11 research outputs found

    Discretization of SO(3) using recursive tesseract subdivision

    Get PDF

    Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

    Get PDF
    International audienceDocument images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions

    On-Manifold Recursive Bayesian Estimation for Directional Domains

    Get PDF

    Medical image analysis methods for anatomical surface reconstruction using tracked 3D ultrasound

    Get PDF
    The thesis focuses on a study of techniques for acquisition and reconstruction of surface data from anatomical objects by means of tracked 3D ultrasound. In the context of the work two experimental scanning systems are developed and tested on both artificial objects and biological tissues. The first system is based on the freehand ultrasound principle and utilizes a conventional 2D ultrasound transducer coupled with an electromechanical 3D position tracker. The main properties and the basic features of this system are discussed. A number of experiments show that its accuracy in the close to ideal conditions reaches 1.2 mm RMS. The second proposed system implements the sequential triggered scanning approach. The system consists of an ultrasound machine, a workstation and a scanning body (a moving tank filled with liquid and a transducer fixation block) that performs transducer positioning and tracking functions. The system is tested on artificial and real bones. The performed experiments illustrate that it provides significantly better accuracy than the freehand ultrasound (about 0.2 mm RMS) and allows acquiring regular data with a good precision. This makes such a system a promising tool for orthopaedic and trauma surgeons during contactless X-ray-free examinations of injured extremities. The second major subject of the thesis concerns development of medical image analysis methods for 3D surface reconstruction and 2D object detection. We introduce a method based on mesh-growing surface reconstruction that is designed for noisy and sparse data received from 3D tracked ultrasound scanners. A series of experiments on synthetic and ultrasound data show an appropriate reconstruction accuracy. The reconstruction error is measured as the averaged distance between the faces of the mesh and the points from the cloud. Dependently on the initial settings of the method the error varies in range 0.04 - 0.2% for artificial data and 0.3 - 0.7 mm for ultrasound bone data. The reconstructed surfaces correctly interpolate the original point clouds and demonstrate proper smoothness. The next significant problem considered in the work is 2D object detection. Although medical object detection is not integrated into the developed scanning systems, it can be used as a possible further extension of the systems for automatic detection of specific anatomical structures. We analyse the existent object detection methods and introduce a modification of the one based on the popular Generalized Hough Transform (GHT). Unlike the original GHT, the developed method is invariant to rotation and uniform scaling, and uses an intuitive two-point parametrization. We propose several implementations of the feature-to-vote conversion function with the corresponding vote analysis principles. Special attention is devoted to a study of the hierarchical vote analysis and its probabilistic properties. We introduce a parameter space subdivision strategy that reduces the probability of vote peak omission, and show that it can be efficiently implemented in practice using the Gumbel probability distribution

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    The Salience, Shapes, and Functions of Continuous Processes in Contemporary Electronic Dance Music

    Get PDF
    University of Minnesota Ph.D. dissertation. 2019. Major: Music. Advisor: Sumanth Gopinath. 1 computer file (PDF); 384 pages.This dissertation examines the salience, shapes, and functions of continuous processes in contemporary electronic dance music (EDM), providing an analytical framework for discussing their structural and aesthetic roles in this repertoire. Continuous processes are musical gestures with continuous changes to musical parameters, rather than discrete, “step-by-step” ones. Examples include glissandos, crescendos, fade-ins, accelerandos, and filter sweeps. Most of the music discussed is from the 2010s, and from the large category of genres under the umbrella of house and trance. All the music referenced is available for listening through the supplemental files for this dissertation. The dissertation develops a multifaceted approach to the analysis of continuous processes in EDM. First, continuous processes are categorized according to their length and parameter altered (chapters 2 and 3), then according to their shape as compared with mathematical functions (chapter 5), then according to their musical functions as providing orientation, disorientation, ornamentation, and/or intensification (chapter 6). Continuous processes often provide sonic instructions for dancers. For example, “uplifters” (ascending pitch slides) in buildup sections create a sense of tension in listeners, and an expectation that a highly-energetic main section is coming up. Conversely, “downlifters” signal that the energy of the track is decreasing and that dancers can take a break. Continuous processes can also have specific semiotic meanings, as is shown in the hermeneutic analyses of two tracks by Deadmau5 and The Chemical Brothers in chapter 7. Throughout the dissertation, nine analytical guidelines for comparing continuous processes in terms of their salience are outlined gradually. These add another dimension to the analysis of continuous processes, making explicit the kinds of foreground-background parsing involved in listening and pointing towards how continuous changes saturate EDM with multiple levels of prominence. Existing analytical scholarship on EDM has focused on discrete processes, especially the sudden addition or subtraction of sound layers. Certain types of continuous processes have been explored, but they have not previously been discussed systematically. This dissertation adds to existing scholarship by drawing attention to the many roles of continuous processes in EDM, and showing how they contribute to the emotional waves experienced when listening to this music

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore