10,607 research outputs found

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    A Study of Raman Spectroscopy as a Clinical Diagnostic Tool for the Detection of Lynch Syndrome/Hereditary NonPolyposis Colorectal Cancer (HNPCC)

    Get PDF
    Lynch syndrome also known as hereditary non-polyposis colorectal cancer (HNPCC) is a highly penetrant hereditary form of colorectal cancer that accounts for approximately 3% of all cases. It is caused by mutations in DNA mismatch repair resulting in accelerated adenoma to carcinoma progression. The current clinical guidelines used to identify Lynch Syndrome (LS) are known to be too stringent resulting in overall underdiagnoses. Raman spectroscopy is a powerful analytical tool used to probe the molecular vibrations of a sample to provide a unique chemical fingerprint. The potential of using Raman as a diagnostic tool for discriminating LS from sporadic adenocarcinoma is explored within this thesis. A number of experimental parameters were initially optimized for use with formalin fixed paraffin embedded colonic tissue (FFPE). This has resulted in the development of a novel cost-effective backing substrate shown to be superior to the conventionally used calcium fluoride (CaF2). This substrate is a form of silanized super mirror stainless steel that was found to have a much lower Raman background, enhanced Raman signal and complete paraffin removal from FFPE tissues. Performance of the novel substrate was compared against CaF2 by acquiring large high resolution Raman maps from FFPE rat and human colonic tissue. All of the major histological features were discerned from steel mounted tissue with the benefit of clear lipid signals without paraffin obstruction. Biochemical signals were comparable to those obtained on CaF2 with no detectable irregularities. By using principal component analysis to reduce the dimensionality of the dataset it was then possible to use linear discriminant analysis to build a classification model for the discrimination of normal colonic tissue (n=10) from two pathological groups: LS (n=10) and sporadic adenocarcinoma (n=10). Using leaveone-map-out cross-validation of the model classifier has shown that LS was predicted with a sensitivity of 63% and a specificity of 89% - values that are competitive with classification techniques applied routinely in clinical practice

    QSAR study for carcinogenicity in a large set of organic compounds

    Get PDF
    In our continuing efforts to find out acceptable Absorption, Distribution, Metabolization, Elimination and Toxicity (ADMET) properties of organic compounds, we establish linear QSAR models for the carcinogenic potential prediction of 1464 compounds taken from the "Galvez data set", that include many marketed drugs. More than a thousand of geometry-independent molecular descriptors are simultaneously analyzed, obtained with the softwares E-Dragon and Recon. The variable subset selection method employed is the Replacement Method, and also the improved version Enhanced Replacement Method. The established models are properly validated through an external test set of compounds, and by means of the Leave-Group-Out Cross Validation method. In addition, we apply the Y-Randomization strategy and analyze the Applicability Domain of the developed model. Finally, we compare the results obtained in present study with the previous ones from the literature. The novelty of present work relies on the development of an alternative predictive structure-carcinogenicity relationship in a large heterogeneous set of organic compounds, by only using a reduced number of geometry independent molecular descriptors.Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Comelli, Nieves Carolina. Universidad Nacional de Catamarca. Facultad de Ciencias Agrarias; ArgentinaFil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    Corrosion Monitoring Based on Recurrence Quantification Analysis of Electrochemical Noise and Machine Learning Methods

    Get PDF
    Although electrochemical noise (EN) has been studied for decades, the optimal approach for the analysis of EN data remains uncertain. This research innovatively combined the use of recurrence quantification analysis of electrochemical noise data and machine learning methods to develop models for corrosion monitoring and corrosion type identification. Case studies demonstrate that the proposed methodologies are potentially feasible for the development of online corrosion monitoring programs

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms

    Full text link
    Currently, diagnosis of skin diseases is based primarily on visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural characteristics in OCT images. There is, therefore, a critical need to systematically analyze OCT images from different body sites, to identify their significant qualitative and quantitative differences. Sixty-three optical and textural features extracted from OCT images of healthy and diseased skin are analyzed and in conjunction with decision-theoretic approaches used to create computational models of the diseases. We demonstrate that these models provide objective information to the clinician to assist in the diagnosis of abnormalities of cutaneous microstructure, and hence, aid in the determination of treatment. Specifically, we demonstrate the performance of this methodology on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) from healthy tissue

    Effects of tissue fixation on Raman spectroscopic characterization of retina

    Get PDF
    Raman spectroscopy is a non-invasive and non-destructive tool that has been widely applied in Agricultural and Bio-system Engineering field. It provides a unique fingerprint to different chemical, and structural, information at molecular level. Acquisition of Raman spectrum requires a relatively short collecting time and minimum sample preparation, which makes Raman spectroscopy an attractive method for characterizing biological samples. Since retina is the most exposed part of the central nervous system, irregular protein transformation, or accumulation caused by diseases, can be found at an early time in this area. Because of this reason, Raman spectroscopy is often utilized to analyze samples from specific layers in retina to detect certain diseases, such as glaucoma, Parkinson\u27s disease, and Prion related diseases at early stages. In order to have a better preservation of tissue architecture and longer storage time, collected retina samples are commonly first fixed by chemical fixative. Typical fixatives include: Modified Davidson\u27s fixative, Bouin\u27s fixative, Ethanol fixative or conventional Formalin fixative. After fixation, samples are then embedded with paraffin to allow for fine sectioning. Every fixating protocol has different ingredients, and there is no universal fixative that is ideal for all the tissue types. Since fixation introduces chemical modification to the tissue samples, it is important to understand what changes it may cause to the Raman spectroscopic characterization of the tissue samples. For best result, four fixation methods are studied and analyzed in this research. The purpose is to identify a mathematical methodology which can be used to remove the background noise produced by each chemical fixative, and to determine how each fixative alters the collected Raman spectra, and in which regions alternation appears. Although this sounds theoretically promising, the actual cellular structure is more complex. An alternative approach to study the effect caused by fixation is to investigate, with the disease present, if chemical fixation has any impact on the diagnosing result. And if it does, whether this impact can be minimized to improve the accuracy of diagnosis
    corecore