
DISSERTATION

submitted

to the

Combined Faculties for the Natural Sciences and for Mathematics

of the

Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Diplom-Inf. Dzmitry Hlindzich

Born in Minsk, Belarus



Medical image analysis methods for
anatomical surface reconstruction using

tracked 3D ultrasound

Advisor: Prof. Dr. Reinhard Männer



Abstract

The thesis focuses on a study of techniques for acquisition and reconstruction of surface
data from anatomical objects by means of tracked 3D ultrasound. In the context of
the work two experimental scanning systems are developed and tested on both arti�cial
objects and biological tissues. The �rst system is based on the freehand ultrasound
principle and utilizes a conventional 2D ultrasound transducer coupled with an elec-
tromechanical 3D position tracker. The main properties and the basic features of this
system are discussed. A number of experiments show that its accuracy in the close to
ideal conditions reaches 1.2 mm RMS.

The second proposed system implements the sequential triggered scanning approach.
The system consists of an ultrasound machine, a workstation and a scanning body (a
moving tank �lled with liquid and a transducer �xation block) that performs transducer
positioning and tracking functions. The system is tested on arti�cial and real bones.
The performed experiments illustrate that it provides signi�cantly better accuracy than
the freehand ultrasound (about 0.2 mm RMS) and allows acquiring regular data with a
good precision. This makes such a system a promising tool for orthopaedic and trauma
surgeons during contactless X-ray-free examinations of injured extremities.

The second major subject of the thesis concerns development of medical image
analysis methods for 3D surface reconstruction and 2D object detection. We introduce
a method based on mesh-growing surface reconstruction that is designed for noisy and
sparse data received from 3D tracked ultrasound scanners. A series of experiments
on synthetic and ultrasound data show an appropriate reconstruction accuracy. The
reconstruction error is measured as the averaged distance between the faces of the mesh
and the points from the cloud. Dependently on the initial settings of the method the
error varies in range 0.04 - 0.2% for arti�cial data and 0.3 - 0.7 mm for ultrasound
bone data. The reconstructed surfaces correctly interpolate the original point clouds
and demonstrate proper smoothness.

The next signi�cant problem considered in the work is 2D object detection. Al-
though medical object detection is not integrated into the developed scanning systems,
it can be used as a possible further extension of the systems for automatic detection of
speci�c anatomical structures. We analyse the existent object detection methods and
introduce a modi�cation of the one based on the popular Generalized Hough Transform
(GHT). Unlike the original GHT, the developed method is invariant to rotation and
uniform scaling, and uses an intuitive two-point parametrization. We propose several
implementations of the feature-to-vote conversion function with the corresponding vote
analysis principles. Special attention is devoted to a study of the hierarchical vote analy-
sis and its probabilistic properties. We introduce a parameter space subdivision strategy
that reduces the probability of vote peak omission, and show that it can be e�ciently
implemented in practice using the Gumbel probability distribution.
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Zusammenfassung

Diese Arbeit konzentriert sich auf die Studie von Techniken zur Erfassung und Rekon-
struktion der Ober�ächendaten anatomischer Objekte mittels Tracked 3D Ultrasound.
Im Rahmen dieser Arbeit werden zwei experimentelle Scansysteme entwickelt und
mit Hilfe sowohl von künstlichen Objekten und als auch biologischen Geweben veri-
�ziert. Das erste System basiert auf dem Freihandultraschallprinzip und verwendet
einen herkömmlichen 2D Ultraschallwandler gekoppelt mit einem elektromechanischen
3D Positionsverfolger. Die wichtigsten Fähigkeiten und die grundlegenden Eigenschaften
dieses Systems werden diskutiert. Die durchgeführten Experimente zeigen, dass die
Genauigkeit dieses Systems unter idealen Bedingungen 1.2 mm RMS erreichen kann.

