer training times. Techniques like word clustering
or importance sampling could be used to improve training times (see Bengio and Senecal,
2003; Schwenk, 2004; Schwenk and Gauvain, 2005; Morin and Bengio, 2005).

Log-bilinear language model. Mnih and Hinton (2007) proposed a model that minimizes
a bilinear energy function similar to that of a restricted Boltzmann machine. They consider
continuous space feature representations for words like Bengio et al. (2003) and capture
the interactions between the words in their energy function. This function is a similarity
score between a mapping of the context xm onto the feature space and the features of the
target word y. It has the following form,

E(xm, y) = �
 

m
X

i=1

1siC
>Ri

!

C1>
y ,

where, xm = (s
1

, · · · , sm),
1v 2 {0, 1}1⇥|V | is a 1-of-|V | encoding of the word v,
C 2 Rd⇥|V | is a matrix of d dimensional features for the words,
and Ri 2 Rd⇥d captures the interaction of the ith word si and the target y.
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Figure 1.3: Network architecture of recurrent neural network language model and the correspond-
ing notation.

The resulting predictive distribution will be,

P(y | xm) =
eE(xm,y)

P

v2V eE(xm,v)
,

and the log-likelihood of the corpus is maximized to estimate parameters C and Ri. The
optimization alternates between the maximization over the feature representations C and
the context mappings Ri. The resulting model outperformed back-off Kneser-Ney and also
has the advantage of learning a smooth representation for words. This model is similar to
that of Bengio et al. (2003) but for the bilinear interactions which helped improve perfor-
mance over the latter. Learning was further made to work faster using a tree-structured
embedding of words in the hierarchical log bilinear model of Mnih and Hinton (2008).
Bilinear functions were also be used to model multiple relations in language by Jenatton
et al. (2012b).

Recurrent neural network language model. The distributed model of Bengio et al.
(2003) is a fixed length Markov models where information in a sequence is processed in
chunks limited by its maximal order. However, the recursive nature of language input as op-
posed to the fixed length input is not sufficiently captured by such models. This motivated
models that explicitly characterize the recursive nature. Mnih and Hinton (2007) propose
a temporal factored restricted Boltzmann machine that outperforms the log-bilinear model
described above for short context lengths. But the temporal model has significantly higher
number of parameters restricting its applicability to shorter contexts while the log-bilinear
model would easily scale to moderately long lengths and outperform the temporal models.
Bengio et al. (2003) suggest accommodating longer contexts by introducing a time-delayed
layer in their network. Mikolov et al. (2010) investigate this in their recurrent neural net-
work language model which is considerably simpler than that of Bengio et al. (2003) with
fewer parameters to specify and significantly faster training times. It uses a simple three
layer network similar to that of Bengio et al. (2003) but with recurrence in the middle
layer. Figure 1.3 illustrates the corresponding network architecture with the notation.
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Input to the network is 1-of-|V | encoded words X
1

from the training sequence in that
order. At any given iteration, the second layer is fed the input word along with its own
output in the previous iteration X

2

. The sigmoid function ⌘(·) is applied at the second
layer and the output is fed into the third layer with a mapping W

3

. The last layer has as
many nodes as there are words and contains unnormalized probabilities of generating the
corresponding words. A softmax function gives out actual word probabilities.

In contrast to the architecture of Bengio et al. (2003), the strong difference lies in
that the recurrent hidden layer imposes a time-delayed feedback. This time-delayed feed-
back conveniently takes into account the recursive dependence in the input. This model
has outperformed interpolated Kneser-Ney smoothing and was applied to meeting recog-
nition (Stefan et al., 2011) and to capture linguistic patterns (like words king and queen
indicate to positions of similar stature but vary in gender (Mikolov et al., 2013)). The
time to train the network was improved further by using techniques like word grouping
and other optimizations (such as Mikolov et al., 2011).

1.4 Summary and motivation

In summary, numerous methods were developed following various techniques to model lan-
guage. There are both advantages and disadvantages for each of these methods and some
are more suitable than others for specific tasks. While all methods focus on generating the
conditional probability distribution of a word given the preceding context, certain meth-
ods make modeling easier for specific problems. A typical language application requires
multiple layers of processing. In such cases, numerous factors play role in determining the
applicability of a particular model. Factors like ease of integration, or aspects of time and
space complexity, or suitability to problem’s domain like incorporating additional informa-
tion and so on. We motivate the purpose of pursuing and improving various models with a
particular focus on the class of discriminative models to which maximum entropy models
(Section 1.2.2) belong. We use text generation in multimodal problems as an example to
present our case. We then describe which aspects of discriminative models we address in
this work and summarize our contributions.

Discriminative modeling of multi-modal data. In this broad view of model compatibil-
ity to applications, we see discriminative models as those that fit into scenarios that require
flexibility to pool additional features to learn combined models easily. Take multi-modal
applications with language being one of the modalities, more specifically the target modal-
ity. The other modality, being the source modality, could be an audio signal or image
features or a video sequence involving both. Generating short descriptive summaries of
images or other data is one simple application where this could arise.

Consider the problem of generating human-like captions for images that recently gained
significant attention (see, for example, Gupta et al., 2009; Farhadi et al., 2010; Kulkarni
et al., 2011; Yang et al., 2011; Mitchell et al., 2012). The first few models that were pro-
posed used template-based construction of sentences from image tags returned by visual
classifiers (Kulkarni et al., 2011). Template models are known to be suboptimal when tex-
tual variations are necessary (Reiter and Dale, 1997). Template filling has been replaced by
models that generate syntactic trees that resulted in varied and well formed text (Mitchell
et al., 2012; Yang et al., 2011).
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However, these methods deal with the two modalities separately with a one-way infor-
mation channel transferring the image signal summarized in a few words, mostly image
annotations with some additional tags on spatial organization (Mitchell et al., 2012; Yang
et al., 2011; Farhadi et al., 2010; Ordonez et al., 2011) sent across to the language model to
make its sentence. The language part pools this oversimplified information together with
as much textual data of its own to make a meaningful sentence that sometimes leads to
completely incorrect sentences (Mitchell et al., 2012).

Making meaningful sentences that explain the source signals requires the model to
leverage statistical strength (Li et al., 2011) of text corpora. Such models should also be
amenable to accommodate source signals in determining the final distributions without the
above over-simplification causing information loss. In tasks like this, we see discriminative
models as a natural fit where we build a language model on available text from various
sources and reuse that to learn a conditional model for our multi-modal data. Further,
discriminative models allow for flexibility over aesthetics of language like its variations in
style and tone, characteristics that manifest as terms in the objective function.

Encoding large context for discriminative modeling. Generating complete sentences in
a discriminative framework requires handling long contexts, in some cases possibly involving
multiple sentences. This could be necessary for various reasons. For example, we might
want to suppress information covered in previous sentences to avoid repetitions, or prevent
from reusing the same words in the same sentences to maintain good readability, or to
control the order in which content is delivered and so on. In such situations, one would
need a discriminative language model that can encode large sentences efficiently. This is
one aspect that we target in our work.

Large multi-class log-linear models. The other is a much more generic problem involving
log-linear models with a large number of classes. The bottleneck is always the estimation
of the normalization factor in which the number of vector dot-products directly depends on
the number of classes. This slows training since it requires to estimate the gradient and also
slows the test time application of the model. A growing number of classes is a challenge in
numerous fields especially with language models where the number of classes is the number
of words in the vocabulary. Organizing classes into a hierarchy is one standard trick to
alleviate this issue and significantly speeds up test time predictions. However, building such
a hierarchy without loss of performance in comparison to the standard multi-class classifier
is a challenge. We propose various methods to build such a hierarchy from samples and
empirically study their behavior.

1.5 Contributions and outline

This work revisits traditional approaches in the light of recent advances in structured
penalties and large-scale optimization. In particular, we focus on the two issues of discrim-
inative language models concerning generalization performance and model complexity. Our
contributions can be summarized as follows:

1. Discriminative language models are known to overfit for long context lengths even
when regularized using standard penalty terms. This clearly reflects in the predictive
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performance plots of models involving unstructured regularization on the subsets of
AP-news corpus that we considered (see Figure 3.5). We study this issue to under-
stand why simple regularization would not contain overfitting appropriately. To this
end, we rewrite this model as a categorical distribution of words leading to a similar
likelihood function as in (1.8) but with an extra constraint. The sequential struc-
ture of sentences is then interpreted on a suffix tree data structure. Penalties are
then designed to exploit this tree structure inducing a structure-aware bias into the
optimization. The optimization itself is described as operations on the suffix tree.
Models with structured penalties are evaluated on the same data as the unstructured
models above and improvements in generalization clearly show up in predictive per-
formance plots against increasing context lengths (see Figure 3.6). We further analyze
the predictions of these models by grouping together words using various criteria to
understand performance gains. As the plots reveal (see, e.g., Figure 3.8), there is
scope for significant improvements which is a topic for future work.
On the complexity side, increasing context length leads to significant growth in the
number of parameters. We study the efficiency of different penalties and some of
them can be used to build models that scale efficiently with increasing context length.
We propose an algorithm that improves the iteration time complexity for optimizing
with such penalties over currently available methods. This work was published in the
Conference on Empirical Methods in Natural Language Processing 2013.

2. The idea of grouping together words into clusters to make training and prediction
time efficient has been used with different models (see (Goodman, 2001) for maximum
entropy models, (Morin and Bengio, 2005) for feed-forward networks, (Mikolov et al.,
2011) for recurrent networks and (Mnih and Hinton, 2008) for log-bilinear models).
However, the method used to cluster words in the above models is either random or
ad-hoc with the exception of Brown’s clustering (Brown et al., 1992). We propose
different methods to group words using their contexts. These methods are generic
with applications beyond data of discrete sequences and can also be used with non-
sequence data in continuous feature spaces. We study their behavior on image and
text datasets and observe how tree-building methods must be chosen carefully to stem
performance loss by switching from flat multi-class classifier to a tree-based classifier.
Interestingly, in some cases, a suitable tree structure could also lead to improvements
in predictive performance.

Outline of the thesis. The outline of the remaining chapters is as follows. Chapter 2
describes risk minimization framework and the necessity of regularization particularly fo-
cusing on structure incorporating penalties. It also considers algorithms for optimization
with such penalties and studies various methods available. Chapter 3 details our contri-
bution on log-linear models involving structured penalties built on top of the suffix tree
data structure. It studies time and space efficiency of optimizing with different penal-
ties. Chapter 4 describes the grouping methods that we propose for building hierarchies
or taxonomies. We also present evaluation results on various datasets. We summarize and
conclude in Chapter 5 with remarks and directions for future work.



Chapter 2

Learning with structured penalties

Statistical learning theory has been successfully used to develop algorithms for numerous
applications including classification and regression tasks (see Vapnik, 1998, 1995, 1982;
Hastie et al., 2009; Duda et al., 2001; Anthony and Bartlett, 1999; Breiman et al., 1984;
Devroye et al., 1996; McLachlan, 1992; Natarajan, 1991, while there are numerous others
dealing with this topic). The theory puts together statistical principles into an algorithmic
framework that can be used to process data on machines. One such principle, and probably
the most used of them, is the principle of risk minimization (see Vapnik, 1998, for details of
the risk minimization framework). Consider a parametric model that is designed to achieve
a certain task with parameters lying in a defined domain. Risk quantifies the closeness of
a model to the defined goal in the space of parameters. It is measured by an empirical
estimate over a certain sample set and hence the name empirical risk. This empirical risk
is minimized using a learning algorithm to build the necessary classifier or regressor.

However, the effectiveness of this method relies on generating an appropriate and suf-
ficiently large sample set to estimate the parameters of the model. In most scenarios,
especially those involving high-dimensional spaces, it is not possible to generate a proper
sample set. Minimizing the empirical risk too well is detrimental in such cases. To handle
this overfitting, the risk function is modified to sacrifice some empirical risk by biasing the
estimates in an appropriately chosen manner. This modification to risk function with a
penalty or regularization term that induces the bias is referred to as the structural risk. The
design of this regularization term is specific to the problem domain. Numerous choices for
regularization with different properties have been investigated for various problems. We
study some that are more suitable for language modeling than those considered earlier.
The other issue in fitting an appropriate model involves designing an algorithm that min-
imizes this risk. We study algorithms necessary for risk optimization involving our choice
of penalties.

In this chapter we detail the theory to achieve the goal of language modeling using
structural risk minimization framework. We describe the principles of empirical risk mini-
mization and structural risk minimization. We present various choices for penalty functions
and choose the ones appropriate for out model. We briefly survey different algorithms avail-
able for their optimization and choose an appropriate method.

21
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2.1 Principle of empirical risk minimization

The principle of empirical risk minimization was developed a few decades ago and has
since been used successfully in numerous applications. Consider the event space X ⇥ Y
where X is the feature space and Y is the output space. We wish to recover the function
that maps X to Y from a given set of observations. The idea is to design experiments
and collect empirical data for testing multiple hypotheses, h : X ! Y and pick the best
fit. Hypothesis is also called the predictor that predicts y 2 Y from x 2 X . In a more
generic case, it could be a mapping to some transformation of the outputs as ⇣(y) = h(x),
where ⇣ is called the link function. Each hypothesis has a certain amount of expressiveness
or the kind of relations it can capture. Greater expressiveness comes from more complex
hypotheses involving more parameters.

The misfit of a particular hypothesis at any point (x, y) 2 (X ⇥ Y) is measured by a
non-negative real valued loss function f(·, ·) : Y ⇥ Y ! [0,1]. The loss function f takes
two arguments and returns a real value representing how different they are. Since our
objective is to score the fitness of a hypothesis h for an event (x, y), we pass the predicted
value of the hypothesis h(x) and its actual value y to retrieve the score f(h(x), y).

Define a probability density function P(X ,Y) over the space X ⇥ Y . To compare
multiple hypotheses, we must quantify each one over the complete space. Risk, Rf

P[h], is
the expectation of loss from h under the probability distribution P(X ,Y):

Rf
P[h] =

Z

X⇥Y
f(h(x), y) dP(x, y). (2.1)

It is this risk that we seek to minimize over all possible mappings YX to choose the
hypothesis that best models the problem:

R⇤
= inf

h2YX
Rf

P[h] (2.2)

where R⇤ is the best achievable risk by the most suitable predictor, commonly referred
to as the Bayes risk. We define as the excess risk e the difference between R⇤ and the
risk from a hypothesis h, Rf

P[h], a term quantifying how far we are from the best possible
solution:

e = Rf
P[h]�R⇤.

Consider a set of hypotheses H ✓ YX of varying complexities. The complexity of
functions h 2 H defines the capacity of the class H. Let the corresponding minimizer
of (2.2) in H be,

hH = argmin

h2H
Rf

P[h].

Now, for any h 2 H, the excess error e could be split into two components as follows:

e = Rf
P[h]�R⇤ (2.3)

=



Rf
P[h]� inf

i2H
Rf

P[i]

�

+



inf

i2H
Rf

P[i]�R⇤
�

=

h

Rf
P[h]�Rf

P[hH]
i

| {z }

eesth

+

h

Rf
P[hH]�R⇤

i

| {z }

eappH

,
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of which eappH depends only on the choice of the class H and eesth depends only on h.

1. Error eappH is called the approximation error and quantifies how much worse Rf
P[hH]

is in comparison to the Bayes risk R⇤. This is due to the possible mismatch of the
hypothesis class H for the problem being considered.

2. The other part of e depends on how far the solution h is from the optimum within H.
This component, eesth is called the estimation error.

Consider a feature space X and an output space Y with a joint population distribution
of D = P(X ,Y). However, we do not have access to this true distribution to evaluate
quantities involving D. We instead draw samples Sn = {xi, yi}ni=1

⇢ (X ⇥ Y) and use the
corresponding empirical distribution Sn (⇠ D as n ! 1) to approximate the unknown
distribution D. Quantities involving D are approximated by an estimate from Sn. Thus,
we approximate the risk Rf

D[h] in minimization (2.2) by the empirical risk defined as:

Rf
Sn
[h] =

n
X

i=1

1

n
f(h(xi), yi). (2.4)

Now, consider a learning algorithm A : Sn ! H that takes observations Sn and returns a
hypothesis from H:

hSn = A(Sn,H) = argmin

h2H
Rf

Sn
[h]

and the corresponding estimation error as,

eestSn
= Rf

D[hSn ]�Rf
D[hH].

Then we say, A is

1. statistically consistent w.r.t. D, f if for any ✏ > 0

P(Rf
D[hSn ]�Rf

D[hH] > ✏)! 0 as n!1.

2. Bayes consistent w.r.t. D, f if for any ✏ > 0

P(Rf
D[hSn ]�R⇤ > ✏)! 0 as n!1.

The idea of consistency in both the above cases shows that for the particular D and f ,
the risk can be driven to arbitrary close to the optimal value (Rf

D[hH] or R⇤ respectively)
with high probability by using more samples for Sn. When the above properties hold
independent of the distribution D, then they are called universally consistent learning
methods.

The split of error into approximation and estimation terms can be used to understand
an important trade-off between them. The approximation term is solely dependent on the
set H but independent of the specific sampling Sn. It lower bounds the best achievable
risk using H. The estimation term, on the other hand, depends on Sn and A. In the ideal
case when Sn ⇠ D, hSn = hH, but this requires, n!1.

Given a finite random sample set, it is fairly possible that Sn only crudely approxi-
mates D. This is often the case in high dimensional space, where there is almost never
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enough data to make an accurate estimate. In this situation, the minimizer of eestSn
and that

of eappH are not equivalent, hSn 6= hH. While hSn optimizes for the current sample set Sn

and very well minimizes eestSn
it also leads to generalization error, also called overfitting

since Sn 6= D. We could instead trade some eestSn
for significant reduction in eappH and, end

up reducing the combined error e. This is the approximation-estimation trade-off or more
classically, when using a square loss, the bias-variance trade-off.

The bias-variance split comes from considering the mean-squared error (MSE) of the
estimator in (2.1) (Hastie et al., 2009):

MSE[hSn � hH] = E[(hSn � hH)2]
= Var[hSn ]

| {z }

variance

+(E[hSn ]� hH)2
| {z }

square of bias

.

Approximation error eappH corresponds to squared bias term and cannot be improved without
modifying the hypotheses H. Estimation error eesth corresponds to the variance of this
estimator since it depends on the sample size n and the algorithm used for estimation. In
this interpretation, we wish to trade a little bias and make a more confident estimate with
large reduction in variance.

The trade-off is made by appropriately modifying the class H. Increasing the complexity
of the functions in H results in a lower eappH and a higher eestSn

and vice versa. Large capacity
of H shoots up eestSn

leading to overfitting described above. On the contrary, H with small
capacity will lead to underfitting due to high eappH . This trade-off is balanced by controlling
the capacity of H such that the resulting error e is minimal. The balance is achieved using
an additional term in the risk function in (2.4) that penalizes complex hypotheses. We
discuss specific details of this penalization in the next section.

2.2 Penalized loss and structural risk minimization

In order to ensure good predictive performance, we need to minimize the excess risk e
in (2.3). Since, we only have access to a finite sample of the actual distribution, this
generalization is achieved by controlling the capacity of H. Define a parametric family of
hypotheses H(�) with the parameter � controlling the capacity of the resulting class. We
modify the empirical estimate of the risk in (2.4) to append the loss f with a penalty term
⌦ : H! [0,1] that depends only on h and not on the sample Sn. The resulting function
called the structural risk is,

Rf+�⌦
Sn

[h] =
n
X

i=1

1

n
f(h(xi), yi) + �⌦(h). (2.5)

Parameter � controls the weighting of ⌦ in comparison to f and we recover the empirical
estimate in (2.4) by setting � = 0. The penalty ⌦ maps the hypotheses to the real number
line by order of their increasing complexities. Increasing � will encourage functions with
smaller complexities and lowers the capacity of H. The set of hypotheses that is included
in H(�) for a given � is easier to understand in the following equivalent form of (2.5):

Rf,⌦�
Sn

[h] =

⇢

Pn
i=1

1

n
f(h(xi), yi) if ⌦(h)  �,

1 otherwise. (2.6)
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Clearly, H(�) of (2.6) is the set of all hypotheses h for which ⌦(h) is smaller than some �.
There is a one-to-one mapping from � to �, however, it is not obvious to compute one from
the other for any given ⌦. The term �⌦ is also called the regularization term and plays
a role similar to that of the prior in methods involving maximum a posteriori estimation.
Since the penalty adds some bias in return of variance reduction, the estimator in (2.5) is
a biased estimator.

The choice of loss function depends on the specific goal of the model, its suitability
to data and ease of optimization. In some cases, the loss might directly describe the
problem like square loss for regression or 0-1 loss for binary classification. One might even
minimize a complex loss function that is more suitable for the problem (like area under
ROC-curve or, MAP, NDCG measures1 (Chen et al., 2009; Ravikumar et al., 2011), or ⌧ -
quantile (Boyd et al., 2012)). However, considering ease of optimization a non-convex loss
is often replaced a convex surrogate that is more amenable to optimization like hinge loss,
logistic loss (multinomial for multi-class), huber loss, absolute loss, perceptron loss (see
Steinwart, 2002; Mannor et al., 2002; Zhang, 2003; Jiang, 2003; Lugosi and Vayatis, 2003;
Bartlett et al., 2003, and other references therein for statistical consequences of various
loss functions). The other choice to be made for the risk minimization framework is that of
the penalty that incorporates our belief into the learning algorithm of what the parameters
should look like. We discuss various options for penalty functions and their effect in the
following sections.

To simplify notation, let hypothesis set be parameterized by a vector w as H = {hw}.
In the case of linear predictors this would be ⇣(y) = hw

(x) = w>x. The dependence could
be more complex with hw

(x) being any function of w and x. Hereafter, we refer to the
penalty ⌦(hw

) in terms of the parameter vector as ⌦(w).

2.2.1 Unstructured penalties

Regularization has become a standard component in almost every model and until about a
couple of decades ago it was almost always the `

2

-norm. It offers additional benefits in some
cases like adding stability to ill-conditioned problems which was how it was first introduced
by Tikhonov, popularized as Tikhonov regularization. Lasso that was introduced later has
been shown to be helpful in practice for which some theoretical results have also been
proven like consistency under certain conditions (see for example Zhao and Yu, 2006; Zou,
2006; Wainwright, 2006). Since these penalties treat all parameters equally and regularize
them uniformly, we refer to them as unstructured penalties. We describe below some
unstructured penalties from the literature.

Ridge regularization. The most commonly used penalty is the Euclidean `
2

-norm (⌦(w) =
kwk

2

) or its squared value (⌦(w) = kwk2
2

) that is called the Ridge regularization. It pe-
nalizes the magnitude of the weight vectors and encourages vectors closer to the origin.
H(�) in this case is all points lying inside the `

2

-ball of � units as seen from the alternative
interpretation in (2.6). Expectedly, the `

2

-norm shrinks the weight vectors towards the

1ROC is receiver operating characteristic, MAP is min-average precision and NDCG stands for normalized
discounted cumulative gain
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origin and does so uniformly in all directions. The `2
2

penalty behaves similarly and the
choice among the two is made by convenience of optimization.

Lasso estimator. The `
1

-norm is the other common penalty that gained popularity for
H(�) that involves sparse vectors. `

1

penalty encourages sparsity by setting small values
to zero that an `

2

penalty would leave with small magnitude. This made `
1

particularly
interesting for problems where the actual solution is sparse as is often the case in large
feature spaces. The estimator in (2.6) with ⌦(w) = kwk

1

constrains the hypothesis class
to an `

1

-ball of � units. This sparsity inducing penalty leads to solutions similar to that of
the popular Lasso estimator in statistics (Tibshirani, 1996) and basis pursuit (Chen et al.,
1998b) in signal processing and is related to compressed sensing (Candes and Wakin, 2008).

`
1

-norm has been shown to perform particularly well when sparsity is a valid assumption.
In some cases it offers more than just better performance. `

1

-norm provides interpretability
which is important for some applications involving large feature spaces. It also allows for
high-dimensional inference with the number of observations logarithmic in the size of these
observations.

Elastic net and fused lasso. Mixed norms were introduced to pool together properties
from different penalties. Elastic net (`En(�)) proposed by Zou and Zhang (2009) uses both
`
1

and `
2

-norms on the features:

⌦(w) = kwkEn(�) = kwk1 + �kwk2
2

.

Its advantage comes from both feature selection using `
1

-norm and shrinkage of selected
features from `

2

-norm. Fused Lasso (`F l(�1,�2)) was proposed by Tibshirani et al. (2005)
which further adds a term to the elastic net that encourages piece-wise constant behavior
by smoothing out minor changes in consecutive entries of w and retaining sufficiently large
ones as controlled by �

2

:

⌦(w) = kwkF l(�1,�2) = kwk1 + �
1

kwk2
2

+ �
2

|w|�1

X

i=1

|wi+1

� wi|.

Non-convex penalties. All penalties considered above are convex functions, however,
non-convex penalties are used when more appropriate. The `

0

(w) penalty, for example,
maps a vector to its support (the number of non-zero entries):

`
0

(w) = supp(w) =
X

i

I(wi 6= 0).

`
0

is not a proper norm (often called a pseudo-norm) since it is not positive homogeneous,
↵||w||

0

6= ||↵w||
0

for ↵ � 0 and is non-convex which complicates optimization with trou-
blesome local minima in a combinatorially large space. The `

1

-norm which is the tightest
convex approximation for the `

0

penalty is used as a surrogate for `
0

. However, non-convex
`
0

based methods are sometimes preferred and used with approximate greedy algorithms
like orthogonal matching pursuit (Tropp and Gilbert, 2007) and compressed sensing (Haupt
and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009) in signal processing.
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Matrix penalties. In cases where the hypotheses are matrices, matrix norms are used.
The nuclear norm or trace-norm (sum singular values) (Fazel et al., 2001) is used as a
convex surrogate to the NP-hard rank minimization problem. Such penalties have been
applied to numerous problems like multi-class categorization (Crammer and Singer, 2002),
multi-task learning (Agarwal et al., 2008), and matrix completion (Srebro et al., 2005).

Building upon the simpler norms, more theoretically appealing variants have been de-
veloped (like adaptive Lasso (Zou, 2006), relaxed Lasso (Meinshausen, 2008), threshold-
ing (Lounici, 2008), Bolasso (Bach, 2008a), stability selection (Meinshausen and Buhlmann,
2008.; Wasserman and Roeder, 2009)). Mixed and hybrid penalties that lie between `

1

and
`
2

have also been studied. Apart from the ones mentioned above, various other penalties
like the garotte (Yuan and Lin, 2007), bridge (Fu, 1998) and “Berhu" (reverse of Huber
function) (Owen, 2006) can also be found in the literature.

Improved generalization from a penalty depends on its suitability (of properties like
sparsity) to the data at hand. When suitable, the penalty uses the additional information
to reduce the capacity of A with a more educated estimate of the solution space. While
sparsity is the only additional information we have seen with `

1

, `
0

penalties, sometimes
there is more information available than just sparsity. Information like which groups of
features co-occur, or a specific pattern in which zeros occur, or an ordering of its values
and so on. This information can be used to further shape-up the solution space by suitably
improving the penalty’s design. We look at some structured penalties in the next section
that help incorporate such additional information by redesigning the penalty.

2.2.2 Structured penalties

Structured penalties carve the space of hypothesis by using additional information from the
problem domain. The earliest structure was in the form of specific patterns in which zeros
occur in the solutions and hence the name structured sparsity. This was later generalized
to other structures involving trees and graphs. We look at some examples in this section
that we will use in later chapters.

Group lasso. The simplest form of structure that could be imposed is grouping of vari-
ables into non-overlapping sets. This was introduced by Yuan and Lin (2006) which they
call the group Lasso. It imposes an `

1

-norm on non-overlapping groups of variables and
`
2

-norm on variables within each group. This was further modified to a norm that uses an
`1-norm within each group. We define a grouping on the features as follows:

Definition 1. Let GP
= {gi}|G

P |
i=1

be a partition (mutually exclusive and collectively exhaus-
tive subsets) of the set of indices I = {1, · · · , |w|} i.e.,

S

g2GP g = I and gi \ gj = ?. GP

defines a grouping on the entries of w.

Let wg 2 Rd be a vector with entries from w corresponding to g and zeros everywhere
else, i.e., wg(i) = wiI [i 2 g] where I[ · ] is the indicator function. Now, ⌦(w) takes the
following form for group Lasso:

⌦(w) = `G
P

p (w) =
X

g2GP

kwgkp. (2.7)
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�

wg8 = [3 4 6 6 5 7 7 7]

wg7 = [4 6 6 5 7 7 7]

wg5 = [7] , wg6 = [7 7]

wg3 = [6 5 7] , wg4 = [6 6 5 7]

wg1 = [5] , wg2 = [7]

Figure 2.1: An eight-dimensional vector with a tree structure and the corresponding groupings wgi

corresponding to subtree gi with root ri. The numbers 3, 4, 5, 6, 7 shown are examples of values
those components of w can take.

The superscript GP defines the partitioning of features and the subscript p indicates to the
norm imposed on each partition of features wg. The penalty across various groups is always
the `

1

-norm also with other group penalties defined below, hence, we do not indicate this
with a separate subscript. Such a norm either selects or discards a group completely. This
is easy to optimize with non-overlapping feature groups but complicates with overlapping
groups. But some overlaps are easier to handle than others.

Overlapping group lasso. A natural generalization of the group Lasso is to have group-
ings with feature overlap, as studied by Zhao et al. (2008) (see also Jenatton et al., 2011a).
We define the grouping with overlaps, GO as follows.

Definition 2. Define a grouping with overlaps GO
= {gi}|G

O|
i=1

such that gi ⇢ I = {1, · · · , |w|}
and

S

g2GL g = I.

An index in I could belong to one or more groups making the intersection of groups
possibly non-empty. But each index must belong to at least one group. The group Lasso-
like formulation defined on GO is the overlapping group Lasso:

⌦(w) = `G
O

p (w) =
X

g2GO

kwgkp. (2.8)

The grouping GO defines a set of overlapping groups that is not a distinct partitioning of
features as in group Lasso defined in (2.7). Each group wg has an `p-norm imposed on its
features.

This formulation also tends to drive groups of variables to zeros together but with a
difference due to the overlap. A feature could belong to multiple groups and the feature is
excluded from the final solution unless all the groups containing this feature are selected.
So, only those features that belong to none of the zeroed groups belong to the final solution.
The support of the penalty is the complement of the union of all the discarded groups. If
G

0

is the subset of groups with a zero norm, then the support is,

supp(ŵ) =

 

[

g2G0

g

!c

for some G
0

⇢ GO.
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One special case of the overlapping group Lasso that is of particular interest, is where
the overlap is a nested hierarchy, referred to as the tree-structured group Lasso.

Tree-structured group lasso. Tree-structured norms were introduced by Zhao et al.
(2008) and further studied by Jenatton et al. (2011b) enforce a tree structure on the
variables. This is similar to the group lasso penalty but with overlapping groups organized
in a tree structure. Each subtree of the tree forms a feature group. Feature groups in this
case have a nested hierarchical structure.

Definition 3. Let w be a vector with a tree structure T = {V , E} with V vertices and E
edges, where each entry wi belongs to a vertex v 2 V. Define grouping GT

= {gv}v2V where
gv ✓ {1, · · · , |w|} is the set indices in the subtree rooted at v.

Now, ⌦(w) takes the following form for tree-structured penalty:

⌦(w) = `G
T

p (w) =
X

g2GT

kwgkp. (2.9)

Similar to the group lasso, the tree structured penalty is often used with p = 2,1. Fig-
ure 2.1 illustrates an eight dimensional tree-structured vector along with the corresponding
groups. The support with this penalty is as defined with the overlapping group Lasso that
translates to a property that drives all descendants of a zero valued node to zeros. It does
this by penalizing parameters lower in the tree more than those above resulting in solutions
that usually have smaller values below. The groups in G

0

are the subtrees lower in the tree
all variables of which have been shrunk to zero. Hereafter, we refer to this penalty as the
`Tp -norm with the tree structure T replacing GT for convenience.

Latent group Lasso. Obozinski et al. (2009a) study a different kind of overlapping group
Lasso formulation where the support is the union of a subset of groups rather then their
complement. They call this the latent group Lasso since they define latent groups of feature
variables, the sum of which gives the final weight vector.

Definition 4. Define groups with overlaps GL
= {gi}|G

O|
i=1

such that gi ⇢ I = {1, · · · , |w|}
and

S

g2GL g = I. For each group g 2 GL, define a vector vg 2 R|w| such that supp(vg) ⇢ g

and w =

P

g2GL vg.

The feature grouping here is similar to that of the overlapping Group Lasso above.
Additionally, we define vector vg which is the latent vector corresponding to the feature
grouping g. The definition of the latent group Lasso penalty is as follows,

⌦(w) = `G
L

p (w) =
X

g2GL

kvgkp. (2.10)

Since a feature could belong to multiple latent vectors vg and its contribution from multiple
selected groups is summed together to get its value in w, a feature is selected if at least
one group containing it has a non-zero norm. This property is in contrast to that of the
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overlapping group Lasso above. As a consequence, the support is the union of a subset of
groups G

1

that have a non-zero norm:

supp(ŵ) =
[

g2G1

g for some G
1

⇢ GT .

This was then extended to graph Lasso, the case with a graph structure on the parameters
by grouping those parameters that share an edge.

Tree-guided group lasso. In a regression model with multiple outputs, it is more ap-
propriate to assume that each output variable depends on a subset of features specific to
itself, that varies from feature groups of other output variables. This motivates considering
sparsity in features across output variables unlike other penalties for multi-task problems
that only consider sparsity among features but not specific to outputs.

Consider the case where we are given a hierarchy defined over the output variables such
that each node in the hierarchy groups a subset of the output variables. The leaves of
the hierarchy are output variables. Kim and Xing (2010, 2012) describe a method that
uses such a hierarchy to define a penalty that at each node considers only those features
that are relevant to the output variables belonging to that node in the hierarchy. Let
yk, k 2 [1, · · · , K] be the K output variables. We now have one vector wk for each of the
output variables with I features

⇥

w1

k, · · · , wi
k, · · · , wI

k

⇤

.

Definition 5. Let R = {GR, ER} be a tree over output variables {yk}K
1

with nodes GR and
edges ER such that

• for g 2 GR, g ⇢ [1, · · · , K] and g =

S

h2�(g)
h , where �(g) are children of g in R,

• and leaves of R are output variables.

Define wi
g as the feature set with index i 2 I corresponding to the output variables k 2 g.

For each node in the hierarchy, the penalty defined by tree-guided group Lasso, `GR
p

imposes an `p-norm on all the features of a given index i that belong to output variables
at that node and and `

1

across feature indices:

⌦(w) = `G
R

p (w) =
X

i

X

g2GR

�gkwi
gkp. (2.11)

There is an additional weight of �g for each group to ensure that the penalization of
various output variables is balanced when features overlap. This penalty induces sparsity
in feature sets across output variables.

All the above mentioned structured penalties are convex functions that are good for
optimization. However, they are theoretically harder to analyze and few such results are
available (see Bach, 2008b; Nardi and Rinaldo, 2008; Chesneau and Hebiri, 2008; Nardi
and Rinaldo, 2012; Percival, 2012).

An alternative approach is to directly solve the non-convex penalties involving `
0

pseudo-norm with appropriate groupings. In this direction, the greedy approach of or-
thogonal matching pursuit has been extended to incorporate structural properties Huang
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et al. (2011); Koltchinskii and Yuan (2008); Huang and Zhang (2010). Sparsity (both
structured and unstructured) has also been considered in the Bayesian framework by Wipf
and Rao (2005, 2007); Argyriou et al. (2008); Ji et al. (2009) and He and Carin (2009).

Application of structured penalties. Structured penalties have found application in nu-
merous problems like dimensionality reduction (sparse PCA (Zhang et al., 2008; d’Aspremont
et al., 2008), CCA (Witten et al., 2009), matrix factorization (Bach et al., 2008)), dictionary
learning (sparse decompositions (Olshausen and Field, 1997; Elad and Aharon, 2006; Lee
et al., 2007), with online learning (Mairal et al., 2009a), simultaneous sparse approxima-
tion (Mairal et al., 2009b; Tropp et al., 2006a,b)), multi-task learning (joint variable selec-
tion with group lasso (Obozinski et al., 2009b), joint feature selection with trace-norm (Ar-
gyriou et al., 2007), with fewer observations than tasks Obozinski et al. (2008); Lounici
et al. (2009), shared dictionary learning with `

1

-norm (Mairal et al., 2009c); learning shared
structures in multi-class classification with trace-norm (Amit et al., 2007; Harchaoui et al.,
2012)), computer vision (image denoising (Elad and Aharon, 2006; Mairal et al., 2009b),
image classification with learned code books (Boureau et al., 2010; Yang et al., 2009, 2010;
Mairal et al., 2008; Leordeanu et al., 2007) inverse half-toning (Mairal et al., 2012), digital
zooming (Couzinie-Devy et al., 2011)), speech processing (source separation Benaroya et al.
(2006)), neuroimaging (resting state activity (Varoquaux et al., 2010), M/EEG source local-
ization (Gramfort et al., 2012), multi-scale mining fMRI (Jenatton et al., 2012a)), language
processing (chunking, entity recognition, and dependency parsing (Martins et al., 2011)),
sociolinguistics (Eisenstein et al., 2011)), bioinformatics (Rapaport et al., 2008; Kim and
Xing, 2012), semi-supervised learning (Raina et al., 2007), structure learning (Lee et al.,
2007), graphical model selection with `

1

-norm (Ravikumar et al., 2010) and time-series
prediction (Nardi and Rinaldo, 2011). In the next section we give some definitions and
discuss specific tree-structured norms that we will use in later chapters.

2.3 Optimizing penalized loss

We now focus on minimizing the risk in (2.5) with the penalized loss over the observa-
tions Sn. The optimization is rewritten in terms of the parameters of the hypothesis space
w and the average of loss over samples is replaced by L =

Pn
i=1

1

n
f(h(xi), yi):

bw = argmin

w
Rf+�⌦

Sn
[w] = argmin

w
L(w,Sn) + �⌦(w). (2.12)

We briefly review different optimization methods for generic loss functions and detail the
specific approach we use for our application. Bach et al. (2012) present a detailed review
of various optimization techniques for various sparsity-inducing penalties.

In the case of convex smooth f and ⌦, any gradient or Newton based method is appro-
priate. However, most penalties we considered above are convex but non-smooth, ruling
out a simple gradient based algorithm. Similar issues arise with non-smooth loss functions
(like the 0-1 or hinge loss) that are not easily amenable for gradient based methods. Various
techniques have been adapted to suit specific cases of loss and penalty combinations. Nu-
merous methods are employed to solve the large-scale optimization problems like breaking
it down into smaller subproblems or exploiting the problem’s structure or using low-rank
approximations and so on (see Sra et al., 2011). We restrict our discussion to variations in
penalties that we considered above and assume the loss is convex and smooth.
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Gradient and Newton methods. If f and ⌦ are both smooth, the simplest algorithm to
use would be steepest descent (or gradient descent) that offers O(1/t) rate of convergence
for general convex differentiable functions with Lipschitz continuous gradients (Bertsekas,
2004), with a potential acceleration to O(1/t2) (Nesterov, 1983). Convergence can be
improved further to linear rate, O(⇢t) for strongly convex objectives. In problems where
the Hessian is computable (twice differentiability) and invertible (well-conditioned and
computationally feasible), second-order Newton methods would lead up to quadratic rate
of convergence of O(⇢2

t
) (Bertsekas, 2004). Quasi-Newton methods are used to avoid

inverting the Hessian that approximates it from successive estimates of the gradient. In
cases where storing the dense Hessian is also infeasible, the inverse is locally approximated
like using rank-one updates, also called the L-BFGS algorithm (Nocedal and Wright, 2006).

However, these methods are no longer appropriate when the objective is non-smooth.
The quasi-Newton method of orthant-wise limited-memory quasi-Newton (OWLQN) (An-
drew and Gao, 2007) is an exception that handles non-smooth `

1

-norm regularized mod-
els. It exploits the fact that origin is the only non-smooth point in the domain. Non-
differentiability at the origin is handled by estimating the signs of the variables (by choos-
ing an appropriate orthant) and restricting them to remain unchanged through the current
update (make an L-BFGS update and project it back to that orthant). In other non-
smooth cases one needs to switch to subgradient methods. However, subgradient methods
can be very slow to converge with a convergence rate of O(1/

p
t) (Shor, 1985).

Active set and path-following methods. Alternatively, dedicated algorithms have been
proposed for specific penalties on the lines of active set algorithms used in linear program-
ming literature (see Nocedal and Wright, 2006). These methods use the prior knowledge
of the solution being sparse to design computationally efficient algorithms. They typically
keep track of a set of features, called the working set or the active set, that is likely to be in
the support of the solution. This working set is modified appropriately until the solution
is obtained.

These algorithms are tailored for specific loss function L and regularization ⌦ of the
optimization in (2.12) and solve it for a specific value of the regularization parameter �.
A solution found for a specific value of � can then be used to find the solutions for other
� values close to it. This is done by exploiting the property that for certain penalties the
entries in the solution are piecewise linear when plotted against the regularization param-
eter. These are called homotopy methods or path-following algorithms (Markowitz, 1952;
Osborne et al., 1999) that include the popular least angle regression algorithm by Efron
et al. (2004). These approaches are known to work well in practice but are restricted to
specific penalties.

Coordinate descent. Coordinate descent is another method that is known to perform well
for some penalties (Fu, 1998; Friedman et al., 2007). This method minimizes along one
coordinate at a time while iterating through the list of free variables of the optimization.
In the case of `

1

-norm, for example, it results in iteratively soft-thresholding across each
coordinate. It leads to similar rules for other penalties where applicable. But for coordinate
descent to be applicable, it is necessary that the optimality conditions are separable across
different coordinates (Tseng, 2001; Bertsekas, 2004). Fused lasso is one example where
such separability is not possible leading to non-optimal points in the domain at which the
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Algorithm 2 Generic proximal minimization algorithm (see Parikh and Boyd, 2013)
w⇤

:= argmin

w
{L(w,Sn) + �⌦(w)}

1 Input: � regularization parameter , L Lipschitz constant ofrf , µ coefficient of strong-convexity
of f + �⌦, X design matrix, Y label set

2 repeat until termination
3 EstimateGradientPoint()
4 GeneralizedGradient()
5 UpdateConstants()

Procedure: w := GeneralizedGradient(S#
n, w,�, ⇢) # for some S#

n ✓ Sn

a. w0
= w � 1

⇢rL(S#
n, w) #gradient step

b. w = Prox�⌦(w) #proximal step (see Table 2.1)

coordinate descent iterations are stuck (Friedman et al., 2007).

Reparameterizing the norm. Another method that applies generically is the weighted
squared norm regularization formulation (Rakotomamonjy et al., 2008). Any norm can be
rewritten as a maximum of quadratic functions which can be minimized using iterative
least squares alternating between w and the parameter (Bach et al., 2012). This method
has a caveat that might generate a term with zero in the denominator, cases like which
need to be handled carefully.

Proximal methods. These are methods that are designed to optimize composite func-
tions that involve sum of a smooth convex term (in our case L) with a convex but possibly
non-smooth term (�⌦). There are a few algorithms that tackle such composite func-
tions; Nesterov’s method (Nesterov, 2007) with both batch and stochastic optimization
algorithms, Forward Looking Subgradient by Duchi and Singer (2009) which is a kind of
forward-backward splitting for both batch and stochastic and Regularized Dual Averag-
ing for stochastic by Xiao (2010). We consider Nesterov’s method that delivers the best
convergence rate among these algorithms.

Nesterov’s proximal algorithm is an iterative process that makes a generalized gradient
update at each step with gradient update depending only on L followed by the proximal
step depending on �⌦. The proximal step is a projection involving a small optimization
that can be solved efficiently for numerous penalties (analytically in few cases). We will
consider this method in greater detail in the next section.

2.4 Proximal minimization algorithms

We choose proximal methods as they exhibit an optimal convergence rate among first-order
techniques combined with the ability to reuse specialized algorithms for different penalties
by simply changing the proximal step (see Nesterov (2007); Beck and Teboulle (2009);
Parikh and Boyd (2013) for proximal minimization and Bach et al. (2012) for optimization
with sparsity inducing penalties).

Proximal methods iteratively update the current estimate by making a generalized
gradient update at each iteration. Formally, they are based on a linearization of the
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Algorithm 3 Batch proximal minimization following Beck and Teboulle (2009)
w⇤

:= argmin

w
{L(w,Sn) + �⌦(w)}

1 Initialize: w = Z = 0, ⌧ = � = 1

2 repeat until termination
3 w :=

�+⌧�1

� w � ⌧�1

� Z;Z := w
4a repeat: w = GeneralizedGradient(Sn, w,�, 1/L) #full batch update
4b if L(w) < L(w) +rL(w � w) + 0.5L||w � w||2

2

break else L := ⌘L
5 ⌧ = �; � = 1 +

1+

p
1+4⌧2

2

Algorithm 4 Stochastic proximal minimization following Hu et al. (2009)
w⇤

:= argmin

w
{L(w,Sn) + �⌦(w)}

1 Initialize: w = Z = 0, ⌧ = � = 1, ⇢ = L+ µ
2 repeat until maximum iterations
3 w = (1� ⌧)w + ⌧Z #estimate point for gradient update
4 w = GeneralizedGradient(S#

n, w,�, ⇢) #use mini-batch S#
n ⇢ Sn for update

5a Z =

1

⇢⌧+µ((1� µ)Z + (µ� ⇢)w + ⇢w) #weighted combination of estimates
5b ⇢ = L+ µ/�, ⌧ =

p
4�+�2��

2

, � = (1� ⌧)� #update constants

objective function f about the parameter estimate w, adding a quadratic penalty term to
keep the updated estimate in the neighborhood of the current estimate. At iteration t,
the update of the parameter w is given by the following equation called the generalized
gradient update,

wt+1

= argmin

w2K

⇢

f(w) + (w � w)>rf(w) + �⌦(w) +
L

2

kw � wk2
2

�

, (2.13)

where L > 0 is an upper bound on the Lipschitz constant of the gradient rf and w is the
point at which the gradient is estimated. Equation (2.13) can be rewritten to be solved in
two independent steps: a gradient update from the smooth part followed by a projection
depending only on the non-smooth penalty:

w0
= w � 1

L
rf(w), (2.14)

wt+1

= argmin

W2K

1

2

kw � w0k2
2

+

�⌦(W )

L
. (2.15)

Update (2.15) is called the proximal operator Prox�⌦
L
(w0

). Efficiently computing the prox-
imal step is crucial to maintain the fast convergence rate of these methods.

Proximal minimization procedure. The basic steps of a proximal minimization proce-
dure are described in Algorithm 2. These methods iterate over three operations in a loop
until termination. The termination usually involves a threshold on the amount of relative
progress made in consecutive iterations

⇣

|L(wt+1
)�L(wt

)|
L(wt

)

⌘

unless the duality gap is easily
computable. The first operation involves finding the point at which the gradient needs to
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be estimated (Step 3). The second operation in Step 4 solves the update equation in (2.13)
for a new estimate of the parameters. This is carried out in two steps with a gradient
update for f (equation (2.14) in Step a) followed by the proximal projection for ⌦ (equa-
tion (2.15) in Step b). The third operation updates any necessary constants necessary for
the next iteration.

Accelerated batch minimization. The simplest proximal minimization scheme sets w =

wt, the current estimate of the parameters. This is the iterative soft-thresholding algorithm
(ISTA) that is known by other names in signal processing literature (see, e.g., Chambolle
et al., 1998; Daubechies et al., 2004) and is known to converge at a rate of O(1/t). How-
ever, the rate of convergence can be improved by using a more appropriate choice of w.
These methods are popularly known as accelerated gradient methods originally proposed
by Nesterov (1983)(see also Tseng, 2008). One such algorithm is called the Fast Iterative
Shrinkage Thresholding algorithm by Beck and Teboulle (2009). It involves computing the
gradient at a point between the current parameter estimate and its estimate at the previ-
ous iteration. A fixed step-size could be used for the gradient update but it is common to
choose a more appropriate step by backtracking. In backtracking, the size of the step is
L⌘K for some ⌘ > 1 with k being the smallest integer satisfying:

f(w) < f(w) +rf(w � w) + 0.5L⌘k||w � w||2
2

.

This algorithm is summarized as the batch method in Algorithm 3 with the three opera-
tions within the main loop matching Algorithm 2. Step 3 computes the point (w) about
which gradient is estimated. Step 4 makes the generalized gradient update with a loop for
backtracking until an appropriate step is found. Step 5 updates the constants for the next
iteration. This technique is shown to improve the rate of convergence to O(1/t2) that is
faster than the O(1/t) rate of the simple algorithm above.

Accelerated stochastic minimization. On the downside, Algorithm 3 requires multiple
calls to function evaluation and the full gradient at each iteration. In most applications
with large amounts of data it is extremely time consuming to compute the full gradient.
A stochastic alternative is to estimate the gradient on sufficiently sized subset called a
mini-batch. The size of the mini-batch controls the variance in the gradient estimate
that is traded against the computational time. Hence, we use an accelerated stochastic
version of the proximal methods by Hu et al. (2009) with mini-batches to process large
datasets. At every update, the stochastic algorithm estimates the gradient on a mini-
batch. This version of the optimization is summarized as stochastic proximal minimization
in Algorithm 4. Steps 3 and 5 are similar to the batch processing algorithm except with
a different set of constants. But step 4 only uses a subset S#

n ⇢ Sn of the complete set
of observations to estimate the gradient. This algorithm converges at a O(1/t) rate for
strongly convex objectives but degrades to O(1/

p
t) for general convex objectives.

2.4.1 Proximal operators for penalties

The proximal projection step in equation (2.15) lies at the core of the proximal minimization
algorithms. It can be rewritten as follows,

Prox�⌦(v)
def

== argmin

u

1

2

||u� v||
2

+ �⌦(u). (2.16)
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Proximal step can be interpreted in numerous ways and related to existing methods (see
Parikh and Boyd, 2013, for details). One particular interpretation is to view it as the
conjugate of the `2

2

smoothed conjugate of ⌦. This operation is referred to as the Yoshida-
Moreau regularization or infimum convolution. This helps us understand how it handles
non-smooth functions in optimization. We present proximal projections for unstructured
and structured norms and look at specific improvements later.

It is common to iteratively maximize the Fenchel dual of the minimization in (2.15)
to solve for u (Jenatton et al., 2011b). However, the minimization can be solved very
quickly in closed form for specific choices of ⌦. In the case of `2

2

, one can set the derivative
of proximal objective in (2.16) to zero to recover Prox�`22

(v) ⌘ v/(1 + �). But it gets
tricky with non-differentiable ⌦ like `

1

. Prox�`1 can be rewritten in terms of projection
on the dual norm ball using the following property of proximal operators called Moreau
decomposition:

v = Prox�⌦(v) + Proxg(v), (2.17)

where g(y) = supx{y>x � �⌦(x)} is the Frenchel-conjugate of �⌦. When ⌦(v) = ||v||p
is the `p-norm, then the Frenchel-conjugate is the indicator of the dual norm ball Bq of
radius �. The dual norm ball for the `p-norm is Bq = {x, ||x||q  �} where 1/p+ 1/q = 1.
This makes the corresponding proximal step for a projection onto Bq, and subsequently
Prox`p would be the residual v � ⇧Bq(v).

Essentially, if we can project onto the dual norm ball efficiently, we make a quick
proximal update. The proximal for `

1

-norm reduces to residual of projection on `1-norm
ball; Prox�`1(v) is element-wise soft-thresholding v at �.

In the case of group Lasso, the proximal step is separable over the groups leading to
individual projection of variables in each of the groups. It can be solved similarly for the
elastic net as well. It gets a bit trickier with fused lasso and involves making the projection
in a series of two steps following the work of Friedman et al. (2007) (see also Mairal, 2010;
Liu et al., 2010).

1. Proximal step is made assuming only the fused part of the regularization exists and
that of the elastic net is zero by setting ⌦(w) = �

2

P|w|�1

i=1

|wi+1

� wi|. This is per-
formed by a modification of the LARS algorithm.

2. The above projection is then followed by a projection for the elastic net alone corre-
sponding to the other two terms of the penalty.

These are reported in Table 2.1. However, it is much more involved for other structured
penalties. We consider the particular case of tree structured penalty in detail.

The Prox�⌦(v) for tree-structured norms with ⌦ defined in (2.9) is complicated due to
overlap of groups. This overlap can be untangled by taking the dual and then coordinate
ascent could be used to maximize the dual. However, for specific choices of p the maxi-
mization of the dual can be performed in closed form. Jenatton et al. (2011b) showed that
Prox`Tp

reduces to applying the Prox`p to the subvectors in a specific order defined by G
below.
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Algorithm 5 Proximal update for tree-structured norms following (Jenatton et al., 2011b).
u⇤ = Prox�`Tp

(v)
def

== argmin

u

1

2

||u� v||
2

+ �||u||`Tp
Input: Vector u, parameter �, tree structure T , ordered groups G.

1. for i 2 {1, · · · , |G|}
2. wgi  wgi �⇧||·||q�(wgi)

3. Return w

a. `q is the dual norm of `p (1p +
1

q = 1) and ⇧||·||q� is projection on the dual norm ball of � units
size.

Definition 6. Let G = {gi}|G|i=1

denote the ordered tree structured grouping of indices I =

{1, · · · , |w|} of a vector w with tree structure T such that

• S

g2G
g = I (grouping as in Definition 3)

• for r, s 2 I, r<s, Gr\Gs = ; or Gr⇢Gs. (defines ordering on groups)

The set G defines an order on the grouping described in GT (from Definition 3) such
that before a group is encountered, all its subsets that are included in GT are visited.
This is equivalent to visiting the nodes of T is a pre-order depth-first search. Given the
ordering G, Prox`Tp

takes the following form:

Prox�⌦(v) = Proxg|G|
�⌦ � · · · �Proxg2

�⌦ �Proxg1
�⌦(v) (2.18)

where gi 2 G and Proxgi
�⌦(v)

def

== Prox�⌦(g
v
i ). This is to say that the proximal update for

the tree-structured norm is equivalent to applying an ordered sequence of projections for
its groups with ordering defined by G. The order G of projections is such that for every
gr ( gs, (gr, gs) 2 G, gr is projected before projecting gs. In other words, a subtree is
projected only after all its subsets in the tree are projected. This order over the groups is
generated by a bottom-up sweep of the tree.

Each Proxgi
�⌦ in the sequence of proximal operators can itself be rewritten as resid-

uals of projections on dual norm ball (projection-residuals) using the decomposition in
equation (2.17). This makes Prox`Tp

a sequence of projections on the `q-norm ball. The
resulting procedure is described in Algorithm 5.

The second step of the procedure described in Algorithm 5 performs projection on the
dual norm ball. This needs to be done in an iterative fashion and is not guaranteed to
converge in finite number of steps. However, for specific norms, namely p = 2 and 1, it
can be performed in closed form. `

2

-norm being self dual Prox�`2(v) = v�⇧`2�(v) which
is a block soft thresholding operator. Similarly, Prox�`1(v) = v � ⇧`1�(v) requires an
element-wise soft thresholding operator.

The projection on the `
2

-ball results in scaling operation and has complexity linear in
the length of the vector. The resulting Prox�`T2

when applied naively as described above
has quadratic complexity. A clever trick due to Jenatton et al. (2011b) is to compute all
necessary scale factors and project the complete vector in one pass rather than projecting
each of its subvectors individually. This reduces the complexity of Prox�`T2

to linear in the
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penalty Prox⌦(w) Operation

`
1

sgn(w) [|w|� ]
+

element-wise soft thresholding

`
2

[||w||
2

� ]
+

w
||w||2 block soft thresholding

`2
2

w/(1 + ) element-wise scaling

`p ⇧||·||q(w) project on -unit ball of dual norm (`q)

`En(,�1) [w � �]
+

/(1 + ) threshold and scale

`F l(,�1,�2)
w := Prox`Fl(0,0,�2)

(w)

[w � �
1

]

+

/(1 + )

LARS type method for Prox`Fl(0,0,�2)

followed by thresholding and scaling

`GP
p wg := Prox`p(wg) group-wise proximal step

`GT
p ProxG|G|

`p
� · · · �ProxG1

`p
(w) ordered sequence of proximal steps

Table 2.1: Definitions of the penalties and their corresponding proximal operators.

number of dimensions. An adaption of this algorithm to our case is detailed in the next
chapter.

Projection on `
1

-ball results in soft-thresholding operation and estimating the threshold
value has an amortized linear time complexity in number of dimensions due to Bruckner
(1984); Maculan and Galdino de Paula (1989); Pardalos and Kovoor (1990) leading to
quadratic complexity similar to the case of Prox�`T2

. But the above trick used in Prox�`T2
does not apply here since a subvector should have been projected for the next threshold to
be estimated2. So, the sequential structure in projecting the subvectors must necessarily
be followed. However, under certain assumption on the distribution of values in the vector,
the time complexity can be reduced to deterministic linear in the number of features. We
discuss this algorithm with improved complexity for Prox�`T1 in the next chapter.

2.5 Conclusion

In this chapter we reviewed the necessary material for the risk minimization framework.
We discussed different penalties available from basic unstructured functions to those that
depend on specific grouping of its features. We motivate the choice for incorporating
structure specific to the problem’s domain into the penalty. Various algorithms available for
their minimization were surveyed and the suitable choice of proximal gradient minimization
was studied in detail. In the next chapter we will consider the log-linear language model
that we propose with suitable penalty functions and their optimization.

2When the trees are balanced and short, the amortized complexity is much lower than quadratic at about O(pD)
where D is the depth of the tree (Jenatton et al., 2011b).



Chapter 3

Log-linear language model

We now consider the specific model that we propose for language. We describe the problem
discussed in Chapter 1 as a generalized linear model and explain the contextual features
used in the model. Then, the suffix-tree representation is described which is necessary
for tractable computation of the model. We distinguish between the two representations;
a trie and the corresponding tree that is made by collapsing non-branching paths in the
trie. However, we will see that the tree representation is not suitable for our model and we
introduce a partially collapsed trie. We then discuss penalties that are structurally suitable
for language sequences and map their proximal projections from Chapter 2 to operations
on suffix-trees. We show how specific proximal operators with some nice properties can be
computed efficiently on the suffix-tree. We conclude the chapter with an efficient algorithm
to optimize the penalized risk with large contexts.

3.1 Introduction to Generalized Linear Models

The hypothesis set we considered earlier in Section 2.1 is restricted to a linear mapping
of the form y = hwy

(x) = w>
y x. However, it is easy to see that numerous applications

in real world follow more complex relations that cannot be explained by linear mappings.
This has thus been extended to more general class of mappings where some function of the
response or dependent variable varies linearly with the predictor, or ⇣(y) = w>

y x. The link
function ⇣ can be chosen arbitrarily with its domain matching the range of the expectation
of y. In our case, the log-odds (log of the ratio of probabilities of two classes) bears a linear
relationship with the input variables. This relation is captured by a multinomial logit link
function (Hastie et al., 2009).

This generalization offers multiple benefits over the simple linear model. For example,
it allows for modeling count data, ordered data, categorical data (multi-way choices), and
ordinal data (ratings). It does this by allowing for modeling response variables using skewed
distributions (like Poisson, Gamma and others) beyond the standard Normal distribution of
linear regression. These models have been dealt in detail by McCullagh and Nelder (1989).
We consider the case where ⇣ is the multinomial logit giving ln y = w>

y x � lnZ(x, [wv]8v)
where [wv]8v is the matrix of all parameters and hence the name log-linear model. Log-
linear models leave us with an exponential prediction of the form y / ew

>
y x. We study a

log-linear formulation for modeling language in the next section.

39



40 CHAPTER 3. LOG-LINEAR LANGUAGE MODEL

3.2 Log-linear language model

Let V be the set of words or more generally symbols, which we call vocabulary. We are
given samples in the form of a text corpus Sn ⇠ C with words from V and are required to
assign probabilities to sequences of words of length m+1. Similar to the maximum entropy
methods considered in Chapter 1, we discriminatively model the probability of predicting
a word y from its context xm, P(y|xm). The joint distribution of a sequence s comes from
predicting each of its words from the corresponding context.

This is the case of |V |-way choice problem where we must choose one word from a list
of |V | choices. Such situations are explained using the “categorical” distribution1 over the
vector of probability mass for different words. Probability for each word itself comes from
the log-linear model described above as ⇡v(x) / ew

>
v �m(x) leading to the following:

y|x ⇠ Categorical (⇡(x)) =
Y

v2V
⇡v(x)

I[y=v], ⇡v(x) =
ew

>
v �m(x)

P

u2V ew>
u �m(x)

, (3.1)

where W = [wv]v2V is the set of parameters and �m(x) is the vector of features extracted
from x, which we will describe shortly. Parameters are estimated by minimizing the pe-
nalized log-loss over the training corpus C = {(xmy)i}ni=1

:

W ⇤ 2 argmin

W2K
L(W, C) + �⌦(W ), L(W, C) := � 1

n

X

(xmy)2C
lnP(y|xm;W ), (3.2)

where W ⇤ is the optimal set of parameters and K is a convex set representing the constraints
applied on the parameters (it will be the positive orthant). The convex loss function L is
called the log-loss and the penalty ⌦ can be non-smooth.

Next, we describe how to map a sequence x to its feature vector �m(x). Our features are
scaled indicator vectors that describe the sequence of words. These are the simplest features
with no information of syntax or semantics of the language. They merely encode the
sequential structure of sentences in vectors. Each non-zero value indicates the occurrence
of a particular suffix with a magnitude that could vary with the length of the suffix.

We recall that xk denotes the suffix of length k of the sequence x, that is, xk is the
sequence of the last k symbols in x. If x is followed by y, then the set of suffixes {xk}nk=1

defines the contexts in which y is observed. Further, let ⇠k denote the lexicographically
ordered set of all length k sequences formed with the elements of V . For example, the set
⇠2 for V = {a, c, o} is the ordered set {aa, ac, ao, ca, cc, co, oa, oc, oo}. We define a
mapping from sequences x to binary vectors  k(x) indicating the location of the suffix xk

in the set ⇠k:

 k(x) =
⇥

I(⇠k(1) = xk) I(⇠k(2) = xk) . . . I(⇠k(|V |k) = xk)
⇤>

, (3.3)

where I(·) is the indicator function. For example, for x = oacac and x
2

= ac, we have
 
2

(x) = [0 1 0 0 0 0 0 0 0]

>. The feature vector �m(x) encodes all suffixes observed in x

1
Categorical distribution (a generalization of Bernoulli) is equivalent to the Multinomial distribution for single

observation in discrete space and is sometimes called the Discrete distribution. For our purposes, they can be used
interchangeably but are not equivalent in general with subtle differences.
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Figure 3.1: Diagrams of suffix trie and tree for X=coacac.

up to length m. It is obtained by stacking a weighted version of the corresponding binary
vectors { k(x)}mk=1

:

�m(x) =
⇥

�(0) 
0

(x)> �(1) 
1

(x)> . . . �(m) m(x)
>⇤> , (3.4)

where the function �(k) weighs suffixes depending on their length k. If we choose �(k) = 1

for all k, then the suffixes of all lengths are equally weighted. The first entry  
0

is a
non-zero value indicating the null context. Moreover, �m(x) discards all suffixes longer
than m, restricting the maximal length of the context. This is equivalent to the Markov
assumption used in m-gram language models. Indeed, �m(x) encodes occurrences of various
suffixes, while the parameters W provide a weighting of contexts of different lengths. The
main difficulty comes from the fact that the dimension of the feature space is

Pm
k=0

|V |k,
meaning that the number of entries in W becomes rapidly unmanageable using standard
data structures when the context length increases (as |V | is typically in the order of 104 or
larger). This causes storage and computational issues, at training and test time. However,
in practice �m(xy) has only m non-zeros elements due to the sequential dependencies
between successive symbols. In this context we describe the use of suffix trie and tree
structures to handle this data efficiently.

3.3 Suffix encoding in tries and trees

Suffix trees provide an efficient way to store and manipulate discrete sequences as they can
be constructed in linear time due to Ukkonen (1995) when the vocabulary is fixed (also
see Giegerich and Kurtz, 1997). They are extensively used in natural language processing
and bioinformatics. Recent examples include language models based on a variable-length
Markovian assumption (Kennington et al., 2012) and the sequence memoizer (Wood et al.,
2010).
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The data structure encodes all the unique suffixes observed in a sequence up to a
maximum given length. It is organized as a tree with nodes lower in the tree holding
longer suffixes. We distinguish a suffix trie from a suffix tree here. A trie stores the
suffixes with one suffix per node. A tree, however, collapses paths in the trie that do not
branch. A suffix tree could have multiple suffixes per node while the hierarchy still exists.
Figure 3.1(a) illustrates the suffix trie on a sequence coacac and the corresponding suffix
tree is shown in Figure 3.1(b). We specifically refer to trie by the symbol S(X) built on
sequence X and the corresponding tree by T (X).

This collapsing of such paths into nodes saves memory required to encode the sequence.
Each internal node in a suffix tree has at least two children while those in a suffix trie have
one or more children. The number of nodes in the tree scales by a significantly lower order
than that of the trie with increasing length of the sequence. The exact relation between the
sequence length and the node count varies from one application to another. In language,
this has been observed to be linear by Wood et al. (2010).

3.3.1 Suffix trie structured vectors

The feature vector �m(x) encodes suffixes (or contexts) of increasing length and it cor-
responds to one path of length m starting at the root of S(X). Thus, when building a
log-linear language model, it is sufficient to consider weight vectors of size |S(X)|. In other
words, there is one weight parameter per suffix per symbol and the matrix of parameters
W is of size |S(X)||V |. As illustrated in Figure 3.3(a), each column of W contains the
weight vector wv associated with symbol v 2 V and |S(X)| = 13. The dimension of the
weight vectors is bounded by the length of the training sequence. Hence, like the sequence
memoizer (Wood et al., 2010), the model can be used as an infinite length language model,
though in practice it makes sense to restrict dependency to the sentence length (or the
document length).

Making use of the suffix trie encoding additionally offers the computational benefit
of efficient matrix-vector (or vector-vector multiplication), which lies at the core of op-
timization in (3.2). Indeed, each inner product w>

v �m(x) reduces to the following three
steps:

a. finding the longest suffix of x of maximal length m
max

in S(X),

b. extracting the corresponding entries of wv and

c. summing them after proper scaling with �(·).
Again, this is a substantial gain as the longest suffix of x is much smaller than |S(x)| and

we avoid summing over weights that are irrelevant in a specific context. This technique of
using an efficient data structure to fetch the few non-zero values of a very sparse large vector
has been used earlier in numerous ways (most commonly as feature hashing (Stolcke, 2002;
Weinberger et al., 2009) and sometimes using other structures like weighted automaton
by Roark et al. (2004)). We refer to these vectors as the trie structured vectors.

3.3.2 Word-specific suffix trie structured vectors

While suffix tree encoding leads to a substantial storage and computational gain it might
still cause problems in practice as the number of nodes is large for most real data sequences.
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We can make further storage and computational gains by building one context tree for every
symbol in the vocabulary and constraining the parameters to be non-negative.

We denote the resulting suffix tries by {Sv(x)}v2V with one trie per word in V . The num-
ber of free parameters in W is now

P

v |Sv(x)|, which is substantially smaller than |S(x)||V |.
Figure 3.2(b) shows the word-specific suffix trees for X = oacac and V = {a,c,o} and
Figure 3.3(b) the corresponding matrix of parameters W . All other parameters values are
fixed to zeros. Note that the number of free variables varies from one vector to another in
W .

3.3.3 Constraining to positive orthant

There are two issues that arise from plugging in the above described trie structured vectors
into the optimization in (3.2).

1. The gradients of the log-linear model in equation (3.1) are dense and require an
update of all entries of W for every single observation making the gradient update
very expensive.

2. The trie structured vectors set values of non-occuring suffixes to zeros (see Fig-
ure 3.3(b)). However, a gradient with the multinomial loss for optimization in (3.2)
requires us to update these variables ruling out possibility of trie structured vec-
tors {Sv(X)}v2V .

Both these issues are due to the fact that for each positive sample (x, y), all (x, y0), y0 6= y
are considered negative examples. This leads to numerous negative entries for parameters
in trees of labeled by y0. A simple way to fix this is to exploit the redundancy in the
parameterization of the model to add additional constraint that removes the negative
entries in the gradient.

The log-linear model described in equation (3.1) with |V | columns in W (one per word) is
over-parameterized. Since it only requires parameters from |V |�1 columns to be estimated
with the left out residual probability mass assigned to remaining |V |th class. A non-
negativity constraint is imposed to handle this over-parameterization which is similar to
applying a large positive translation to all parameters. The ratio of number of positive
entries to the total number of parameters being very small per each sample, this makes the
gradient very sparse. This also makes it possible to replace the trie structured vectors (in
Figure 3.3(a)) by the word-specific trie structured vectors (shown in Figure 3.3(b)), since
the zero entries will remain untouched due to projection into positive orthant.

Fortunately, this constraint can be handled very efficiently by projecting the gradient
itself into the non-negative orthant before updating the parameter vector (Appendix B.6
of Jenatton et al., 2011b; Bertsekas, 2004). The constraint effectively reverts parameters
corresponding to unobserved suffixes to zeros, which otherwise have small negative values.
We solve the optimization problem using the suffix tree representation with this additional
constraint of non-negativity of parameters.

3.3.4 Word-specific suffix tree-structured vectors

Model complexity can be reduced further by ensuring that all parameters at a node share
a single value. This would impose tree structure on the vectors instead of the trie structure
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Figure 3.2: Diagrams of suffix trees on X=coacac. Subfigure (a) shows the complete suffix tree
with 18 different contexts &i. Suffix trees in subfigure (b) are built for each symbol separately with
contexts preceding the specific symbols. &

9

is example of a context that appears in multiple suffix
trees and requires to be identified to make My(X). Subfigure (c) only collapses constant value
non-branching paths of suffix trees in (b). The node corresponding to &

9

is split to make Ma(X).
All contexts in a node are represented by a single parameter.

leading to significant saving in memory. It is not straightforward to see why these param-
eters should share a single value. But with some modification to the standard suffix tree
one can observe that this property will always hold. Then, we can collapse non-branching
paths sharing a single value to reduce the number of parameters. We formally define this
property as follows.

Definition 7. Constant value non-branching paths, P(S,w), are distinct subsets of
nodes P ⇢ V of a trie structure S = {V , E} w.r.t. S-structured vector w such that P has
|P | nodes with |P | � 1 edges between them and each node has at most one child and all
nodes (i, j) 2 P have the same value in vector w as wi = wj.

Figure 3.11(a) shows an example of a trie with constant value paths before collapsing
them and Figure 3.11(b) shows the tree structure for the same example after collapsing
them. Rewriting the problem with a single parameter per node requires that along the
iterations to solve for the optimization in (3.2), we preserve this property. Assume all values
to be initialized with zeros for the optimization. There are two steps in the optimization
that update parameters: gradient update and proximal projection. We should collapse
nodes from trie S(X) such that the above property is closed under both the gradient and
the proximal updates. Considering gradient updates, we wish to have the same gradient
values for all parameters at any collapsed node. This is violated by nodes in word-specific
trees that have overlapping suffixes with other word-specific suffix trees.

Consider the nodes of coaca and co in Figure 3.2(b). The suffix cy is common to both
trees indicated by y=o, a. After a gradient update for observation co, the parameters at
node coaca will no longer share a common value. Since the corresponding gradient will
have negative values at &

1,9 and zeros for &
10,15,16. This can be avoided by splitting nodes

that share suffixes with other trees as shown in Figure 3.2(c). Accordingly, the node coaca
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Figure 3.3: Diagrams showing parameter matrices W with different tree structures of Fig. 3.2 for
its column vectors. Free variables are shown in grey with the corresponding contexts they represent
from Fig. 3.2. Subfigure (a) shows W with S(X) shaped column vectors (from Fig. 3.2(a)). Each
column has as many parameters as there are contexts making it 54 parameters. Subfigure (b)
shows columns wy of W with Sy(X) shape (from Fig. 3.2(b)). Each vector only has parameters
for relevant contexts making it 17 parameters. No parameters are learned for unobserved suffixes
unlike in (a). Subfigure (c) with columns from My(X) has 10 parameters with only one parameter
per node.

is split into two each with a single parameter. The vectors as shown in Figure 3.3(c) now
has 10 parameters against trie structured vectors that uses 17 parameters.

We refer to this as suffix tree-structured vectors with tree structure M(X). However,
strictly speaking this is not a proper suffix tree owing to the aspect that some intermediate
nodes have a single child. We generically use suffix tree to mean either of the two trees
in Figures 3.2(b) and 3.2(c) and distinguish between them by specifying if the vectors are
trie-structured Sv(X) or tree-structured Mv(X). In the following section, we look at the
effect switching from the trie structure to tree structure has on the number of parameters.

3.3.5 Complexity improvements from trees

The complexity of the model measured by the number of parameters would vary from one
task to another and depends on the patterns within the sequences of that data. We mea-
sure this for English language to compare the number of nodes in trie structures against
that of the tree structures. We consider four distinct subsets of the Associated Press News
(AP-news) text corpus with train-test sizes of 100K-20K for evaluation. The corpus was
preprocessed as described in Bengio et al. (2003) by replacing proper nouns, numbers and
rare words (occurring fewer than three times) with special symbols “hproper_nouni”, “#n"
and “hunknowni" respectively. Sentence boundaries are indicated by manually appending
each sentence with a start and end tag at the beginning and the end respectively. Punc-
tuation marks are retained which are treated like other normal words. Vocabulary size for
each of the training subsets was around 8,500 words.

Figure (3.4) plots the increase in the number of parameters against increasing context
lengths for tries Sy(X) and trees My(X) for a sequence of hundred thousand words. Models
using the uncollapsed trie structured vectors Sy(X) show a linear increase in the number
of parameters as we account for longer contexts to predict the following word. This depen-
dence is only logarithmic when we collapse non-branching paths along the tree that share
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Figure 3.4: Number of parameters for tree and trie structured vectors plotted for increasing orders
of the language model. Tree structured vectors have fewer parameters to learn and lead to more
compact models.

a value as in My(X). Fewer parameters will require fewer updates at each iteration of the
optimization over the model and eventually results in a more compact model. This shows
how sequences can be encoded efficiently to build models that capture longer dependencies
within sequence data.

Next, we consider different models involving structured and unstructured penalties. We
could have used different optimization algorithms depending on the choice of the penalty
like simple gradient descent with `2

2

, orthant-wise limited memory quasi-Newton for `
1

(An-
drew and Gao, 2007) and proximal methods described in Section 2.4 for structured penal-
ties. But we consistently use a proximal algorithm for all penalties including unstructured
penalties since it is convenient considering that we only need to change the proximal update
to match the penalty. In the following sections, we describe algorithms for proximal up-
dates on suffix trees for different unstructured and structured penalties we consider. These
models are then fitted and evaluated on the train and test splits of the dataset described
in Section 3.3.5.

3.4 Models with unstructured penalties

In this section and the following one, we fit models with unstructured penalties and evaluate
their predictive performance on data. We repeat this evaluation with models of structured
penalties in the next section showing how choice of the regularization effects predictive
performance.

Evaluation criterion. There are multiple measures to evaluate language models depend-
ing on their application. Information theoretic measure of perplexity is one such quantity
used in the literature. It is the average of the negative log-likelihood (also referred as the
logloss) of the test corpus raised to the power of ten. It upper bounds the number of bits
required per word to compress the text using that model. It serves as a generic measure
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to compare language models but often, evaluation methods are custom designed for spe-
cific tasks. For example, word-error rate (WER (Hunt, 1990)) is used to evaluate speech
recognizers, bilingual evaluation understudy (BLEU score (Papineni and Roukos, 2002) or
its variants like metric for evaluation of translation with explicit ordering (Banerjee and
Lavie, 2005)) is used for translation systems, recall-oriented understudy for gisting eval-
uation (ROUGE score (Lin, 2004) and it variants) for summarization and so on. These
measures are tailored to quantify application-specific properties and are sometimes hard to
compute (see Chen et al., 1998a, for WER). There is further work discussing how accurately
these measures capture their actual objectives (see, e.g., Wang et al., 2003).

We use the standard perplexity measure that is generic and compares how different
methods fare at predicting the test corpus. The perplexity measure is computed as follows:

P(Ct,W ) = 10

n

� 1
nV

P

(xy)2Ct I(y2V ) logP(y|x;W )

o

, (3.5)

where nV =

P

(xy)2Ct I(y 2 V ) counts the number of in-vocabulary words and (xy) are
sequences from the test set Ct. Tags identifying sentence boundaries are not used in com-
puting perplexity scores. Performance is measured for varying depth of the suffix trie with
different norms of regularization suggested in Table 2.1. Perplexity values for unmodified
interpolated Kneser-Ney are computed using the openly available SRILM toolkit (Stolcke,
2002) and marked by the KN curve in the plots.

We also evaluate space and time complexity of these models. We use the number of
free parameters in the resulting model to measure space complexity. A comparison of
training time complexities for different models comes out to be a direct comparison of
their proximal updates, since the gradient updates are all equivalent. Hence, we use the
per iteration cost of making a proximal update to measure the time complexity for each
model. In the following section, we describe proximal operations for unstructured penalties
on suffix tries and study their behavior on language sequences.

3.4.1 Proximal projection with unstructured penalties

Proximal projections for unstructured penalties are straightforward and independent of
the underlying tree structure of the vectors. They give the following update equations for
proximal projections:

Prox`22
⌘ wi  wi

1 + 
Prox`1 ⌘ wi  sgn(wi)[|wi|� ]+

Evidently, these operations can be distributed across the entries of the vector and all
parameters with the same value will continue to share a single value after the proximal
update. `2

2

and `
1

penalties preserve constant value non-branching paths P(S(X), w) mak-
ing it possible to use Mv(X) tree structure. This gives an O(M(X)) complexity for the
proximal step.

3.4.2 Performance evaluation with unstructured penalties

We evaluate the models by averaging perplexity measure on four distinct subsets 100K
words of the AP-news data processed as described in Section 3.3.5. The model is reset at
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the start of each sentence, meaning that a word in any given sentence does not depend
on any word in the previous sentence. The regularization parameter � of (3.2) is chosen
for each model by cross-validation on a smaller subset of data. Models are fitted to a
sequence of 30K words for 20 different logarithmically spaced values of � from 10

�8 to 10

�3

and validated against a sequence of 10K words to choose the best fit. The optimal � was
further fine tuned to find the best performing values of 5.3 ⇥ 10

�6 and 8.5 ⇥ 10

�6 for `2
2

and `
1

penalties respectively. Interestingly, the same regularization parameter was found
to work for models with different tree depths for a given penalty.
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Figure 3.5: Comparison of average perplexity values for unweighted models involving unstructured
penalties learned for 2-gram through 12-gram.

Figure (3.5) plots the average perplexity values from four subsets for different penalized
models involving unstructured norms. It can be observed that the performance of `2

2

and `
1

improves until a relatively low order of 3 and then degrades. This is because all
features are treated uniformly by these penalties without proper consideration of the space
of features. The space of sequences encoded by these features is not uniformly sampled.
Features corresponding to longer sequences is sampled much sparsely in comparison to
smaller sequences. `

1

and `2
2

penalties are completely agnostic to this difference in sampling
causing them to overfit with features corresponding to longer contexts.

3.5 Models with structured penalties

We next consider models with structured penalties discussed in the earlier chapter. In
particular, we choose the tree-structured penalty with hierarchical grouping of features as
described in equation (2.9). This penalty naturally fits our data with the suffix trie or tree
defining the grouping of features. It perfectly explains the proposition that data observed
for features lower in the tree is sparser than that above and hence requires higher amount
of regularization.

We restrict our choices of penalty `Tp to p = 2,1 owing to the efficient closed form
proximal updates as described in Section 2.4.1. In this section, we present algorithms for
proximal updates for tree-structured penalties on suffix trees. We then use them to build
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Algorithm 6 w := Prox`T2
(w) Proximal projection step for `T

2

on grouping G.
1 Input: T tree structure , w vector to project,  threshold
2 Initialize: {�i} = 0, {⌘i} = 1
3 ⌘ = UpwardPass(⌘, �,, w)
4 w = DownwardPass(⌘, w)

Procedure: ⌘ := UpwardPass(⌘, �,, w)
1 for x 2 DepthFirstTraversal(T, PostOrder)
2 �x = w2

x +
P

h2children(x) �h
3 ⌘x = [1� /

p
�x]+

4 �x = ⌘2x�x

Procedure: w := DownwardPass(⌘, w)
1 for x 2 DepthFirstTraversal(T, PreOrder)
2 wx = ⌘xwx

3 for h 2 children(x)
4 ⌘h = ⌘x⌘h

a. DepthFirstTraversal(T,Order) returns observed suffixes from the suffix tree T by depth-first
traversal in the order prescribed by Order.

b. wx is the weights corresponding to the suffix x from the weight vector w and children(x)
returns all the immediate children to suffix x in the tree.

models and compare them against those from unstructured penalties.

3.5.1 Proximal projection with `T
2

-norm

The proximal step for `T
2

-norm following the decomposition in (2.18) leads to a sequence
of `

2

proximal steps on subvectors. `
2

-norm being self-dual, `
2

proximal step comes out
to be residual of projection on the `

2

-norm ball from the equation in (2.17). Projection
of vector w on the `

2

-ball of size  is equivalent to thresholding the magnitude of w by 
units while retaining its direction:

w  [||w||
2

� ]
+

w

||w||
2

. (3.6)

This can be performed in time linear in size of w, O(|w|).
In our case the groups for subvectors are defined by the subtrees of the suffix trie S(X).

The ordering defined in Definition 6 is an upward pass of the trie. This results in |S(X)|
number of Proxgi

�`2
projections. Each Proxgi

�`2
scaling being linear in the number of entries

in gi making the overall Prox�`T2
quadratic, O(|S|2).

This can be made efficient by computing scale factors for each subtree gi as we make an
upward pass and later apply them in one single downward pass of S(X). This is possible
because the necessary values for computing scale factor for Proxgi

�`2
can be computed from

the scaled `
2

-norms of child-subtrees if gi without actually applying the scaling on the
children. This technique due to Jenatton et al. (2011b) leads to an algorithm linear in the
number of features |S(X)|. This algorithm for performing linear Prox�`T2

in two passes of
the suffix trie is presented in Algorithm 6.
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Algorithm 7 w := Prox`T1(w) Proximal projection step for `T1 on grouping G.
Input: T suffix tree, w=[v c] tree-structured vector v with corresponding number of suffixes
collapsed at each node in c,  threshold

1 for x 2 DepthFirstNodeTraversal(T, PostOrder)
2 g(v, x) := ⇡`T1( g(v, x), cx )

Procedure: q := ⇡`1(q,)
Input: q = [v c], qi = [vi ci], i = 1, · · · , |q|
Initialize: U = {}, L = {}, I = {1, · · · , |q|}

1 while I 6= ?
2 pick random ⇢ 2 I #choose pivot
3 U = {j|vj � v⇢} #larger than v⇢
4 L = {j|vj < v⇢} #smaller than v⇢
5 �S =

P

i2U vi · ci, �C =

P

i2U ci
6 if (S + �S)� (C + �C)⇢ < 
7 S := (S + �S), C := (C + �C), I := L
8 else I := U\{⇢}
9 r =

S�
C , vi := vi �max(0, vi � r) #take residuals

a. DepthFirstNodeTraversal(T,Order) returns nodes x from the suffix tree T by depth-first traver-
sal in the order prescribed by Order.

It is easy to see by example that the Prox`T2
operator does not preserve the paths

P(S(X), w) required for efficient tree structure Mv(X). A counter example proving this
point is provided in Figure 3.11(c) on an eight-dimensional vector. This makes the method
less efficient with increasing contexts eliminating long range dependencies from considera-
tion. We next consider the proximal projection step for `T1-norm.

3.5.2 Proximal projection with `T1-norm

The proximal step for `T1-norm follows a similar decomposition where a sequence of
Proxgi

�`1 projections are applied in an upward pass of the trie S(X). Again, using the
conjugate decomposition in equation (2.17), Prox�`T1 can be performed by taking residuals
of projection on to the `

1

-norm ball.
Projection of a vector w on the `

1

-ball of size  is more involved and requires thresh-
olding by a value such that the entries in the resulting vector add up to , otherwise w
remains the same:

w  sgn(w)[|w|� ⌧ ]
+

s.t. ||w||
1

=  or ⌧ = 0. (3.7)

⌧ = 0 is the case where w lies inside the `
1

-ball of size  with ||w||
1

< , leaving w intact. In
the other case, the threshold ⌧ is to be computed such that after thresholding, the resulting
vector has an `

1

-norm of . The simplest way to achieve this is to sort in descending order
the entries w = sort(w) and pick the k largest values such that the (k+1)

th largest entry
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is smaller than ⌧ :
k
X

i=1

wi � ⌧ =  and ⌧ > wk+1

. (3.8)

We refer to wk as the pivot and are only interested in entries larger than the pivot. Given
a sorted vector, it requires looking up to exactly k entries, however, sorting itself take
O(|w| log |w|).

A randomized algorithm to find the pivot that has amortized linear time complexity
was proposed by Bruckner (1984) and Pardalos and Kovoor (1990). This method randomly
chooses a candidate for the pivot and checks for it correctness using the condition in (3.7).
This method is repeated until the right pivot is found. However, a linear time complexity
for `

1

-ball projection leaves us with an O(|S|2) quadratic time algorithm for Prox�`T1 . The
resulting algorithm is summarized in Algorithm 7.

Unfortunately, Prox�`T1 does not simplify into a linear two pass algorithm like Prox�`T2
because the threshold value depends on the distribution of values unlike the scaling param-
eter of `T

2

that only depends on the norm of the vector. At each subvector gi, thresholding
needs to be applied and the `

1

-norm of the subvector recomputed before moving to its
parent node.

We discuss later in Section 3.6.1 two specific aspects of the `T1 penalty that lead to
significant computational and memory gains over the naive algorithm presented in Algo-
rithm 7. One of them is that the paths P(S(X), w) required for tree structure Mv(X) are
preserved under Prox`T1 operation. The other involves a single projection at each col-
lapsed node of Mv(X) replacing the series of projections. This comes from an observation
that composition of Prox`1 operators over constant value non-branching paths can be
replaced by a single Prox`1 with  appropriately modified to . We then give a new
algorithm for Prox`1 using Fibonacci heaps (Cormen et al., 2009) that has deterministic
linear time in the number of entries when some specific condition is true that holds in our
case.

3.5.3 Performance evaluation with structured norms

We evaluate models with structured penalties on the same splits of data as described in
Section 3.4.2. Structured penalties nicely employ the hierarchy within features that un-
structured penalties discussed in Section 3.4.1 fail to capture. This reflects in their proximal
steps where features lower in the suffix trie are either scaled or thresholded (depending on
the choice of the penalty) more than those higher above in the tree. This property varies
the amount of regularization with the depth of the tree. We compare performance of
models using structured penalties to that of unstructured models.

Figure 3.6 plots the average perplexity values from the four subsets used in Section 3.4.2
for models involving structured penalties. Regularization parameters of 7.1 ⇥ 10

�6 and
5.6 ⇥ 10

�6 were chosen for `T
2

and `T1 penalties by cross-validation as in the case of un-
structured models. Performance curves for unstructured penalties are also plotted for
comparison. It can be observed that unlike `2

2

and `
1

, the `T
2

penalty does not show perfor-
mance degradation by avoiding overfitting for features of longer contexts. Moreover, the
log-linear language model with `T

2

penalty performs quite similar to interpolated Kneser-
Ney. Model involving `T1 penalty has perplexity values close to Kneser-Ney and performs
better at lower depths but starts to overfit for higher ones.
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Figure 3.6: Comparison of average perplexity values from models with structured penalties for
2-gram through 12-gram.

3.5.4 Feature weighting to avoid overfitting

Next, to avoid overfitting at larger depths we consider the simpler alternative of weighting
features appropriately. By down-weighting a feature we reduce its contribution to perfor-
mance which is similar to applying regularization on the feature. This method can be used
to incorporate structure into unstructured penalties. We apply feature weighting with
unstructured penalties `

1

, `2
2

by choosing an exponential decrease of weights varying as
�(k) = ↵k.

Parameter ↵ was tuned on a smaller validation set. The best performing values for `2
2

and `
1

were respectively 0.5 and 0.7. Thus, features deeper in the tree are scaled down.
We refer to these weighted models as w`2

2

and w`
1

. Performance plots for these models are
shown in Figure 3.7.

Further, we applied the scaling with `T
2

, `T1-norm and performance improved for ↵ = 1.1
and 0.8. While the model based on w`

1

performs worse than interpolated Kneser-Ney, we
see that the models based on w`2

2

and w`T
2

peform better. Interestingly, there is observable
improvement up to about 9-grams with w`T

2

for the data set we considered, indicating that
there is more to gain from longer dependencies in natural language sentences than what
most standard models extract.

Interestingly, best performing ↵ for w`T
2

is greater than one, indicating that the un-
weighted model based on the `T

2

-norm was overpenalizing features at larger depths. For
depths greater than 9, even `T

2

starts to overfit slightly. It is important to note that while
feature weighting could be used to verify for improvements in performance by manually
fitting different laws of decay for �(k), it is not a an appropriate method to handle over-
fitting for the following reason. On changing the amount of data fed into the algorithm,
the amount of regularization must also be varied appropriately. With feature weighting
method, this requires retuning of the ↵ appropriately to account for this change in data
and hence is not a convenient method to use. However, the same effect of fine tuning the
amount of regularization across various depths can be achieved in structured penalties by
using group specific weights in the penalty (Jenatton et al., 2011b). This is more conve-
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Figure 3.7: Average perplexity values for different penalized models with feature weighting follow-
ing an exponential decay.

nient with varying amounts of data since the same regularization parameter can be reused
by simply scaling it without having to retune it for new data.

The model of exponential decay performed better than a shifted logarithm and linear
laws of varying weights from among which it was chosen. However, intuitively speaking,
an exponential decay is not the most suitable since, it either starts to discard features
completely (for ↵ < 1) or gives too much importance further below (↵ > 1) in the tree.
Hence, weighing model can be used to verify for possible improvements over the simple
structured models but is not a convenient model for practical use. This makes unstructured
penalties with feature weighting less useful, further stressing the necessity of structured
penalties in handling such problems.

3.5.5 Analysis of perplexity improvements

We now analyze performance of different methods split by various groupings of words.
We try to segregate words into groups that would help understand specific cases that are
suitable for each of the models.

Figure 3.8 plots how different 7-gram models perform in comparison to Kneser-Ney
with the words split by their context length at test time, mmax. The value indicated by
mmax is the length of the longest suffix of a given test sample that was observed in the
training corpus (or the suffix tree). All models predict a token (particular occurrence of
a word) with the same number of context tokens mmax. Hence at each mmax value, all
models compare average logloss for the same set of words occurring in the same contexts.
Points lying above zero are those methods that outperformed Kneser-Ney. The dashed line
plotted to the right shows the number of words for a given mmax value showing that more
words tend to occur in newer or unseen contexts.

Evidently, all penalization methods fare similarly and better than Kneser-Ney when the
context length is small. The performance of the models based on w`

1

and w`2
2

degrades
significantly with growing context length due to their shortcoming in encoding longer de-
pendencies, while w`T

2

maintains performance comparable to that of Kneser-Ney. It can
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Figure 3.8: Average log-loss is plotted against words grouped by maximal context length used in
predicting them at test time. The green dashed line shows the number of words encountered with
that mmax value plotted on the axis to the right.

be observed that log-linear models are able to learn more accurate weights for the shorter
contexts, for which more data is available. The model with w`T

2

penalty particularly stems
this loss of performance with a gain over Kneser-Ney on average.

This plot explains how structural information helps penalties improve performance.
Further, it shows that there is more to gain with a more suitable structural penalty where
we perform better than Kneser-Ney for shorter context and at least as well as Kneser-Ney
for larger ones. A simple mixed model, for example, where we choose probability from
w`T

2

for shorter contexts and Kneser-Ney everywhere else will give us a perplexity of 204.1
against 213.6 with only w`T

2

model and 217.4 with only Kneser-Ney. This is a significant
boost for a simple heuristic from observing the curves in Figure 3.8. However, such a model
deviates from our goal to build a principled learning framework for larger tasks. It does
not serve the purpose of learning weights through a model that has the various desirable
characteristics as described in Section 1.5.

We make a point cloud of the words to visualize how different different methods perform.
The average log-loss for each word predicted by the weighted log-linear models of order 6 is
plotted against that of Kneser-Ney in Figure 3.9. The color code represents the frequency
of the words. There is a large number of low frequency words concentrated on the top-right
corner of the plot and fewer high frequencies along the left-bottom of the level set y = x.
Words lying below the level set are those for which the corresponding log-linear model
outperformed Kneser-Ney. The dense blue cloud of words on top-right tilts well below the
level set indicating that the log-linear methods gain significantly with less frequent words
that occur in large numbers. We can also observe the increasing dispersion of words away
from the level set line from w`T

2

to w`2
2

and w`
1

. These are the fewer high frequency words
where performance comparable to Kneser-Ney becomes harder.

Figure 3.10 plots difference in logloss for different models and Kneser-Ney for words in
the order of their frequency at train. Each dot represents a word and the mean difference of
logloss at a given frequency value is shown in a thick circle. Points to the left in the plots are
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(a) Log-loss of different words on the test set.

Figure 3.9: Average log-loss for different words plotted against that of Kneser-Ney (KN). Each
dot in the plot is a word. Points are color coded to indicate their frequency with blue being least
frequent. Points above the level set y=x are better predicted by KN.

concentrated above the zero line. These correspond to words with smaller frequency where
learning methods fare better because there is more data for these parameters. Moving
rightwards, models with w`T

2

and w`T1 are packed close to the zero line while that of w`2
2

and w`
1

are scattered with a few points lying well below the zero line. Finally, in Table 3.1
we report a few predictions randomly chosen from the test set that are representative
of the different methods. We show predictions for different words with different context
lengths mmax in the first group. The values reported are logloss values with the best
performing model marked in bold-face. We also show logloss of predicting the same word
(police) under different contexts. We note that the best performing method is either w`T

2

or Kneser-Ney.

3.6 Time complexity of proximal operators

Proximal updates Prox
⌦

of unstructured penalties (⌦ = `
1

, `2
2

) are linear in the number of
nodes in the suffix trees Mv(X) built for each symbol v in the vocabulary V . In the case
of structured `T

2

, the time complexity of Prox`T2
is linear in the number of nodes in Sv(X)

for v 2 V due to Algorithm 6. However, Prox`T1 has quadratic complexity in the number
of nodes in Sv(X) for v 2 V .

Prox
⌦

Complexity
Naive algorithm Improved algorithm

⌦ = `
1

, `2
2

O(|M |)
⌦ = `T

2

O(|S|2) O(|S|)
⌦ = `T1 O(|S|2) O(|M | lnM)

Table 3.2: Complexity of proximal operators for different penalties in terms of the nodes in the
corresponding suffix tree (M) and the trie (S).

It can be observed that the complexity of proximal updates for unstructured norms



56 CHAPTER 3. LOG-LINEAR LANGUAGE MODEL

100 101 102 103 104−2

−1.5

−1

−0.5

0

0.5

1

word frequency at train

(K
N

-
w

!
2 2
)

a
t

te
st

(a) w`22 penalty.

100 101 102 103 104−2

−1.5

−1

−0.5

0

0.5

1

word frequency at train

(K
N

-
w

!
1
)

a
t

te
st

(b) w`1 penalty.

100 101 102 103 104−2

−1.5

−1

−0.5

0

0.5

1

word frequency at train

(K
N

-
w

!
T 2
)

a
t

te
st

(c) w`T2 penalty.

100 101 102 103 104−2

−1.5

−1

−0.5

0

0.5

1

word frequency at train

(K
N

-
w

!
∞

)
a
t

te
st

(d) w`T1 penalty.

Figure 3.10: Plots showing logloss difference of tree-based methods and Kneser-Ney for different
words grouped by their frequency at train. The larger circles show the mean value. Points lying
above the constant zero line correspond to words for which Kneser-Ney was outperformed.

depend on the tree rather than the trie. This is because the corresponding models preserve
constant value non-branching paths defined in Definition 7. If this property holds for
structured penalties, we could reduce the number of parameters and consequently the
number of operations by devising a more appropriate algorithm for proximal projection.
It is easy to verify that this property does not hold for Prox`T2

. Figure 3.11(c) shows
an example of an eight-dimensional vector that violates this property. However, Prox`T1
on the same example shows how these paths are preserved in Figure 3.11(d). This can
be proven for the general case that constant value non-branching paths are indeed closed
under Prox`T1 operations.

In the next section we present two properties specific to the `T1-norm. The first among
them shows that the suffix tree structure can be used instead of the trie structure reducing
the space complexity from |S| to |M |. The second property uses this to derive an efficient
proximal operation that involves fewer projections on to the `

1

-ball. This will then be used
to derive an algorithm for Prox`T1 with reduced time complexity in Section 3.6.2. Time
complexities for proximal operations with naive projection algorithms and the correspond-
ing improved algorithms are summarized in Table 3.2.

3.6.1 Properties of `T1-norm.

We present two properties of the `T1-norm on trees that will be particularly useful with thin
and tall structures. The following proposition shows that paths P(S(X), w) are preserved
under Prox`T1 operations.

Proposition 1. Constant value non-branching paths P(T,w) of T -structured vector w are
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Figure 3.11: An eight-dimensional trie shaped vector in subfigure (a) and the corresponding tree
in (b). Values in the vector after Prox

0.8`T2
are shown in (c) and that after Prox

0.8`T1 in (d).

preserved under the proximal projection step Prox`T1(w,).

Proof. Let T be a tree with constant value non-branching paths P(w, T ) and P 2 P
a constant value non-branching path of two nodes vi, i = 1, 2 with v

1

being the child of v
2

.
Node v

1

could further have a subtree below it. Let the subtree rooted at vi be denoted
gi. Following the decomposition in (2.18), the proximal operator Prox`T1(w) will require
applying the following operations

Prox`T1(w) ⌘ Proxgt
`1 � · · · �

�

Proxg2
`1 �Proxg1

`1

� � · · · �Proxgs
`1(w).

Consider the operators applied on subtrees g
1

and g
2

of vector v obtained after applying
all preceding operators on w,

�(v) ⌘ Proxg2
`1 �Proxg1

`1(v). (3.9)

Each of the two Prox(·) operations above is a residual of projection on the `
1

-ball of 
units which is a thresholding operation as mentioned in (3.7). We can equivalently rewrite
the same operations as shown below by replacing the thresholding [ · ]

+

with a min(·, ·)
operation:

gv
1

 sgn(gv
1

)min(|gv
1

|, ⌧
1

) (3.10)
gv
2

 sgn(gv
2

)min(|gv
2

|, ⌧
2

) (3.11)

These two operations are applied in that order and the gv
2

in (3.11) involves the gv
1

modified
by (3.10). ⌧

1

and ⌧
2

are computed from vectors gv
1

and gv
2

respectively such that the
condition in (3.8) is satisfied. We now look at different possibilities of ordering the pair
(⌧

1

, ⌧
2

) and check if the constant value non-branching path P is closed under (3.9). We
us hi to denote the value at the root variable of gvi and hc to denote the `

1

-norm of the
subtree below gv

1

(not including its root h
1

).
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1. ⌧
2

> ⌧
1

.
By using the condition on the pivot for projection in (3.8) on the second proximal
step in (3.11) we get,

h
2

�  = ⌧
2

.

Using the same condition on the first proximal step in (3.10), we have,

h
1

+ hc � ⌧1 =  =) h
1

�  < ⌧
1

.

Since, h
1

= h
2

because P is a constant value non-branching path,

h
1

�  < ⌧
1

=) h
2

�  < ⌧
1

=) ⌧
2

< ⌧
1

.

This contradicts with our initial assumption of ⌧
2

> ⌧
1

ruling this option out.

2. ⌧
1

� ⌧
2

.
The smaller of ⌧

1

and ⌧
2

dominates the entries of gv
1

in min(·, ·) operations when
applied in (3.10) and (3.11). The entry h

2

is only affected by ⌧
2

. This makes (3.10)
redundant if we knew ⌧

2

and the final solution of (3.7) can be obtained by simply
applying g2v  min(g2v , ⌧2). This retains the inclusion of P 2 P and the closure
property holds in this case. However, note that using (3.7), ⌧

2

can be computed only
after applying ⌧

1

in (3.10).

This proves that constant value non-branching paths are closed under Prox`T1 for two
node paths. This can be extended to paths of arbitrary length using induction proving the
closure property of P under Prox`T1 operator. ⌅

The next proposition shows how composition of Prox`1 operations over constant value
non-branching paths in P(S(X), w) can be simplified. Let ProxP

`T1 be composition of the
following sequence of operations on non-branching path P 2 P(S(X), w):

ProxP
`T1 ⌘ Prox

gw|P |
`1 � · · · �Proxgw1

`1 , such that gwi 2 G 8i 2 P.

It is those sequence of Prox`1 operations necessary for Prox`T1 for which the root node
of the corresponding subtree lies in the subset of node P with grouping gw

1

through gw|P |
following the bottom-up ordering defined in G. We now have the following simplification
of the above proximal sequence over P .

Proposition 2. Prox

P
`T1 ⌘ Prox

gw|P |
`T1

with  = |P |.
Proof. Consider the proximal operator applied on the two node non-branching path P

in equation (3.7). It is clear from the proof of Proposition 1 that if we could directly
estimate ⌧

2

, we can make a single projection in place of the two in (3.7).
The case of ||gv

2

||
1

<  leads to a zero vector on projection with ⌧
2

= 0. It is easy to
see that this case holds to for this proposition. Consider the other case of ⌧

2

> 0. Let
z = Proxg1

`1(v) and u = Proxg2
`1(z). From the condition for projection on `

1

-ball in (3.7)
we have the following:

||gv
2

� gz
2

||
1

=  (3.12)
||gz

2

� gu
2

||
1

=  (3.13)
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Figure 3.12: Comparison of time taken for Prox`T1 projection under various settings.

Since sgn(v) = sgn(z) = sgn(u), we can write the following using the above two relations:

||gv
2

� gu
2

||
1

= ||(gv
2

� gz
2

) + (gz
2

� gu
2

)||
1

= ||gv
2

� gz
2

||
1

+ ||gz
2

� gu
2

||
1

= 2

This can be extended to P of arbitrary length by induction principle and we recover
ProxP

`T1 ⌘ Prox
gw|P |
|P |`T1 proving the proposition. ⌅

The above propositions show that Mv(X) structure is preserved under the proximal
operation for `T1-norm and that it can be performed more efficiently. An immediate conse-
quence of this is that the number of Prox`1 projections required reduces from the number
of unique suffixes |S(X)| to the number of nodes in the tree-structured vectors |M(X)|.
However, the proximal projection from Algorithm 7 will still be quadratic O(|M(X)|2)
due to the linear time complexity of the pivoting method. In the next section we will
present a heap-based pivoting method that will improve the complexity of the proximal
step to O(|M(X)| ln |M(X)|).

3.6.2 Fast proximal projection with `T1-norm.

Linear time complexity of computing the threshold value in Prox`1 is the reason for
the quadratic complexity of the resulting Prox`T1 operator. The amortized linear time
due to Bruckner (1984) is for projecting generic vectors but if the values were sorted in
descending order it would be O(k) where k is the number of entries larger than the pivot.
Now if we have an upper bound on the number of largest few values we need to look at,
we can bound the time it takes to compute the threshold in a sorted vector.

We verified empirically that in our case of language modeling, the number of largest
entries required to compute the threshold is about 3 on average in vectors with as many as
10

5 entries. Depending on the regularization, the maximum number of values it needs to
compute the threshold is between 20 and 30. This leads to significantly faster computation
of the threshold. However, we need an efficient way to keep the values sorted to exploit
this fact.
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Algorithm 8 w := Prox`T1(w) Proximal step for `T1 on G using heap data structure.
Input: T suffix tree, w=[v c] tree-structured vector v with corresponding number of suffixes
collapsed at each node in c,  threshold
Initialize: H = {} # empty set of heaps

1 for x 2 DepthFirstNodeTraversal(T, PostOrder)
g(v, x) := ⇡`T1(w, x, cx,H )

Procedure: q := ⇡`1(w, x,,H )

1 Hx = NewHeap(vx, cx, vx)
2 for j 2 children(x) # merge with child heaps

⌧x = ⌧x + ⌧j # update `
1

-norm
Hx = Merge(Hx,Hj),H = H\Hj

3 H = H [Hx, S = 0, C = 0, J = {}
4 if Hx(⌧) < , set Hx = 0 return
5 for j 2 OrderedIterator(Hx) # get max values

if vj >
S+(vj·cj)�

C+cj

S = S + (vj ·cj), C = C + cj , J = J [ {j}
else break

6 r =

S�
C , � = 0 # compute threshold

7 for j 2 J # apply threshold
⌫ = min(vj , r), � = � + (vj � ⌫)
Hj(v) = ⌫

8 Hx(⌧) = Hj(⌧)� � # update `
1

-norm

a. Heap structure on vector w holds three values (v, c, ⌧) at each node. v, c being value and its
count, ⌧ is the `

1

-norm of the sub-vector below. Tuples are ordered by decreasing value of v
and Hj refers to heap with values in sub-tree rooted at j. Merge operation merges the heaps
passed. OrderedIterator returns values from the heap in decreasing order of v.

We use a max-heap data structure to have access to values in the vector in a sorted
order. A new heap is initialized at each leaf of M(X) with the node’s value pushed on the
heap. At each intermediate node gi, a max-heap is made by merging the max-heaps of its
children and adding the value at the node itself. Then one can use an ordered iterator to
fetch values in the heap in decreasing order.

The exact time complexities of merging and ordered iteration depend on the kind of heap
used. We use a Fibonacci heap that allows for constant time merging of heaps (Cormen
et al., 2009). The time required to access the top k entries of a Fibonacci heap containing d
entries is O(k log d). This new pivoting method improves the time complexity of Prox`T1 to
O(k|M(X)| log |M(X)|). The details of the heap-based Prox`T1 procedure are summarized
in Algorithm 8.
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Penalty generalization space efficiency time efficiency

unstruc. `
1

and `2
2

no yes O(|M |) yes O(|M |)

struc.
`T
2

yes no O(|S|) no O(|S|)
`T1 rand. pivot yes yes O(|M |) no O(|M |2)
`T1 heap yes yes O(|M |) yes O(|M | log |M |)

Table 3.3: Table showing the generalization and efficiency achievable using different penalties.

Figure 3.12 shows the time taken for `T1 proximal step under different settings in one
of the iterations of our experiments. Plot in Figure 3.12(a) compares the time in seconds
for Prox`T1 on suffix-tree and suffix-trie with increasing tree depth. The Prox`T1 operation
is computed using the random pivoting method of Bruckner (1984). The curve marked as
random-tree makes only one projection operation per node in the tree using Proposition 2
as opposed to the random-trie method with one projection per node in the trie. We see
how the per-iteration time difference between the two methods shows up with increasing
depth of the tree.

In Figure 3.12(b) the random pivoting of Bruckner (1984) (curve marked random-tree)
is compared against the pivoting method based on the Fibonacci heap described in Algo-
rithm 8 (indicated by heap-tree). Time of the proximal step is plotted for increasing
lengths of the training sequence. These plots show how suffix-tree can be used with the
heap-based method to improve the time required for Prox`T1 projection. This allows for
efficient use of longer contexts with a structure incorporating penalty.

3.7 Conclusion

In this chapter, we describe log-linear models for language with structured penalties. We
show how the suffix tree structure can be used to penalize features at different depths in
the tree with varying amount of regularization. Then, we show how `T1 penalty allows
using the suffix tree instead of the trie leading to a space efficient model. We present an
algorithm for optimizing with `T1-norm on trees in a time efficient manner using heap data
structure. Properties of different penalties involving their generalization characteristics,
time efficiency of proximal updates and space complexity of resulting models are summa-
rized in Table 3.3. In the next chapter we will consider the problem of building a taxonomy
of words (or any generic classes) from a text corpus (or samples).



62 CHAPTER 3. LOG-LINEAR LANGUAGE MODEL

S
e
q
u
e
n
c
e

m
m

a
x

K
N

w
l T2

w
l T1

w
l
2

2

w
l
1

...
e
v
i
d
e
n
c
e

i
n

t
h
e

t
r
i
a
l
o
f
a

m
a
n

c
h
a
r
g
e
d

6
1
.
8
1
4
7

1
.
9
7
1
2

2
.
8
7
3
2

5
.
0
1
2
9

5
.
6
0
1
8

...
i
n

t
h
e

t
r
i
a
l
o
f
a

m
a
n

c
h
a
r
g
e
d

w
i
t
h

6
0
.
5
3
0
8

0
.
6
0
3
5

0
.
6
2
5
0

0
.
5
6
7
3

0
.
5
6
8
0

...
t
h
e

t
r
i
a
l
o
f
a

m
a
n

c
h
a
r
g
e
d

w
i
t
h

k
i
l
l
i
n
g

6
1
.
4
8
6
5

1
.
3
4
3
7

2
.
3
5
7
0

4
.
7
0
2
1

3
.
2
7
6
4

...
h
u
n
d
r
e
d
s

o
f
t
h
o
u
s
a
n
d
s

o
f
f
e
d
e
r
a
l
w

o
r
k
e
r
s

5
0
.
2
1
2
8

0
.
1
6
8
6

0
.
1
7
6
7

0
.
7
0
4
9

0
.
2
7
8
4

...
c
o
u
l
d

f
a
c
e

t
h
e

d
e
a
t
h
_

p
e
n
a
l
t
y

i
f
c
o
n
v
i
c
t
e
d

5
1
.
5
7
9
2

1
.
2
8
1
0

1
.
8
7
1
9

2
.
6
3
4
5

3
.
5
1
8
2

<
s
>

h
e

g
a
v
e

n
o

d
e
t
a
i
l
s

4
2
.
6
7
9
1

2
.
6
7
9
1

2
.
6
7
1
4

5
.
3
7
6
1

6
.
4
5
9
5

...
u
p
_

t
o

#
n

i
n
c
h
e
s

o
f
s
n
o
w

f
e
l
l

4
2
.
6
1
2
0

2
.
4
0
8
2

2
.
0
9
4
9

5
.
2
0
2
9

4
.
9
6
6
2

...
t
o
n
s

o
f
w

a
s
t
e

b
y

t
h
e

y
e
a
r
#

n
3

2
.
8
0
6
6

1
.
4
4
6
6

1
.
5
1
5
3

3
.
7
3
4
4

3
.
3
9
0
7

...
h
e

c
o
u
l
d

b
e

s
e
n
t
e
n
c
e
d

t
o

#
n

y
e
a
r
s

3
1
.
7
4
5
0

1
.
3
9
9
0

1
.
7
4
5
1

2
.
1
3
7
9

2
.
0
8
3
8

...
a
s

e
v
i
d
e
n
c
e

i
n

t
h
e

t
r
i
a
l

2
6
.
9
6
9
4

6
.
4
1
8
9

6
.
8
3
3
3

6
.
9
0
1
5

7
.
2
8
0
8

...
u
n
t
i
l
l
a
t
e
r

i
n

t
h
e

t
r
i
a
l

2
7
.
0
1
6
8

6
.
4
2
7
4

6
.
8
3
3
8

6
.
9
0
1
8

7
.
2
8
0
8

...
t
h
e

w
a
yh

p
r
o
p
e
r
_

n
o
u
ni

i
s

,
i
t
h
i
n
k

1
3
.
7
9
9
7

3
.
5
1
8
4

3
.
4
6
7
5

3
.
5
1
0
8

3
.
0
3
5
6

...
h
e

r
e
t
u
r
n
e
d

a
_

f
e
w

d
a
y
s

l
a
t
e
r

,
h
e

t
o
l
d

p
o
l
i
c
e

6
1
.
4
7
1
1

1
.
5
2
0
2

2
.
8
3
3
6

2
.
6
4
2
9

2
.
9
0
3
9

<
s
>

b
e
s
i
d
e
s

r
e
c
o
v
e
r
i
n
g

g
u
n
s

,
p
o
l
i
c
e

5
1
.
9
9
2
8

1
.
3
2
1
7

2
.
1
9
9
2

4
.
6
5
7
4

5
.
5
7
7
6

t
h
e

p
h
o
n
e

f
o
r

a
b
o
u
t

a
n

h
o
u
r

u
n
t
i
l
p
o
l
i
c
e

5
1
.
6
9
1
5

1
.
7
1
4
0

1
.
9
7
8
0

4
.
1
1
4
2

5
.
4
7
2
4

<
s
>

n
o

,
t
h
e

p
o
l
i
c
e

4
2
.
6
4
0
1

2
.
9
7
1
4

5
.
1
9
4
9

6
.
0
7
0
7

6
.
8
3
1
1

<
s
>

t
h
e

s
u
s
p
e
c
t
s

t
o
l
d

p
o
l
i
c
e

4
1
.
4
7
8
3

1
.
1
5
4
1

1
.
6
7
8
8

2
.
2
4
7
5

2
.
8
8
8
0

...
,
a
c
c
o
r
d
i
n
g

t
o

a
p
o
l
i
c
e

3
3
.
0
0
1
9

3
.
7
1
6
9

4
.
3
5
2
7

5
.
7
3
3
4

6
.
7
3
4
7

<
s
>

a
c
c
o
r
d
i
n
g

t
o

p
o
l
i
c
e

3
4
.
7
1
1
3

4
.
5
5
4
4

5
.
6
5
8
8

6
.
5
2
6
7

7
.
8
9
6
9

Table
3.1:

P
redictions

from
the

test
set

illustrating
behaviour

ofvarious
7-gram

m
ethods.

T
he

w
ord

in
bold

face
is

predicted
using

a
contextof

m
m

a
x

w
ordspreceding

it.
Valuesreported

are
negative

oflog-probabilities.
T

he
low

erthe
value,the

betterisitsperform
ance.



Chapter 4

Efficient taxonomy learning

In this chapter we will consider the problem of building a hierarchy of classes from their
observations. This is a problem of generic interest to understand the hierarchical structure
within a set of classes but also specifically useful in various learning models involving large
number of classes. Large multi-class problems using log-linear problems are slow to train
and apply at test time because of the expensive normalization factor involved. Hierarchical
grouping can be used to divide and conquer the computation of this expensive factor. The
test time complexity per sample of the flat classifier is O(K) where K is the number of
classes. In the most optimal hierarchical setting of a complete binary tree, the test time
complexity reduces to O(lnK) which is a significant gain in prediction time complexity.
We describe this problem and propose a framework to build such hierarchies to overcome
the issue. We particularly focus on the predictive performance of the tree-classifier for
various depths of the tree.

4.1 Normalization in multi-class log-linear models

The formulation considered in the language model (3.1) is that of a log-linear model applied
to a multi-class problem, that we recall here as,

P(y | x) = ew
>
y x

PK
k=1

ew
>
k x

, (4.1)

where wk is the weight vector of category k and x is the feature vector. There are K cate-
gories which in the case of language would be the |V | words. An issue to common to such
models is the computation of expensive normalization factor which is the computational
bottleneck for large multi-class problems. The normalization factor in the above log-linear
model is,

Z =

K
X

k=1

ew
>
k x

During training log-linear models require estimating the expectation of some quantity
that requires computing Z with the current estimates of wk at each iteration. This is
also the case with maximum entropy updates in Table 1.1. For discrete sequences, the
speed of computing this quantity can be improved by ensuring some calculations common
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to multiple terms are not repeated as described by Wu and Khudanpur (2000). However,
there is more to gain by using hierarchical organization of classes, a method that is generic
and not restricted to discrete sequential data.

The complexity of computing the factor depends directly on the number of classes
involved. A simple workaround is to group classes or categories into fewer meta-classes.
The problem is then a two-step process of choosing the right cluster followed by picking
the best word from the chosen cluster. Each of these two steps have smaller Z factors
to compute that are together cheaper than that of the original problem. The grouping
process can be repeated to multiple levels to generate a hierarchy of classes (also called
a taxonomy) where each non-leaf node in the hierarchy is a meta-class. A classifier is
trained at each node for the meta-classes and a sample traverses the hierarchy from its
root to a leaf during classification. This hierarchy directly reduces the time required for
the normalization factor by reducing the number of choices at each level of the classifier.
The use of such a taxonomy for classification is referred to as the hierarchical classification
problem and sometimes also called the Pachinko machine.

Hierarchical classification and its extensions have been thoroughly studied in the litera-
ture. Extensions include problems with multi-label classification, hierarchies where internal
nodes could assign labels, and directed acyclic graphs of classes instead of simple hierar-
chies (see Silla Jr. and Freitas, 2011, for a survey of hierarchical classification methods).
However, the focus of these methods is usually on how best to train the hierarchical clas-
sifier given the taxonomy. We rather study the problem of building the taxonomy from
sample distributions.

The problem of building a taxonomy given data samples has also been studied in the
literature. In the particular case of reducing multi-class problems to binary classification,
decision trees like CART are the earliest known (see Hastie et al., 2009). CART models use
naive decision stumps like thresholds on predictors that are simple for moderately complex
data distributions. Vural and Dy (2004) and Tibshirani and Hastie (2007) generalize this
idea to more generic cases.

More recent works in this line are that of Griffin and Perona (2008),Weston et al.
(2010) and Gao and Koller (2011). Griffin and Perona (2008) and Weston et al. (2010)
use a surrogate classifier to build a confusion matrix that is used with spectral clustering
methods to build the tree in a top-down manner. Griffin and Perona (2008) also propose
simply merging two most confusing categories at each step by looking for the largest entry
in the confusion matrix. Alternatively, Gao and Koller (2011) use a max-margin approach
extending the idea of Tibshirani and Hastie (2007) to a principled optimization problem.
However, their formulation is non-convex and sensitive to initialization. Bart et al. (2011)
consider the same in a Bayesian framework using nested Chinese restaurant process and
study the usefulness of taxonomic structures of image collections for human browsing and
navigation.

Particularly for modeling language, it was tried by Goodman (2001), Mikolov et al.
(2011) and Mnih and Hinton (2008). Goodman (2001) uses the agglomerative clustering
method called Brown clustering proposed by Brown et al. (1992) to build a two level hier-
archical language model of picking the most probable cluster and then the most probable
word from the chosen cluster. Brown clustering initializes one cluster per word and greed-
ily merges a pair of clusters while maximizing the average mutual information of adjacent
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clusters (clusters with words belonging to them appearing next to each other in the corpus).
Mikolov et al. (2011) use a similar hierarchical organization for neural networks. Mnih and
Hinton (2008), on the other hand, use a bootstrap method to build a hierarchy over the
words.

In most classification tasks, taxonomies are either built manually as in Wordnet (2010)
or borrowed from a related ontology (see Deng et al., 2009). In either case the hierarchy
might be unsuitable for the task at hand. For example, Mnih and Hinton (2008) prefer to
build the tree by bootstrap rather than using the existing hierarchy from Wordnet (2010).

This problem bears relation to parsimony studied in statistics and mathematical bi-
ology (Dunn and Everitt, 2004). In phylogenetics one seeks the most likely tree that
explains the given data referred to as maximum parsimony (Kolaczkowski and Thornton,
2004; Steel, 2002). Approaches for maximum parsimony include maximum likelihood infer-
ence, distance matrix methods and Bayesian inference. While Bayesian inference resorts to
sampling, frequentist algorithms often employ greedy methods returning suboptimal trees.

The crux of the problem lies in the fact that despite all samples being labeled with
appropriate classes, the grouping of classes is inherently unsupervised. The steps that lead
us from observations to a tree-classifier can be split into two parts either of which could
effect the overall predictive performance:

1. Tree construction: Each leaf of a binary tree can be uniquely encoded by a binary
string of 1s and 0s (for left and right edges). Each such string is a series of classifier
decisions at the nodes. A classifier makes similar decisions for similar feature vectors
and hence classes closer in feature space should have similar codes. This motivates
grouping of classes by similarity of features making tree construction dependent on the
measure of the proximity of the categories. These details are discussed in Section 4.2.

2. Classifier training : Learning parameters for node-specific classifiers of the tree can be
formulated in different ways. The choice of the formulation could determine the size
of the optimization problem. A simple option is to train one classifier per node inde-
pendently. This can be any kind of classifier including those that return probabilities
like the nested logit (Train, 2003). Alternatively, one can use a classifier where each
gradient update depends on a multiple nodes in the tree (Weston et al., 2010). We in-
dependently learn multinomial regression coefficient at each of the nodes. Section 4.3
discusses these details

Our goal is to build a hierarchy that speeds computation while trying to retain per-
formance of a simple flat model. We study empirically the performance of five different
tree-building approaches by measuring predictive log-likelihoods.

4.2 Tree embedding of classes

A label tree is a tree T = (V , E ,Z), where V is the set of nodes or vertices and E
the set of directed edges and Z = {zv}|V|v=1

is the set of label-sets zv. Each label-set zv
indicates a subset of the complete list of classes V that are relevant to the vertex v. V
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Algorithm 9 Hierarchical organization of categories.
Top-down approach

1 Input: X 2 Rn⇥d, Y 2 Rn⇥K

Output: T = (V, E ,Z)

Initialize: V = {v}, E = ?,Z = {zv} with zv = [1, · · · ,K]

2 repeat until required depth
3 for v 2 V, v is leaf and |zv| > 1

4 find optimal partition (s, t) such that zv = zs [ zt
#update tree

5a V  V + {s, t}
5b E  E + {ev!s, ev!t}
5c Z  Z + {zs, zt}
6 return T

Bottom-up approach
1 Input: X 2 Rn⇥d, Y 2 Rn⇥K

Output: T = (V, E ,Z)

Initialize: V = {v
1

, · · · , vK}, E = ?,Z = {z
1

, · · · , zK} with zk = k
2 A = V #A is active set of nodes that can be merged

3 repeat until required depth
4 find optimal pairing P 2 {0, 1}|A|⇥|A| and P = P>

5 for unordered (s, t) 2 A such that P (s, t) = 1

#update tree

6a V  V + {v}
6b E  E + {ev!s, ev!t}
6c Z  Z + {zv}, where zv = zs [ zt
7 A A� {s, t}+ v
#add root variable with active nodes as children

8a V  V + {r}
8b E  E + {er!Ai}|A|

i=1

8c Z  Z + {zr}, where zr = [1, · · · ,K]

9 return T

would the vocabulary list for language modeling. Let Kv = |zv| denote the number of
labels at vertex v.

Each vertex except the root has a single parent, but can have multiple children. We are
interested in a balanced label tree on top of the K classes based on local optimal decisions.
Given a data point, vertex-specific classifiers will then successively decide which branch of
the tree to follow (see Figure 4.1). We derive top-down and bottom-up approximations of
flat multi-class classifiers by a tree of given depth.

In the top-down approach, the multi-class classifier is greedily approximated by recur-
sively partitioning label-sets. At every level of the tree, each vertex partitions a subset
of the classes into two (approximately) balanced meta-classes, meaning that each meta-
class contains roughly half the classes originating from the parent vertex. The labeling
of the classes at vertex v, denoted zv, is a vector of size Kv indicating the child to which
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Figure 4.1: Binary classification tree. Leaf nodes are shown in blue and the rest in brown. The
path to the leaf y is marked by vertices P(y) = {v
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, ēy
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, ēy
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} are the alternative branches on the path.

the label is pushed. Trees generated by the top-down approaches here are binary with
zv = {�1,+1}Kv . This process is repeated down to the required depth. Each leaf node
then, either corresponds to a single class, or a small number of classes, in which case it
contains a multi-class classifier. Hence, in this setting the choice of tree-depth will realize
a trade-off between classification accuracy and classification speed.

In the bottom-up approach, classes are successively aggregated up to required level.
This procedure creates a tree that could be non-binary at the top. Again, the tree depth
determines the trade-off between classification accuracy and classification speed. Given
the tree, we learn node-specific classifiers in the same way.

Algorithm 9 summarizes the procedures to build the hierarchy from observations in top-
down and bottom-up approaches. Step 4 of both top-down and bottom-up approaches
in the algorithm indicates to the grouping of categories. In the top-down case it is the
optimal partitioning and in the bottom-up it is the optimal merging. We need a measure
of closeness of categories for either of the operations (split or merge). We use the residuals
under the square loss for this measure, that we describe in Section 4.2.1. At each step of
the iteration, we need to recompute this measure for a particular subset of the categories
that we wish to split or merge. This update of the residuals is described in Section 4.2.2.
Then, we need an algorithm to carry out the split or merge given the subset of categories.
We discuss different methods for this grouping in Sections 4.2.3 and 4.2.4. Finally, we learn
the classifiers at each node of the recovered label tree which we describe in Section 4.3. We
evaluate these models in Section 4.4 and conclude in Section 4.5.

4.2.1 Measuring the class proximity

Let X 2 Rn⇥d and Y 2 Rn⇥K be respectively the d dimensional feature vectors and the
corresponding class label indicator vectors. Columns of Y correspond to class labels and
rows to observations. Each row of Y contains a single entry equal to 1, all others being
equal to zero; if observation i belongs to class j, then Yij = 1. We measure class similarity
through the residuals under a ridge regression model. Consider minimization of the `

2

-
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regularized square loss:

W ⇤
= argmin

W
kY �XWk2 + �kWk2, (4.2)

where W 2 Rd⇥K with columns [w
1

, · · · , wk] corresponding to the K categories. Setting
the gradient of the above equation (4.2) to zero gives us,

2X>
(Y �XW )� 2�W = 0,

or equivalently,

W ⇤
= (X>X + �Id)

�1X>Y, (4.3)

where Id is a (d⇥ d) identity matrix.

Residual matrix. Substituting this closed-form solution for W ⇤ from (4.3) back into the
objective in (4.2) leads to the following matrix of squared residuals:

Q = Y >
(IK �X(X>X + �Id)

�1X>
)Y. (4.4)

The Q matrix contains values that measure how close the corresponding category pairs are
under the square loss. The goal for bottom-up or top-down tree building approaches will
be to make partitions of the label-sets with a small product of residuals.

The process of partitioning (or merging for bottom-up) will be repeated iteratively until
the required depth as described in Algorithm 9. This will require us to recompute the
residual matrix for different label-sets. Consider a node v 2 V with Kv = |zv| categories,
zv ⇢ [1, · · · , K]. The square residuals Qv for categories within node v will follow (4.4),

Qv = Y >
v (IKv �Xv(X

>
v Xv + �Id)

�1X>
v )Yv, (4.5)

where Xv is the subset of observations belonging to categories in zv and Yv is the corre-
sponding class indicator matrix.

Efficient computation of residual matrix. The computation of Q (or any Qv) can be
expensive as it requires the inversion of d ⇥ d matrix, which is O(d3). Depending on the
number of data points n and the number of features d, we can compute the residuals more
efficiently as follows:

1. In large feature spaces with few observations (large d, small n), we use,

Q = Y >
(IK �XX>

(XX>
+ �Id)

�1

)Y,

where the complexity is reduced to O(n3

) by using the matrix inversion lemma.

