2,659 research outputs found

    Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Get PDF
    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequence

    Light Gated Recurrent Units for Speech Recognition

    Full text link
    A field that has directly benefited from the recent advances in deep learning is Automatic Speech Recognition (ASR). Despite the great achievements of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially in challenging environments characterized by significant noise and reverberation. To improve robustness, modern speech recognizers often employ acoustic models based on Recurrent Neural Networks (RNNs), that are naturally able to exploit large time contexts and long-term speech modulations. It is thus of great interest to continue the study of proper techniques for improving the effectiveness of RNNs in processing speech signals. In this paper, we revise one of the most popular RNN models, namely Gated Recurrent Units (GRUs), and propose a simplified architecture that turned out to be very effective for ASR. The contribution of this work is two-fold: First, we analyze the role played by the reset gate, showing that a significant redundancy with the update gate occurs. As a result, we propose to remove the former from the GRU design, leading to a more efficient and compact single-gate model. Second, we propose to replace hyperbolic tangent with ReLU activations. This variation couples well with batch normalization and could help the model learn long-term dependencies without numerical issues. Results show that the proposed architecture, called Light GRU (Li-GRU), not only reduces the per-epoch training time by more than 30% over a standard GRU, but also consistently improves the recognition accuracy across different tasks, input features, noisy conditions, as well as across different ASR paradigms, ranging from standard DNN-HMM speech recognizers to end-to-end CTC models.Comment: Copyright 2018 IEE

    Deep Neural Networks for Visual Reasoning, Program Induction, and Text-to-Image Synthesis.

    Full text link
    Deep neural networks excel at pattern recognition, especially in the setting of large scale supervised learning. A combination of better hardware, more data, and algorithmic improvements have yielded breakthroughs in image classification, speech recognition and other perception problems. The research frontier has shifted towards the weak side of neural networks: reasoning, planning, and (like all machine learning algorithms) creativity. How can we advance along this frontier using the same generic techniques so effective in pattern recognition; i.e. gradient descent with backpropagation? In this thesis I develop neural architectures with new capabilities in visual reasoning, program induction and text-to-image synthesis. I propose two models that disentangle the latent visual factors of variation that give rise to images, and enable analogical reasoning in the latent space. I show how to augment a recurrent network with a memory of programs that enables the learning of compositional structure for more data-efficient and generalizable program induction. Finally, I develop a generative neural network that translates descriptions of birds, flowers and other categories into compelling natural images.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135763/1/reedscot_1.pd

    Speech and neural network dynamics

    Get PDF

    Combining i-vector representation and structured neural networks for rapid adaptation

    Get PDF

    Detecting grammatical errors with treebank-induced, probabilistic parsers

    Get PDF
    Today's grammar checkers often use hand-crafted rule systems that define acceptable language. The development of such rule systems is labour-intensive and has to be repeated for each language. At the same time, grammars automatically induced from syntactically annotated corpora (treebanks) are successfully employed in other applications, for example text understanding and machine translation. At first glance, treebank-induced grammars seem to be unsuitable for grammar checking as they massively over-generate and fail to reject ungrammatical input due to their high robustness. We present three new methods for judging the grammaticality of a sentence with probabilistic, treebank-induced grammars, demonstrating that such grammars can be successfully applied to automatically judge the grammaticality of an input string. Our best-performing method exploits the differences between parse results for grammars trained on grammatical and ungrammatical treebanks. The second approach builds an estimator of the probability of the most likely parse using grammatical training data that has previously been parsed and annotated with parse probabilities. If the estimated probability of an input sentence (whose grammaticality is to be judged by the system) is higher by a certain amount than the actual parse probability, the sentence is flagged as ungrammatical. The third approach extracts discriminative parse tree fragments in the form of CFG rules from parsed grammatical and ungrammatical corpora and trains a binary classifier to distinguish grammatical from ungrammatical sentences. The three approaches are evaluated on a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting common grammatical errors into the British National Corpus. The results are compared to two traditional approaches, one that uses a hand-crafted, discriminative grammar, the XLE ParGram English LFG, and one based on part-of-speech n-grams. In addition, the baseline methods and the new methods are combined in a machine learning-based framework, yielding further improvements

    Articulatory features for conversational speech recognition

    Get PDF
    corecore