Das zweite vorgeschlagene System basiert auf dem sequentiellen Scanansatz. Das
System besteht aus einem Ultraschallgerät, einer Workstation und einem Scannerkörper
(ein beweglicher �üssigkeitsgefüllter Behälter mit einer Befestigungsvorrichtung für den
Schallkopf). Im Gegensatz zum Freihandultraschall wird der Schallkopf mechanisch posi-
tioniert. Dieses System wird anhand künstlicher und echter Knochendatensätze getestet.
Die durchgeführten Experimente veranschaulichen, dass der sequentielle Scanansatz eine
deutlich höhere Genauigkeit als der Freihandultraschall hat (etwa 0.2 mm RMS) und
eine Erfassung der regelmäÿigen Daten mit guter Präzision ermöglicht. Dies macht das
System zu einem vielversprechenden Werkzeug für Orthopäden und Unfallchirurgen bei
röntgenlosen Untersuchungen verletzter Extremitäten.

Das zweite groÿe Thema der Arbeit betri�t die Entwicklung von medizinischen Bild-
analysemethoden für die 3D Ober�ächenrekonstruktionen und 2D Objekterkennungen.
Wir stellen eine Methode basierend auf der Mesh-growing-Ober�ächenrekonstruktion
vor, die für verrauschte und spärliche Daten geeignet ist. Eine Reihe von Experimenten,
basierend auf Ultraschall- und synthetischen Daten, zeigen eine gute Rekonstruktions-
genauigkeit. Der Rekonstruktionsfehler wird als der gemittelte Abstand zwischen den
Flächen eines 3D-Gitters und einer Punktwolke berechnet. In Abhängigkeit von den
Grundeinstellungen der Methode variiert der Fehler für künstliche Daten von 0.04 bis
0.2%, bei realen Knochen von 0.3 bis 0.7 mm. Die rekonstruierten Ober�ächen inter-
polieren die ursprünglichen Punktwolken korrekt und zeigen die richtige Glätte.

Das nächste wichtige Problem, das in der Arbeit betrachtet wird, ist die 2D Ob-
jekterkennung. Obwohl die medizinische Objekterkennung nicht in die entwickelte
Scansysteme integriert wird, kann sie als eine mögliche Erweiterung der Systeme zur
automatischen Erkennung der spezi�schen anatomischen Strukturen verwendet wer-
den. Wir analysieren die vorhandenen Objekterkennungsmethoden und entwickeln
eine Modi�kation, die auf der bekannten Generalized Hough-Transformation (GHT)
basiert. Im Gegensatz zur originalen GHT, ist die entwickelte Methode invariant
bezüglich Rotation und gleichmäÿiger Skalierung, und verwendet eine intuitive Zwei-
Punkt-Parametrisierung. Dazu stellen wir mehrere Implementierungen der Feature-
to-Vote Konvertierungsfunktion mit den entsprechenden Vote Analyse Prinzip vor.
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Besondere Aufmerksamkeit wird dabei auf die Studie des hierarchischen Vote Ana-
lyse Prinzips und ihren probabilistischen Eigenschaften gelegt. Wir schlagen eine Pa-
rameterraumunterteilungsstrategie vor, die die Wahrscheinlichkeit der fehlenden Vote
Maxima reduziert, und zeigen, dass diese Strategie mittels der Gumbel Wahrschein-
lichkeitsverteilung e�zient realisiert werden kann.
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Notation

The following abbreviations are used in this thesis:

CT Computed Tomography

DPGHT Dual-Point Generalized Hough Transform

ECG Electrocardiography

GHT Generalized Hough Transform

GPU Graphics Processing Unit

HT Hough Transform

ICP Iterative Closest Point

MRF Markov Random Field

MRI Magnetic Resonance Imaging

PACS Picture Archiving and Communication System

PCA Principle Component Analysis

PET Positron Emission Tomography

RMS Root Mean Square

RT Radon Transform

US Ultrasound
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1. Introduction

Medical imaging has brought medicine to a new stage. After the invention of X-rays and
acquisition of �rst images of the human body at the end of 19-th century, medical imag-
ing has been progressively developing. Today it provides a variety of new possibilities
for modern clinical diagnostics, treatment and anatomical study. Supporting physicians
with visual information it allows signi�cantly improving the quality of medical care.
However, the recent advance would be hardly possible without the corresponding devel-
opment of the methods of medical image analysis. Owing to this mutual e�ort, the data
acquired from scanners can be appropriately reconstructed, analysed and prepared for
visualization.