2. In large feature spaces with many observations (large d, large n), we use,

Q = Y >
(IK �R(R>R + �Id)

�1R>
)Y, XX>

= RR>, R 2 Rn⇥m,
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z̄l z̄r

Qv !

Ql

Qr

(a) Split operation. Ql, Qr can be approximated
with submatrices from rows and columns
corresponding to labels z̄l, z̄r respectively. Such a
split operation is only an approximation.

p q

p

q

Qv
! t

t

¯Qv

(b) Merge operation. Rows (columns) p, q
removed from Qv and added to make row
(column) t which is appended to make the
new residual matrix Q̄v.

Figure 4.2: Residual matrix estimation in split and merge operations.

The idea it use matrix inversion lemma and write Q as an inversion of XX>. The
XX> is then approximated by a low-rank decomposition such that XX>

= RR>

where R has dimensions m ⌧ d. Then we again use the matrix inversion lemma to
write it as an inversion of R>R.
There are various algorithms to achieve this low-rank decomposition like sparse greedy
approximations (Smola and Scholkopf, 2000), incomplete Cholesky decompositions
(Fine and Scheinberg, 2001), or Nystorm’s method (Williams and Seeger., 2000).
They approximate XX> by exploiting the fact that X can be represented in a lower
dimensional subspace and that the rank of the resulting matrix m is small in practice.
We use the incomplete Cholesky decomposition in our algorithm (also see Bach and
Jordan, 2005; Golub and Loan, 1996). The decomposition is O(m2n), i.e., linear in n
and the resulting matrix can be inverted in O(m3

) as opposed to O(d3) or O(n3

).

4.2.2 Split and merge operations

At an given iteration of the tree building process, we need to choose the best split of
the classes into two groups for top-down approach and correspondingly the best merge
for bottom-up approach. We show below that the update for residual matrix Qv can be
performed efficiently for merge operations but it needs to be recomputed for split operations
at every iteration.

Merge operations on residual matrix Consider the situation in Figure 4.2(b) where
vertices p, q of matrix Qv are merged to make vertex t. Merging here implies, labels from
sets zp, zq both receive the same labeling in vertex t. We show that this can be achieved by
merging the columns corresponding to vertices p, q in the indicator matrix Yv while keeping
Xv unchanged. Let Yv be (nv ⇥ k) indicator matrix, then the updated indicator matrix ¯Yv

is as follows

¯Yv = YvU

where, Uk⇥(k�1)

=

⇥

ui
k⇥1

⇤

, i 2 {1, · · · , k} [ {p+ q} \ {p, q}
ui
k⇥1

(j) =

⇢

0 1  j  k, j 6= i
1 j = i
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ui
k⇥1

is a k-dimensional unit vector with 1 in the ith position. U is a (k ⇥ (k � 1)) binary
matrix made by removing two columns up, uq from Ik and appending the column (up

+ uq
)

to it. The residual matrix after merge ¯Qv takes the following form,
¯Qv =

¯Y >
v [I �Xv(X

>
v Xv)

�1X>
v ]

¯Yv

= U>Y >
v [I �Xv(X

>
v Xv)

�1X>
v ]YvU

¯Qv = U>QvU

where Qv is the residual matrix before merge operation. The update U neatly factors out
of the residual matrix making it simple to compute the new residuals.

Hence, we can exactly compute the residuals ¯Qv after a merge operation from Qv by
simply summing the appropriate row (or columns) of Qv. However, in the case of split
operation there is no convenient trick to derive the modified residuals which must be
recomputed using the new label sets.

Split operations on residual matrix Consider the case where label set z with residual
Q is split into zl and zr as in Figure 4.2(a). Without loss of generality we can assume that
X and Y can be ordered by labels zl followed by zr:

Y =



Yl 0

0 Yr

�

, X =



Xl

Xr

�

. (4.6)

Recall that Qv = Y >
v (IKv � Xv(X

>
v Xv + �Id)

�1X>
v )Yv. Rewriting Qv in terms of

Xl, Xr, Yl, Yr from (4.6), we get the following,

Qv =



Y >
l Yl 0

0 Y >
r Yr

�

�


Y >
l XlB

�1X>
l Yl Y >

l XlB
�1X>

r Yr

Y >
r XrB

�1X>
l Yl Y >

r XrB
�1X>

r Yr

�

,

where B = X>X + �I.
If we were to extract the submatrix of Qv corresponding to the labels in zl, we would

have,
Ql = Y >

l

�

I �Xl(X
>X + �I)�1X>

l

�

Yl.

But the correct matrix ¯Ql would be ¯Ql = Y >
l

�

I �Xl(X
>
l Xl + �I)�1X>

l

�

Yl. Note that
they are not equivalent and since the matrix inversion makes it impossible to recover ¯Ql

that we need by simply modifying Ql. Hence, we require to recompute the residual after
every split operation in the top-down approach.

4.2.3 Top-down procedure

Consider a vertex v with Kv classes and let {Xv, Yv} be the set of observations belonging to
one of these Kv classes, where Xv 2 Rnv⇥d and Yy 2 {0, 1}nv⇥Kv . At vertex v, we partition
the Kv classes into two disjoint subsets corresponding to the two subtrees. This can be
done by picking a label vector zv 2 {�1,+1}Kv , each entry of which entry describe which
of the two subtrees the corresponding label belongs. Under a multiple regression model,
we obtain the following optimization problem:

min

zv
min

wv

kYvzv �Xvwvk2 + �kwvk2. (4.7)
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Substituting back �v from (4.3) into the above equation simplifies it into a form that can
be rewritten as the following trace minimization problem:

minimize
zv

tr
�

zvz
>
v Qv

 

. (4.8)

where Qv is given by (4.5) and Xv is centered. Equation (4.8) can be recognized as the
standard maximum cut problem (Cormen et al., 2009) (also referred in the literature as the
Chinese postman problem or the route inspection problem (see also Part VII of Schijver,
2003)). While maximum cut is non-convex and NP-hard, there exist efficient approximation
schemes with guaranteed bounds, such as the classical semidefinite programming relaxation
known as the 0.878-approximation algorithm by Goemans and Williamson (2005).

Low-rank approximation: Here, we will take a different route by noting that (4.8) is
closely related to the clustering formulation DIFFRAC (Bach and Harchaoui, 2007).1 First,
note that Av = zvz

>
v has constant diagonal, is positive definite and has rank-one. As in

(Bach and Harchaoui, 2007; Goemans and Williamson, 2005), we relax the rank constraint
to obtain a semidefinite program. Second, we add 11> to the objective to avoid the trivial
solution of a constant vector (Joulin et al., 2010). This leaves us with the following relaxed
optimization problem:

minimize
Av

tr
�

Av

�

Qv + 11>
� 

(4.9)

subject to diag(Av) = 1, Av < 0.

The value of the parameter  is reasonably set to 1

K2
v

(Joulin et al., 2010). We used the
solver proposed by Journee et al. (2010), which returns a matrix Av of rank at least two.
This matrix is then projected to the space of rank one matrices by taking the eigenvector
corresponding to the largest eigenvalue of Av. This vector is then thresholded at zero to
recover cluster assignments. This problem is referred to as DIFF hereafter.

Spectral relaxation: A simpler relaxation to the problem is to impose z>v zv = Kv, which
corresponds to relaxing the constraints diag(Av) = 1 to tr{Av} = Kv. This leads to

minimize
zv

tr
�

zvz
>
v Qv

 

(4.10)

subject to z>v zv = Kv.

The solution to this problem is the eigenvector associated with the smallest eigenvalue
of Qv, which is then thresholded at zero to recover cluster assignments. This method is
referred to as SPEC.

4.2.4 Bottom-up procedure

The above two methods, SPEC and DIFF, build the tree in a top-down fashion by partitioning
the matrix of squared residuals. They could alternatively be built in a bottom-up fashion
by merging vertices agglomeratively. A baseline would be merging vertices one-by-one
greedily by picking the pair corresponding to the smallest off-diagonal entry in the residual
matrix. We refer to this as OBYO which is similar to the bottom-up method in (Griffin and
Perona, 2008). Note that trees learned by this method have no reason to be balanced.

1Instead of clustering data points like in DIFFRAC, we cluster classes of data points.
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Hungarian algorithm: An attractive alternative is to consider it as an optimal assignment
problem and use the Hungarian algorithm (Frank, 2004) to pair nodes . The algorithm op-
timally assigns nodes in polynomial time and every vertex is paired with another. However,
the compulsory pairing of nodes causes unwanted merges among them. The residual matrix
is modified to avoid such unwanted merges by adding dummy nodes which is classically
done in assignment problems:

¯Qv = [Qv + ⌘IKv �1Kv⇥�Kv ] , (4.11)

where ⌘ is a large constant added to the diagonal to avoid self-assignments, � is the fraction
of real vertices added as dummy vertices and � is the weights on the edges between real and
dummy vertices. The optimization problem for this method, which we refer to as HUNG, is
defined as

minimize
Bv

tr
�

B>
v
¯Qv

 

(4.12)

subject to Bv1(1+�)Kv = 1Kv , B>
v 1Kv  1

(1+�)Kv ,

where Bv 2 {0, 1}Kv⇥(1+�)Kv .

4.3 Node-specific classifiers

Once we build a tree T = {V , E ,Z} using any of the above methods, we need to learn
node-specific classifiers. Each of these classifiers is a probabilistic multinomial classifier
with independent parameterization. Thus, we are faced with a learning problem in a
tree-structured directed graphical model with independent parameterizations and fully
observed data. Regularized maximum likelihood thus decouples and we can learn each
classifier independently. At test time, we can simply take the product of the individual
output probabilities to obtain the joint probabilities (Bishop, 2006).

We consider `
2

-regularized linear classifiers, and one important practical issue is the
selection of hyper-parameters, i.e., the regularization parameter at each node. We have
experimented with different policies in order to choose them at different nodes of the tree:

1. using a single value at all nodes, referred as single below,
2. picking the regularization parameter independently for each node referred as indep

below,
3. using a hierarchical Gamma prior on them, referred as gamma below.

Regularization parameters in the first two cases are chosen by cross-validation over a list
of candidate values. In the case of Gamma prior, if �v denotes the parameters for node v
and Lv(wv), the negative log-likelihood of the linear classifier represented by wv at node v,
then we assume that �v is sampled from the gamma distribution P(�) =

�↵

�(↵)
�↵�1e���,

with ↵ controlling the shape and � the rate of decay (these parameters are common to all
nodes). The global penalized log conditional-likelihood is given by (up to constants)

L(w,�) =
X

v

Lv(wv) + �vkwvk2 � ↵ log � � (↵� 1) log �v + ��v.
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L(w,�) is then optimized by alternating between w and � (Do et al., 2007). This amounts
to alternating between regular independent multinomial regression and the update �v =

↵�1

�+kwvk2 . Cross-validation is done over a grid of values for ↵ > 1 and � > 0. This prepares
the necessary hierarchy along with the classifier training at each of its nodes.

4.4 Evaluation of taxonomy methods

Detailed experiments are run on a smaller synthetic dataset while only efficient methods
are tried on larger real datasets to verify their use in practice. PO50 and WS50 are
synthetic datasets with 50 classes of 200 dimensional features with about 200 samples per
class. There is partial overlap among samples from different classes in PO50 while classes
are well separated in the WS50 dataset. Specific details on how the synthetic data were
generated are provided in the Appendix B.

We measure efficiency of a tree by the average number of dot products required on a test
dataset. Predictive performance is evaluated in terms of prediction accuracy and negative
log-likelihood. The ranking of methods varies with the measure used for performance. The
best performing method when considering accuracy might not be as good with logloss.
Performance plots show accuracy and loglikelihood of models trained with varying tree
depths and also the number of dot-product operations required on average on the test
dataset.

A depth of 1 indicates tree after one split or merge operation. More merge operations
are performed in OBYO at each level since a single merge in this method does have the same
effect on the tree depth as with the other methods. Flat always has a depth of zero and is
plotted with a horizontal line for ease of comparison.

We compare top-down approaches (DIFF and SPEC), bottom-up approaches (HUNG and
OBYO) and random tree building RAND, as well as the method CONF proposed by Griffin
and Perona (2008) and Bengio et al. (2010). CONF runs a surrogate classifier and makes
a confusion matrix from its predictions on a validation dataset. This confusion matrix is
then symmetrized by taking the average with its transpose and used as a measure of the
proximity of classes. This is followed by a standard spectral method to cluster classes.
Confusion matrix often has zeros when classes are well separated. We observed that this
turns out to be detrimental to spectral methods that compute the eigenvectors of this
matrix. In cases where the eigenvector cannot be stably estimated, we use a random split
of the classes.

Figure 4.3 shows the performance efficiency trade-off for all methods on synthetic dataset.
As expected RAND performs worse in terms of accuracy and negative log-likelihood on the
test. When all classes are well separated, the classification problem is relatively easy. All
principled tree building heuristics are able to group similar classes together, eventually
leading to performances very close to the flat multi-class classifier.

When there is some overlap, it is more challenging to identify similar classes. The
problem becomes more troublesome when the tree is deeper, as the subset of classes are
more alike. Despite the overlap, all methods (apart from RAND) show performances close
to the flat multi-class classifier, with a slight advantage for bottom-up approaches.

It is interesting to note that on both synthetic examples, the method of Bengio et al.
(2010) performs similar to the random tree-based classifier when the classes are well sep-
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(a) Set of well separated classes (WS50).
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(b) Classes with partial overlap (PO50).

Figure 4.3: Performance plots for varying tree depth for various methods on WS50 dataset on the
left and on PO50 dataset on the right.

arated. This is because the confusion matrix has too many zeros and almost always a
random split is performed to resolve for a clustering. Evidently, in such cases a confusion
matrix is not an appropriate measure of proximity of classes. Also, a random grouping
should certainly be avoided to organize hierarchies.

Effect of various regularization strategies discussed in the paper are examined in Fig-
ure 4.4. The simplest strategy of a single regularization parameter for all nodes worked
as well as the other more expensive methods. This single parameter was chosen by cross-
validation.

We investigate the performance of different tree building techniques on the following
datasets:

1. CIFAR: 100 classes of images in a 384 dimensional space. There are 1000 samples
per class which are equally split into for train, cross-validation and test.

2. Vehicle: 263 classes of 262K images. 500 dimensional projections of 4096 dimensional
Fisher vectors of the images are used.

3. APnews subset: 2114 classes of 100 dimensional features. Each word is a class from
the subset of the original APnews corpus. Features were derived by CCA on bigram
co-occurances (Dhillon et al., 2011).

Figure 4.5 shows the results on the CIFAR image classification dataset. SPEC performs
best among the tree-based methods all of which usually perform better than RAND. However,
in this case the flat multi-class classifier has a considerable advantage over the approximate
methods by accuracy measure. The log-loss plot also reveals a similar trend where SPEC
outperforms other methods. Strangely, in the log-loss plot , after some initial degradation
performance improves slightly with deeper trees. This happens because the most loss
performance from simple flat multi-class of happens at the lowest level in the tree that
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(a) Predictive performance on PO50 data with overlap
of categories.
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(b) Predictive performance on WS50 data with
separated categories.

Figure 4.4: Performance variation with regularization policy.
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(a) Performance against tree depth.
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(b) Performance against average number of
dot-products on test.

Figure 4.5: Performance variation with depth and performance efficiency trade-off on CIFAR
dataset.

involves the multi-class classifier of that lead node. So, it mostly depends on the grouping
at the lowest level of the tree which were not very suitable clusterings for a flat multi-
class. With larger trees, the clusters got smaller with classifiers being more confident of
the correct label improving the log-loss. This, however, does not apply to accuracy as can
be seen in the plot because once a sample is misclassified along its true path in the tree it
has no recovery from misclassification by this measure. Hence, it might not always be true
that smaller trees are closer to flat multi-class than deeper ones.
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(a) Performance against tree depth.
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(b) Performance against number of dot-products
required at test.

Figure 4.6: Performance variation with depth and performance efficiency trade-off on Vehicle
dataset.
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(a) Performance against tree depth.
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(b) Performance against number of dot-products
required at test.

Figure 4.7: Performance variation with depth and performance efficiency trade-off on subset of
AP-news dataset.

Contrastingly, plots from Figure 4.6 showing results on the Vehicle dataset has a different
trend. Performance of all top-down methods degrades including SPEC that performed very
well on the CIFAR dataset. Accuracy of bottom-up approaches improves over that of the
flat classifier. Logloss values of all methods except for that of SPEC are slightly better than
that of the flat classifier.
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Finally, we consider a bigram language model dataset (AP-news) where we use a CCA-
based dimensionality reduction (Dhillon et al., 2011) to reduce the input dimension to
100. We then apply different tree construction methods to the task of predicting a word
given the feature representation of the preceding word, a multi-category problem with 2114
classes. These results are reported in Figure 4.7. In this case we use median of log-loss as
opposed to average since there were few words that had a very high log-probability leading
to a considerably biased depiction of the methods. And also the backward jump in diffrac
on second plot. On this dataset, we obtain both improved prediction performance, i.e.,
improved accuracy and median log-loss and improved prediction efficiency. In this case the
bottom-up methods degrade significantly after about depth 7 while the top-down methods
continue to perform very well.

Overall, we can conclude from these results that the tree-based methods can improve
the performance in some applications when the hierarchy suits the data distribution, but
in general the performances are close to optimal at a much smaller computational cost.
However, there are two major concerns that remain to be addressed.

1. A fundamental question is to understand the expressive power of tree representation
of classification or regression or rather, what distributions can be approximated by
tree representations?

2. The best performing tree-based methods varied from one dataset to another. It is not
straightforward to determine which method to use for a given dataset for which it is
necessary to understand what tree structures are generated by each of these methods?

The above two questions remain to be addressed to make this framework useful in
practice. Given a dataset, one can then determine if a tree representation is appropriate
and choose a suitable method to build the hierarchy.

An additional concern in dealing with large structured feature spaces like the long
and sparse contextual features of language modeling is suitability of regularization. Our
regularization scheme must reflect the effect of word groupings on the feature space to
maintain predictive performance. This needs to be studied to integrate the language model
from the previous chapter with the hierarchical framework presented here.

4.5 Conclusion

We presented a simple framework to learn hierarchical structure within the classes from
their samples. This framework involves using a square loss function to rewrite the inter-
class residuals in a matrix and using this matrix to group classes appropriately. This could
be used with numerous strategies to organize the classes into a hierarchical structure. We
follow two kinds of approaches; top-down approach of building the tree from root to leaves
and bottom-up approach where classes put in leaves are combined to make meta-classes.
Each tree built from the data is an approximation of the conditional-likelihood P (y | x)
resulting in reduced-classifier complexity for a variety of tasks. The top-down approach in-
volves finding an appropriate partition of the classes repeatedly until the required depth is
reached. This reduces to a max-cut problem that is NP-hard of which we consider two dif-
ferent relaxations. In the bottom-up approach, it involves grouping classes agglomeratively
to generate the hierarchy. The two approaches generate different kinds of tree structures



78 CHAPTER 4. EFFICIENT TAXONOMY LEARNING

that have different properties. We study their performance empirically on different kinds
of data.



Chapter 5

Concluding remarks

We conclude the work with a summary and some remarks on certain shortcomings that
need to be addressed. We also point to directions worthy of investigation to design more
useful models building upon the material presented here to gain a clearer understanding
of the methods.

Conclusion and discussion. In this work we address two crucial aspects pertaining to the
use of discriminative language models. Maximum entropy and perceptron based discrim-
inative models have only used unstructured penalties in their objective functions. They
were agnostic to the structure within the model that led to overfitting at longer context
lengths affecting generalization performance. This restricted these models to short context
lengths. Our first contribution studies the usefulness of structured penalties to correct
for varying levels of sparsity in different contextual features. We observe that overfitting
happens due to structural differences in sampling for various features, the solution of which
lies in utilizing the same structure to vary the amount of regularization appropriately.

We achieve this using a log-linear model built on suffix tries and using the tree structure
to design a suitable penalty. We study performance and complexity with different tree-
structured penalties. We further show that in specific cases one could use the suffix-
tree structure instead of the suffix-trie structure. This work further adds to the evidence
drawn from other fields that structured feature spaces benefit from structure incorporating
penalties.

Our second contribution proposes different methods to build taxonomy of classes using
a square-loss to measure class proximity in feature space. Numerous algorithms leading
to both top-down and bottom-up procedures for growing the tree were studied. Empir-
ical results from these experiments show that building an appropriate tree is important
to minimize any loss of performance by switching from flat to tree based classification.
Furthermore, in some cases there could be improvements of performance from a well built
tree that matches the actual distribution of classes in the feature space. The experiments
in Chapter 4 indicate that a top-down approach to build a taxonomy is more suitable for
words than bottom-up approaches. The applicability of hierarchical organization of words
goes beyond computational gains to tackle problems like out-of-vocabulary words by using
other words from the most suitable cluster. Some additional work is required before using
the taxonomy algorithms proposed here to build a hierarchical language model. It must

79
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allow for assigning a single word into multiple clusters that was found to be important for
deeper trees (Mnih and Hinton, 2008).

A hierarchical language model with classifiers based on suffix-trees at each node that can
learn from large data is of huge interest in language processing. As described in Section 1.4,
structured penalization in such models can be helpful to discriminatively model task spe-
cific requirements (like constraints for good readability) that are hard to handle with other
techniques. Beyond applications in language, this model is of interest to various areas han-
dling discrete sequences like molecular biology. Protein sequence alignment, for example,
is one problem where large contexts have been found necessary for good performance (see,
e.g., Edgar and Sjolander, 2003; Koonin and Galperin, 2003). These algorithms could also
be extended to such problems to improve performance by exploiting the structure within
their feature spaces. However, there are issues that need to be studied in detail for a more
complete understanding that is necessary to tackle some known shortcomings. We describe
these with possible directions worthy of exploration for further study.

Further investigation of language modeling. The strength of a model is largely de-
pendent on the amount of data it can crunch, i.e., assuming it is suitably biased with a
term tending to zero with growing amount of data fed into the model. One could imagine
building an online model for language where nodes are added into the suffix tree with
appropriately chosen initial weights as they are observed. Upon observing a new sample,
a node is added if necessary and an iteration of the optimization is performed. A tree-
structured regularization is most appropriate in such situations. Since adding a new node
is equivalent to setting a weight corresponding to a subtree to non-zero that earlier had a
zero weight because corresponding samples were observed. Such a model can be used to
learn as and when data arrives and can accommodate as much data as we can feed without
having to worry about overfitting.

A model with such statistical strength could serve as a backbone to numerous applica-
tions and could be used for domain adaptation and transfer learning. Domain adaptation
is the problem where the target distribution is known to be different from that of the train-
ing observations and transfer learning is where different related tasks are learned from the
same set of observations. Under-resourced domains would significantly benefit by borrow-
ing from data available for other domains. The adaptation could be achieved by learning
a parametric layer on top of the above model to suit domain specific distributions (like
the two-stage model of Goldwater et al. (2011)). Similarly, various tasks can be modeled
by parameters specific to the tasks that can be learned jointly to exploit task relatedness.
This borrows the statistical strength from the large amounts of text while retaining the
flexibility to fine tune it to specific domains and tasks.

An online statistical model that can be customized to address specific tasks is of partic-
ular interest to fields like language processing where no amount of data could be considered
a sufficiently enough sampling of the feature space. Further, in applications like language
generation where annotations are harder to gather borrowing strength from available data
could give a significant boost. Consider for example, generating descriptive summaries of
medical images or, short explanations to weather plots. We could have easy access to bare
images and plots but we cannot expect sufficient annotation to guide a learning algorithm
to translate them into meaningful sentences.
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Further study of taxonomy learning. In Chapter 4 we proposed different algorithms
to hierarchically organize classes. There are two important features these algorithms lack
that are desirable for various applications;

1. Some classes might appear at multiple leaves in the tree. For language modeling, these
would be polysemous words that have different meanings, and each leaf it appears at
would be one concept indicated by that word. The word bank is one such example
that could either mean a river bank or a financial bank and this problem has been
studied extensively in the literature as word sense disambiguation and discovery (see,
e.g., Linden, 2005; Navigli, 2009). This replication of classes at multiple leaves was
reported to be beneficial by Mnih and Hinton (2008) and was used by Deng et al.
(2011) for images with multiple objects but with pre-defined number of clusters at
each level of the hierarchy. One could accommodate this within the clustering frame-
work by allowing a class to belong to multiple clusters that the presented framework
does not address. Also, it would be interesting to study how one could incorporate in-
formation from existing word sense discovery algorithms to improve their hierarchical
organization.

2. The space of possible tree structures for a given set of categories is combinatorially
large. In some cases, an ontology available from a related task could be used in choos-
ing a suitable tree structure from this large set of choices. For example, Rabani et al.
(2008) and Babbar et al. (2013) modify existing taxonomies to make hierarchies for
specific tasks. A framework that can exploit side information like existing ontologies
is a desirable characteristic that the approaches proposed in Chapter 4 lack.

Additional study is required to address the above issues for more suitable tree structures.
Apart from improving proposed algorithms, their relation to other methods developed in
the literature also needs to be understood. It would be useful to study how various methods
behave in different scenarios. Empirical results suggest that different algorithms tend to
perform better with different kinds of class distributions. However, it is unclear what
algorithms are suitable for which kinds of distributions. This is necessary to know which
algorithm to use given the prior class distribution. The other way round, if we could
measure the fitness of a tree to data, it could throw light on what the class distribution of
data looks like.

The other issue is that of how many samples do we need to reliably recover the under-
lying hierarchy, in what cases can it be recovered exactly and how well the corresponding
hierarchical classifier performs in comparison to flat classifiers. Some of these questions
have been addressed in phylogenetics where certain sample bounds and complexity re-
sults on the recovery of hierarchy were derived (Roch, 2007). In discrete choice models
distributions that can be recovered under specific assumptions on noise in samples were
studied (Ben-Akiva and Lerman, 1985). Recently, Babbar et al. (2013) derived a bound
on the generalization error of hierarchical classifiers that reveals a trade-off between hi-
erarchical and flat classifiers. A more complete study could explain the relation between
classes of trees and the various distributions they generate to develop algorithms that
return taxonomies with theoretical guarantees.
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Appendix A

Smoothing and maximum entropy

models

A.1 Smoothing models

We detail various methods briefed in Section 1.2.1 relating smoothing techniques for m-
gram models. The two aspects of smoothing models relate to redistribution of probability
mass to unseen sequences and mixing models of multiple orders using back-off or interpo-
lation. We recall the maximum likelihood estimator as,

PML(y|xm) =
c(xmy)

c(xm)
. (A.1)

A.1.1 Redistribute mass to handle unseen sequences.

Given that C only sparsely samples the space of all sequences, it is possible that with more
words and larger vocabulary, sequence s will have a smaller probability of being seen at
training phase. This motivates setting aside a part of the mass allocated to the sequences
in C for unseen contexts. We briefly describe two methods that tackle this; the Laplace
smoothing that uses additive values and the Good-Turing smoothing the uses multiplicative
factors to achieve this behavior.

1. Laplace smoothing. Laplace smoothing, also called additive smoothing is a generic
smoothing technique for models of categorical data (Lidstone, 1920; Jefreys, 1948).
It is also called a shrinkage estimator because it brings the distribution closer to
uniform distribution. It works by adding some fake samples to original frequencies
from data C. This is equivalent to incrementing values of both the numerator and
the denominator of PML resulting in an estimate of the form:

PLP (y|xm) =
c(xmy) + d

c(xm) + |V |d, (A.2)

where 0 < d  1 is a parameter that is tuned using held-out data. The case of d = 1

is called add-one smoothing. Gale and Church (1994, 1990) have argued against this
choice of smoothing asserting that is performs rather poorly in general.
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2. Good-Turing. The method proposed by Good (1953, 2000) uses count of counts (Ck,
the number of distinct sequences with frequency k) to make an estimate of the possible
amount of unseen data and decide the correction factor. It reallocates the mass of
sequences in the Ck+1

list that occur (k+1) times to sequences with frequency k (the
list of Ck sequences):

PGT ( y|xm, c(xmy)=k ) =

c⇤k
C
, (A.3)

where c⇤k = (k + 1)

E [Ck+1

]

E [Ck]
and C =

m
X

k=1

c⇤kE [Ck] , (A.4)

where E [Ck] is the expectation of the quantity Ck. The simplest is to use the maxi-
mum likelihood estimate of frequency estimates from C, E [Ck] = Ck(C). This simply
reassigns the probability of unigrams to unseen contexts avoiding the case zero prob-
abilities. However, a caveat of this method is that the values Ck(C) could be zeros,
particularly for larger values of k. This requires some modification to appropriately
estimate the expectation, the simplest being to use the unmodified counts.

A.1.2 Avoid overfitting using lower order distributions.

Given that contexts of a given length m are not found the most reasonable way to make an
estimate is to look for orders lower than m. There are two ways this idea is introduced into
the literature, one of which simply reduces order by one at a time until the sequence is found
or it backs off until unigram and this method is called the Katz back-off smoothing. The
other method extends this to a case where probabilities of higher order distributions are
interpolated with lower order to make the final estimate. This method is called Jelenick-
Mercer interpolated models. Jelinek-Mercer has then been improved to better performing
methods by appropriately modifying the lower order distributions in the interpolation,
namely, Witten-Bell, Absolute Discounting and Kneser-Ney that we describe below.

1. Katz back-off smoothing. Katz (1987) proposed a variant of the Good-Turing es-
timator that uses back-off distribution to redistribute the subtracted mass among
unobserved sequences using the following rule:

PKZ(y|xm) =

8

<

:

P(y|xm) c(xm) = k > ⌧,

⌘(xm)PKZ(y|xm�1

) otherwise,

where P(y|xm) is any estimator. Katz (1987) choose Good-Turing estimator described
above for P(y|xm). The parameter ⌧ is used as a threshold for backing off to lower
distribution is found not be critical for its performance (Chen and Goodman, 1998).
The function ⌘(xm) is chosen so that the resulting distribution is a valid probability
and sums to one,

⌘(xm) =
�(xm)

P

{z|c(xmz)⌧}P(y|xm�1

)

| {z }

redistributed as per lower-order dist.

, �(xm) = 1�
X

{z|c(xmz)>⌧}
P(y|xm)

| {z }

subtracted mass
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2. Jelinek-Mercer interpolated smoothing. Jelinek and Mercer (1980) proposed a method
that interpolates higher order prediction probabilities with that of the lower orders.
While avoiding the zero probabilities for unseen sequences, it additionally offers a
flexibility in controlling bias by parameters 0 < �(xm) < 1 that determines the
mixing proportions. The simplest version linearly interpolates the ML estimates of
the highest order with its immediate predecessor following:

PJM(y|xm) = �(xm)PML(y|xm) + (1� �(xm))PML(y|xm�1

).

An improved version uses a recursive formulation that interpolates probabilities from
highest order down to unigram:

PJM(y|xm) = �(xm)PML(y|xm) + (1� �(xm))PJM(y|xm�1

).

In both the above versions, a uniform distribution is used for unigrams:

P(y) =
1

|V | .

Parameters �(xm) are learned by optimizing predictive performance on validation
data. If a single validation dataset is used to estimate the parameters it is called
held-out interpolation. If distinct subsets of the training and validation are drawn
from the corpus multiple times with replacement to make different estimates of the
parameters that are averaged, it is called deleted interpolation. But since there are
too many � values to tune, some of them grouped together into a single bucket and
constrained to take the same value.

3. Witten-Bell smoothing. The smoothing model of Witten-Bell was published by (Bell
et al., 1990; Witten and Bell, 1991) for text compression and is a special case of
Jelinek-Mercer interpolation where mixing proportion is chosen cleverly. The weight
of the lower order distribution (1 � �(xm�1

)) indicates the probability of a word
following the sequence xm�1

and is chosen to be proportional to the number of unique
words following xm�1

. We define the number of distinct words following the context
as, xm�1

as
C

1+

(xm•) = | {z | c(xmz) � 1} |.
Note that the • above maps to unit length sequences |z| = 1. The weighting scheme
for Witten-Bell takes the following form:

1� �(xm�1

) =

C
1+

(xm•)
C

1+

(xm•) + c(xm�1

)

.

This weighting scheme leads to Witten-Bell probability distribution of the form:

PWB(y|xm) = �(xm)PML(y|xm) + (1� �(xm))PWB(y|xm).

4. Absolute discounting smoothing. The method of Absolute Discounting by Ney et al.
(1994) is another variant of the Jelinek-Mercer interpolation where a fixed amount of
mass (controlled by 0 < � < 1) is subtracted from the highest order term instead of
the multiplicative factor �. The interpolation weight for the lower order distribution,
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(1 � �) is solved for by ensuring that the resulting values sum to one so that its a
valid probability. The formula for the distribution is,

PAD(y|xm) =
max{c(xm)� �, 0}

c(xm�1

)

+ (1� �(xm))PAD(y|xm�1

).

Discount parameter � is tuned using held-out data. Appropriate value of 1� � that
comes from the probability constraint is,

1� �(xm) =
�C

1+

(xm•)
c(xm)

,

where C
1+

(xm•) is count of distinct sequences following xm as defined above.

5. Kneser-Ney smoothing. The method proposed by Kneser and Ney (1995) extends Ab-
solute Discounting and is the best performing smoothing technique. It improves the
back-off weighting of Absolute Discounting in a very intuitive and effective manner.
Lower order distributions, which are significant only when higher order contributions
are small, are optimized to perform very well for these cases. This is achieved by
modifying the lower order distribution PKN(xm�1

) that scales proportional to the
number of single word contexts in which it occurs. Similar to the unique succeeding
contexts above, we define the number of distinct words preceding a context xm as,

C
1+

(•xm) = | {z | c(z xm) � 1} |
and the unique pair of words that sandwich the sequence xm�1

in the middle,

C
1+

(•xm�1

•) = | {(z
1

, z
2

) | c(z
1

xm�1

z
2

) � 1} |.
Note that |zi| = 1 and C

1+

(••) is the bigram count in C. The formulae for Kneser-Ney
smoothing can now be put down as follows:

PKN(y|xm) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

abs. disc.

z }| {

max{c(xmy)� �, 0}
c(xm�1

)

+

back-off term

z }| {

�C
1+

(xm•)
c(xm)

PKN(y|xm�1

)

largest m s.t.
c(xmy) > 0,

max{C
1+

(•xm�1

y)� �, 0}
C

1+

(•xm�1

•)
| {z }

modified lower order dist.

+

�C
1+

(xm�1

•)
C

1+

(•xm�1

•)PKN(y|xm�1

)

| {z }

interpolation term

otherwise.

This model is more specifically called the interpolated Kneser-Ney and there is a back-
off version of Kneser-Ney that skips the interpolation term (second term of the second
part of the equation above) by setting the corresponding � to zero. The parameter �
is either chosen by held-out data or set using some heuristics. There is a variant of
this where � is set to different values depending on the length of the sequence |xmy|
it is applied on which is called the modified interpolated Kneser-Ney.
It is important to note that while models have been developed separately in the liter-
ature as back-off and interpolated, a model of one kind can be rewritten appropriately
in the other format (Chen and Goodman, 1998).
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A.2 Iterative scaling methods

We derive the surrogate functions for the error defined in (1.10) and the resulting update
equations for different iterative scaling methods described in Section 1.2.2. The update
equations involved in minimizing L come from finding a possible �! that minimizes the
error in (1.10) which, we recall, is:

err = L(! +�!)� L(!).
It measures the difference in L at two distinct points in the domain that are separated
by �!. Arriving at appropriate update equations comes from the decoupling of !i. This
is achieved by using an appropriate surrogate function that upper bounds err. The steps
below briefly derive iterative scaling algorithm for the minimization of err.

Upon expansion err takes the following form:

err =

X

C

X

i

�!iI(xmy, i) +
X

C

(

ln

X

v2V



e
P

i !iI(xmv,i)

P

z2V e
P

i !iI(xmz,i)
e
P

i �!iI(xmv,i)

�

)

=

X

C

X

i

�!iI(xmy, i) +
X

C

(

ln

X

v2V

⇥

PME(v|xm)e
P

i �!iI(xmv,i)
⇤

)

(A.5)

The inequality of ln(x) < x� 1 is used to bound err from above:

err 
X

C,i
�!iI(xmy, i) +

X

C

8

<

:

X

v2V

2

4PME(v|xm) e
P

i �!iI(xmv,i)
| {z }

Te

3

5� 1

9

=

;

(A.6)

Three different iterative scaling algorithms were developed in the literature; the general-
ized iterative scaling (GIS) proposed by Darroch and Ratcliff (1972), the improved iterative
scaling (IIS) due to Della Pietra and Della Pietra (1993) and the sequential conditional
generalized iterative scaling (SCIS) by Goodman (2002). They follow from the three dif-
ferent surrogate functions that we will derive below. We will make use of the following
definitions:

I#(xmv) =
X

i

I(xmv, i),

I# = max

C
I#(xmv)

IM(i) = max

C
I(xmv, i)

A.2.1 Generalized Iterative Scaling.

We will derive an upper bound of Te that splits across the features i using Jensen’s inequal-
ity. An additional (d + 1)

th feature
�

I# � I#(xmv)
�

with a weight value �!d+1

= 0. This
makes the inner fractions involving indicator functions a proper probability mass where
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Jensen’s inequality is applied to rewrite Te as a sum over i.

Te = exp

(

Pd+1

i=1

�!iI(xmv, i)I#
I#

)


d+1

X

i=1

I(xmv, i)

I# exp

�

�!iI#
 


Pd

i=1

I(xmv, i) exp
�

�!iI#
 

+ I# �Pd
i=1

I#(xmv, i)

I#


Pd

i=1

I(xmv, i)
n

e�!iI# � 1

o

I# + 1. (A.7)

Substituting the upper bound from (A.7) into (A.6) we get the following as the surrogate
for GIS,

err 
X

i

X

C
�!iI(xmy, i)

| {z }

P (C,i)

+

X

i

⇣

e�!iI# � 1

⌘

I#
X

C

X

v2V
[PME(v|xm)I(xmv, i)]

| {z }

Q(C,i)

erri  P (C, i) +Q(C, i) = surGIS

i . (A.8)

A.2.2 Improved Iterative Scaling.

This method straight away applies Jensen’s inequality on the Te by using I#(xmv):

Te = exp

⇢

P

i �!iI(xmv, i)I#(xmv)

I#(xmv)

�


X

i

I(xmv, i)

I#(xmv)
e�!iI#(xmv). (A.9)

Putting (A.9) into (A.6), we get the surrogate for IIS,

err 
X

i

X

C
�!iI(xmy, i)

| {z }

P (C,i)

+

X

i

X

C

X

v2V

2

4PME(v|xm)I(xmv, i)

⇣

e�!iI#(xmv) � 1

⌘

I#(xmv)

3

5

| {z }

Q(C,i)

erri  P (C, i) +Q(C, i) = surIIS

i . (A.10)
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A.2.3 Sequential Conditional Generalized Iterative Scaling.

This method follows a derivation similar to that of GIS above except that I# is replaced
by IM gives us the following surrogate:

err 
X

i

X

C
�!iI(xmy, i)

| {z }

P (C,i)

+

X

i

⇣

e�!iIM (i) � 1

⌘

IM(i)

X

C

X

v2V
[PME(v|xm)I(xmv, i)]

| {z }

Q(C,i)

erri  P (C, i) +Q(C, i) = surSCIS

i . (A.11)

While the above two methods, GIS and IIS, update all parameters at every iteration, SCIS
only updates one parameter at each iteration. It sequentially iterates through the list of
parameters until termination. It was shown by Goodman (2002) that this modification
could be used to gain about an order of magnitude in computational time over GIS.

The derivatives of surrogate functions for err in (A.8), (A.10) and (A.11) are set to zero
to get the update equations for each of these methods. These equations are summarized
in Table 1.1. Note that the update for IIS unlike the other two is not straightforward with
�! being implicit and requires solving the equation iteratively to fetch the �! .

An alternative to above methods is to use coordinate descent to minimize (A.5) directly.
Coordinate descent updates variables sequentially as in SCIS but the update step is similar
to that of IIS where �! is implicit and must be solved for using iterative techniques. The
three iterative scaling algorithms above and coordinate descent are all known to converge
linearly (Huang et al., 2010).
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Appendix B

Synthetic Data Generation

A specified number of clusters are distributed in different orthants. Each cluster has a
specified number of data points.

dim: dimensionality of features
pntspc: points per class
nclust: number of clusters
disperse: distance of mean of cluster from origin
variance: variance within cluster

An orthant is chosen by a binary encoding of decimal number i varying from zero to number
of clusters. Disperse is the amount by which is moves in the orthant. It is further moved
by a small random vector (vec below) in this orthant. Uniformly distributed points are
generated with this as the mean. Such clusters are piled to make the data matrix.

orth_use = min(nclust,2^dim); // no. of orthants used
for i = 0 : length( orth_use )-1

bcode = 2.*double(bsxfun(@eq, dec2bin(i, dim), ’0’)); //binary code
bcode(~bcode) = -1; // replace zeros by -1s

// no. clusters in a given orthant
n_orth_clust = floor(nclust ./ length(orth_use) );
for j = 1 : n_orth_clust

vec = randn(1,dim); // generate a random vector
mu = disperse * bcode + vec; // mean of the cluster

x = rand( pntspc , dim ) * variance; //uniformly distributed points
x = bsxfun(@plus, x, mu); // x + mu

end
end
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Appendix C

Effect of parameters

We empirically study the significance of the � parameter used in estimating the residuals
and the effect of approximating residuals in top-down approaches.

Ridge in square loss. There is one free parameter in the measure of proximity of classes,
namely the ridge parameter �. This effects the entries in the residual matrix which is used
to determine the shape of the tree. The ridge value showed no significant variations on
the final performances of the tree classifiers. They are compared on the synthetic datasets
in Figure C.1. The tree structure remained considerably unchanged for a large range of �
which we can safely fix to a value.

Approximatrion of residuals at deeper nodes. Top-down methods, unlike bottom-up,
cannot exactly update residuals after a split operation using those before the split. The
effect of such approximations is shown in Figure C.2. The difference shows up in the well-
separated classes and this was observed to become critical for top-down methods as the
number of classes grow.
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Figure C.1: Performance variation with tree regularization parameter � in equation (4.8). Three
plots on the left are on PO50 dataset and the ones on the right are on WS50. Values of � vary as
0.001, 1 and 1000 from top to bottom.
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Figure C.2: Effect of residual matrix approximation on top-down methods. Results on dataset
PO50 on the left and that on WS50 on the right.
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