16 research outputs found

    STransE: a novel embedding model of entities and relationships in knowledge bases

    Full text link
    Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform link prediction or knowledge base completion, i.e., predict whether a relationship not in the knowledge base is likely to be true. This paper combines insights from several previous link prediction models into a new embedding model STransE that represents each entity as a low-dimensional vector, and each relation by two matrices and a translation vector. STransE is a simple combination of the SE and TransE models, but it obtains better link prediction performance on two benchmark datasets than previous embedding models. Thus, STransE can serve as a new baseline for the more complex models in the link prediction task.Comment: V1: In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016. V2: Corrected citation to (Krompa{\ss} et al., 2015). V3: A revised version of our NAACL-HLT 2016 paper with additional experimental results and latest related wor

    On Multi-Relational Link Prediction with Bilinear Models

    Get PDF
    We study bilinear embedding models for the task of multi-relational link prediction and knowledge graph completion. Bilinear models belong to the most basic models for this task, they are comparably efficient to train and use, and they can provide good prediction performance. The main goal of this paper is to explore the expressiveness of and the connections between various bilinear models proposed in the literature. In particular, a substantial number of models can be represented as bilinear models with certain additional constraints enforced on the embeddings. We explore whether or not these constraints lead to universal models, which can in principle represent every set of relations, and whether or not there are subsumption relationships between various models. We report results of an independent experimental study that evaluates recent bilinear models in a common experimental setup. Finally, we provide evidence that relation-level ensembles of multiple bilinear models can achieve state-of-the art prediction performance

    Convolutional 2D Knowledge Graph Embeddings

    Full text link
    Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across most datasets.Comment: Extended AAAI2018 pape

    Adversarial Sets for Regularising Neural Link Predictors

    Get PDF
    In adversarial training, a set of models learn together by pursuing competing goals, usually defined on single data instances. However, in relational learning and other non-i.i.d domains, goals can also be defined over sets of instances. For example, a link predictor for the is-a relation needs to be consistent with the transitivity property: if is-a(x_1, x_2) and is-a(x_2, x_3) hold, is-a(x_1, x_3) needs to hold as well. Here we use such assumptions for deriving an inconsistency loss, measuring the degree to which the model violates the assumptions on an adversarially-generated set of examples. The training objective is defined as a minimax problem, where an adversary finds the most offending adversarial examples by maximising the inconsistency loss, and the model is trained by jointly minimising a supervised loss and the inconsistency loss on the adversarial examples. This yields the first method that can use function-free Horn clauses (as in Datalog) to regularise any neural link predictor, with complexity independent of the domain size. We show that for several link prediction models, the optimisation problem faced by the adversary has efficient closed-form solutions. Experiments on link prediction benchmarks indicate that given suitable prior knowledge, our method can significantly improve neural link predictors on all relevant metrics.Comment: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 201

    Relational Neural Machines

    Get PDF
    Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First--Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks
    corecore