In spite of the apparent progress modern medical imaging modalities are still quite
far from ideal. Use of ionized radiation, imperfect image quality and high costs are
the typical problems that can be met here. Moreover, majority of the applied today
methods of image analysis also need further development and improvements in quality
and speed. Therefore, further research in these both �elds of science is highly essential
today.

1.1. Motivation and objectives

Ultrasound is a medical imaging modality that has a high potential as it is harmless
for patients, relatively cheap and mobile. A combination of these features makes it
unique among the other imaging techniques. However, the problems of e�cient 3D data
acquisition, reconstruction and analysis (including the speci�c artefacts interpretation)
are quite acute for ultrasound. This, in turn, makes this modality inferior to e.g. mag-
netic resonance or computed tomography, where high-quality 3D imaging has become a
standard. In this work we aim at a possible solution of the afore mentioned problems.
We study the 3D surface reconstruction of anatomical objects acquired by conventional
2D ultrasound transducers, and perform its evaluation. Along with this we consider
a number of accompanying image analysis problems that occurred during the project.
The obtained results can be important for the development of a clinical 3D-tracked ul-
trasound scanning system as well as for all those who are doing research in this �eld.
We also provide a detailed study of object recognition based on the Generalized Hough
Transform, that covers a substantial part of this thesis. Although it is not directly
used as a part of our surface reconstruction system, it can be applied in a number of
additional medical image analysis tasks for automatic detection of speci�c anatomical
structures.

Summarizing the above, in this thesis we are focusing on the following main objec-
tives. The �rst one is to assemble an ultrasound-based scanning system suitable for 3D
reconstruction of anatomical surfaces of a) viscera and b) the long bones of the human
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1. Introduction

extremities (engineering part). The second one is to develop the corresponding medi-
cal image processing algorithms for a) 3D reconstruction of surfaces from the acquired
ultrasound data, and b) rotation-scale invariant object detection (theoretical part).

1.2. Structure of the work

The work is divided into two parts. The �rst part concerns the problems of medical
imaging and scanner engineering, and consists of two chapters. In Chapter 2 we provide
a review of the existent medical imaging modalities and discuss their basic features.
Chapter 3 is devoted to development of two experimental scanning systems based on
the tracked 3D ultrasound. The �rst system (Section 3.3) realizes the freehand tracked
ultrasound paradigm, while the second one (Section 3.4) is designed to provide an au-
tomated scanning process. The both systems are tested on arti�cial objects and some
biological tissues.

The second part of the work is dedicated to medical image analysis. In Chapter 4 we
present a 3D surface reconstruction method based on growing meshes that is utilized in
the mentioned scanning systems. Chapters 5 and 6 are devoted to image segmentation
and object detection problems. In Chapter 5 an overview of the existent medical image
segmentation methods is provided. In Chapter 6 we discuss modern object detection
methods, study their properties and develop an alternative rotation-scale invariant 2D
object detection method based on the Generalized Hough Transform.
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Part I.

Medical imaging techniques
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2. Existent medical imaging

techniques

Medical imaging, in its general form, is de�ned as a medical diagnosis subdiscipline
involving (noninvasive) scienti�c study of the human organism aimed at the acquisition
of human body images. From the technical point of view, that is the main objective of
this work, medical imaging is considered as a noninvasive process used to create images
of the inner anatomical structures.

Modern medical imaging is mainly presented by a number of modalities that utilize
such physical phenomena as X-rays, nuclear magnetic resonance, ultrasound re�ection
and electrical activity in the human body. Regardless of the selected modality the mod-
ern medical image acquisition holds on the typical scheme that consists of the following
sequence of steps: body scanning and image reconstruction (i.e. medical imaging tasks,
Chapter 3), image processing and analysis (see Chapters 4 - 6), with optional storage of
the images in a picture archiving and communication system (PACS)[89].

In the next sections we will shortly discuss the most important existent medical
imaging techniques and present two experimental scanning systems for reconstruction
of 3D surfaces of human organs based on tracked 3D ultrasound.

2.1. Radiography

X-ray is a form of ionizing electromagnetic radiation that was discovered by Wilhelm
Röntgen in 1895 while he was experimenting with cathode tubes. A cathode tube
consists of a vacuum tube with a cathode and an anode. The electrons released at the
cathode by thermal excitation are accelerated toward the anode by a voltage between
the cathode and the anode. These electrons collide with the anode and release their
energy in the form of X-rays and characteristic radiation.

Due to their ionizing nature, X-rays exert a harmful in�uence upon biological tissues.
They can break molecular bonds, especially those of DNA and hence bare a potential
risk of radiation induced cancer.

In medical imaging the most signi�cant feature of X-ray beams is associated with
their attenuation while passing through biological tissues that is described by the
Beer�Lambert law [185]. Using this property of X-rays and special detectors (�lms,
storage phosphor screens, photo-conductors and digital matrices) the beams can be cap-
tured and converted to images (radiographs). The resolution of the radiographs mostly
depends on the focus size of the X-ray tube, the spatial resolution of the detector and
the amount of X-ray scattering inside the body. Modern radiography uses digital detec-
tors with scatter grids that are able to �lter scatter by absorbing photons with a large
incidence angle and passing photons with a small one. Such scanning systems allow
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2. Existent medical imaging techniques

Figure 2.1.: Historical scan of Albert von Köllikers hand made by Wilhelm Röntgen
in 1896 (left). Modern chest X-ray, a 56 year old male with a suspected
hamartoma (right), JSRT free digital image database [179].

producing image resolution up to 30 µm per pixel, that is su�cient for the most medical
applications.

Today X-rays are widely used for skeletal and chest imaging, mammography, dental
imaging, �uoroscopy and angiography. However, it should be taken into account that
even small doses of X-ray radiation are capable to damage cells, that can lead to cancer
or genetic changes. Decreasing the radiation dose, in turn, has negative e�ect at the
signal to noise ratio of radiographs as the noise amplitude is proportional to the square
root of the signal amplitude [185]. In spite of the fact that the modern medical radiog-
raphy provides good quality of images and much less su�ers from artefacts than other
modalities, it gradually gives way to other medical imaging techniques.

2.2. Computed Tomography

Computed tomography (CT), or X-ray computed tomography, is a medical imaging
modality that utilizes computer-processed X-rays to produce cross-sectional images of
the body. The �rst CT scanner was developed in 1972 by Godfrey Houns�eld (engineer
at EMI Ltd.), and was based on the mathematical theory developed by Allen Cormack.
The basic architecture of a CT scanner is represented by a X-ray source that rotates
around the scanned object, placed in the rotation center, and X-ray sensors that are
positioned on the diametrically opposite side from the X-ray source relative to the patient
body. The X-ray source produces a geometrically narrow X-ray beam of intensity I0 that
traverses the scanned body along the line L(ρ, θ) and is detected by the sensors. If the
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2. Existent medical imaging techniques

X-ray source-sensors system is rotated parallel to XY plane, then L(ρ, θ) de�nes the
line that makes an angle θ with the Y-axis at distance ρ from the origin.

Accordingly to the Beer�Lambert law, the intensity pro�le I(ρ, θ) of the outgoing
beam can be calculated by the formula:

I(ρ, θ) = I0 e
−

∫
L(ρ,θ) µ(x,y)ds,

where µ(x, y) is the unknown attenuation function. Using this relation the projection
of µ(x, y) along the angle θ is calculated as:

p(ρ, θ) = −lnI(ρ, θ)

I0

=

∫
L(ρ,θ)

µ(ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds, (2.1)

that is nothing else as the Radon Transform [161] of function µ(x, y).
The set of all projections p(ρ, θ) for some discretion of the parameters ∆ρ and ∆θ

represents a 2D dataset called a sinogram. The main computation problem of CT is to
reconstruct the unknown function µ(x, y) from the given set p(ρ, θ), i.e. to calculate the
inverse Radon Transform of the sinogram. This problem can be solved using di�erent
reconstruction algorithms [88] including simple backprojection, �ltered backprojection
(convolution), series expansion, and direct Fourier reconstruction using the Projection-
slice theorem [185]. The numbers provided by the reconstruction algorithm are gathered
into a 2D image, each pixel of which represents a CT number (CTN, measured in
Houns�eld units) that is related to the linear attenuation coe�cients µ as CTN =
1000(µ− µw)/µw, where µw is the linear attenuation coe�cient of water. The scanning
and reconstruction procedures are repeated with sequential shifting of the scanned body
along the Z-axis. This produces a stack of 2D images that can be combined into a single
3D volume. This scanning principle (also known as circular CT) roughly describes how
the �rst CT scanners worked.

Since the invention of CT in 1972, a series of scanner generations has been developed.
Each generation added new features into the scanner architecture, improved the recon-
struction method, the image quality and the speed of the scanning process. A number
of modi�cations of the basic CT scanning approach were proposed [88, 185], including
helical (spiral), multi-slice and ultrafast (cardiovascular). The majority of the modern
CT scanners have an increased number of detectors (as well as X-ray tubes) and are
able performing data acquisition using cone-beams and reconstruction images directly in
three dimensions (circular or helical reconstruction). They are based on the 3D inverse
Radon transform [79] that is commonly computed using some 3D modi�cations of the
�ltered backprojection algorithm [185].

The image quality of CT mostly depends on the scanner architecture, the properties
of the X-ray sources and the detectors, as well as the features of the reconstruction
algorithm. Modern clinical scanners can provide �ne in-plane image resolution of less
than 0.5 mm per pixel with the e�ective slice thickness of about 0.5 mm. On the
other hand, CT often su�ers from electronic noise (normally distributed), quantum noise
(Poisson statistics) and a number of artefacts such as scatter, undersampling, streak,
windmill, stairstep, motion etc. However, the main disadvantage of CT is concealed
in extremely high radiation dose that is 10 to 100 times higher than in radiography
and hence increases the radiation induced cancer risk. The relationship between image
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2. Existent medical imaging techniques

Figure 2.2.: Head-neck CT data consisted of 130 slices (512 x 512), TCIA free digi-
tal image database, National Cancer Institute (top). The corresponding
3D texture-based visualisation with di�erent tissue transparency (bottom)
using MITO, open-source medical imaging toolkit.

quality and dose D can be approximated as D ∝ s2/(e3b), where s is the signal to noise
ratio, e is the image spatial resolution, and b is the slice thickness [88].

In spite of this, CT is an important modality for organ visualization and is widely
used in clinical practice for the variety of purposes including investigations of head,
thorax, abdomen, urogenital tract and musculoskeleton system. Together with ECG
synchronization CT is utilized in cardiovascular investigations for 4D (3D + time) heart
image acquisition.

2.3. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique that is based on
the nuclear magnetic resonance (NMR) phenomenon of nuclei inside the body [88]. The
NMR is explained within the theory of quantum electrodynamics as resonant absorption
and re-emission of electromagnetic energy by atomic nuclei with nonzero spin in an
external magnetic �eld at a speci�c resonance frequency. This phenomenon was �rst
described and measured in molecular beams by Isidor Rabi in 1938 [160]. After this a
number of attempts to apply NMR in the �eld of medical imaging were made by several
groups of scientists [47]. However, the most successive approach was proposed in 1973
by Paul Lauterbur [121], who introduced gradients in the magnetic �eld. Several years
later Peter Mans�eld developed a mathematical technique that allowed this modality to
produce fast and relatively clear cross-sectional images of the body.
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2. Existent medical imaging techniques

Figure 2.3.: Images of the heart cycle events (sagittal view) obtained from T2-
weighted cardiac MRI (1.5 Tesla, 1.56 mm/pixel), University Medical Centre
Mannheim, Institute for Clinical Radiology and Nuclear Medicine.

The quality of MRI depends on the physical properties of the scanner, the scanning
procedure and the image reconstruction method. Modern MRI scanners can provide
image resolution less than 1 mm per pixel. But it should be noted that MRI highly
su�ers from thermal noise in the scanned tissue and the noise in the electronic signal
receivers. Several image artefacts are possible due to deviations of the main magnetic
�eld, non-linear magnetic �eld gradients and discretization inaccuracies during image
reconstruction (wrap-around, ringing) [88, 185].

Because of utilization of nonionizing radio waves, MRI is considered to be a safe
medical imaging modality, that is the principle advantage of this technique. The main
limitation of MRI consists in complete prohibition of ferromagnetic objects (including
cardiac pacemakers and implants) in the MR examination room due to the strong static
magnetic �eld.

In spite of extremely high costs of MRI equipment (US$1 - 2.5 million for a scanner),
it is actively developed and applied in medical imaging of all parts of the human body
that contain hydrogen (i.e. with exception of bones, lungs and gastrointestinal tract).
Together with the convenient MRI a number of specialized MRI techniques (functional,
di�usion, real-time MRI) have been invented since the last time. The current devel-
opment of MRI is focusing on improvement of the image quality and reduction of the
acquisition time by application of higher magnetic �elds (up to 9.4 Tesla) and alternative
reconstruction algorithms.

2.4. Nuclear medical imaging

Nuclear medical imaging is a medical imaging modality that is based on detection of
photons emitted from a radiopharmaceutical (tracer) introduced into the patient body.
This modality is mainly represented by two medical imaging techniques, single-photon
emission computed tomography (SPECT) and positron emission tomography (PET).

In SPECT, tracer molecules carrying gamma-emitting radionuclides are injected into
the bloodstream of a patient. Spreading with the blood in the body the tracer molecules
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2. Existent medical imaging techniques

are involved in metabolic processes. The bound radionuclides emit γ-rays that can be
detected by gamma-cameras [88, 185]. This allows estimating the concentration and
location of the tracer molecule in the body and therefore allows measuring metabolism.
First SPECT scanners were developed in early 1960s and have been incessantly im-
proved till today. A common SPECT scanner receives multiple projections of the areas
containing tracer molecules and reconstructs them into 3D images similarly to CT. Due
to very small number of photons that are acquired by the gamma-cameras, the detect-
ing system of SPECT must be much more sensitive than the one of CT, that results in
relatively low signal to noise ratio and poor image quality of SPECT imaging.

A more e�cient nuclear medical imaging technique is PET. It is based on detection
of photon pairs produced in the body after positron-electron annihilation. Injected
into the bloodstream tracer molecules carry radioisotopes that emit positrons. Each
emitted positron travels through the tissue and interacts with an electron producing a
pair of photons moving in opposite directions. This pair of photons can be detected by
scintillation cameras that form a ring around the patient. So, each time two photons
are detected by any pair of oppositely located cameras simultaneously (e.g., within 10−9

seconds) this event is registered and the corresponding tracer molecule is assumed to
be located within a line segment between these cameras. The energy of the detected
pair of photons is used to estimate linear attenuation of the tissue along the line. The
registered lines that belong to the same slice form a sinogram, that can be reconstructed
into a 2D image. The reconstruction is performed similarly with CT (although it is
more complicated due to the low number of registered photons) using �ltered back
projection or Bayesian approaches (maximum-likelihood or maximum-a-posteriori) [185].
The reconstructed 2D images can be grouped slice-by-slice into 3D volumes. However,
modern PET scanners allow reconstructing 3D images directly by detection of the pairs
of photons both in the transverse plane and the oblique planes. Some improvement
to PET has been recently introduced by so-called time-of-�ight technique. It allows
measuring time delay between detection of photons in a pair and therefore estimating
the region of photon emission. This information is used to improve the image quality.

Figure 2.4.: Hybrid MRI-PET imaging of brain (The Whole Brain Atlas, Harvard Me-
dical School). T2-weighted transaxial view of head (left), the correspond-
ing PET using �uorodeoxyglucose tracer (center), the result of registration
MRI-PET (right).
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The image resolution of SPECT and PET is signi�cantly poorer than in the other
medical imaging modalities. In PET imaging two points are distinguished if the spatial
distance between them is not less than 5 mm. For SPECT this value is about 1 cm.
Image quality of PET and SPECT depends on the number of detectors, their resolution,
and the properties of the utilized tracer. Nuclear medical imaging signi�cantly su�ers
from noise and artefacts caused by false attenuation correction and scatter. Another
problem of this modality consists in handling and high costs of radiopharmaceutical
that normally have a short half-life and with a few exceptions must be produced by a
cyclotron in the hospital.

Nuclear imaging involves signi�cant exposure to ionizing radiation that is compa-
rable to CT and can seriously harm patients. Furthermore, the injected radiopharma-
ceutical remains in the body for hours or even days after the clinical examination is
�nished. This is a limiting factor for all-round application of this modality in clinical
practice. In spite of these disadvantages, nuclear imaging remains the most accessible
approach to measure metabolic processes in the patient body. Nowadays it is the only
practical alternative in studies of bone metabolism, myocardial perfusion and viability,
lung embolism, tumors, and thyroid function [185]. As an alternative to more mod-
ern and expensive MRI, PET can be utilized for functional neuroimaging (Brain PET,
Figure 2.4). Together with this nuclear imaging is recently used as a part of so-called
hybrid systems, when PET and SPECT are combined with CT or MRI in one imaging
system for complex investigation of tissue structure and metabolic processed inside it.

2.5. Ultrasound

Ultrasound imaging (echography) is based on interactions of propagating longitudinal
compression waves (normally in MHz ultrasonic frequency range). The ultrasonic waves
are typically generated by piezoelectric crystals that deform under the in�uence of an
electric �eld. The deformation of the piezoelectric crystals causes variable acoustic
pressure (regions of high and low particle density) in the medium that propagates as
a wave parallel to the deformation vector. After a wave generation the piezoelectric
crystal switches into the receiver mode and transforms the mechanical energy of the
re�ected waves back into an electric signal. Considering this property (conversion of
one form of energy into another form) the devices based on piezoelectric crystals are
called transducers. The received signals are measured as a function of time, that makes
it possible to calculate the distance from the transducer to the re�ecting or scattering
objects if the the velocity of the ultrasonic wave in the medium is known.

2.5.1. Conventional 2D ultrasound

Ultrasound imaging was �rst developed in early 1900 for military and industrial appli-
cations after the work of Pierre Curie (1880) and Lord Rayleigh (1877) [166]. In the
medical �eld it was �rst applied in 1942 [59] and was intensively developed during the
next two decades. During this period such techniques as 2D gray scale and Doppler ul-
trasound appeared. The �rst 2D gray scale real-time ultrasound imaging was developed
in 1965 by Siemens. Ultrasound imaging was steadily improved during the next three
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decades and has become one of the most widely used medical image modalities.
From the point of view of ultrasound imaging each homogeneous tissue can be char-

acterized by its acoustic impedance Z that is the ratio of the acoustic pressure p to the
particle velocity response v. From another hand, it can be shown that Z depends on
the mass density ρ and acoustic wave velocity c in the medium: Z = ρc, [185]. If the
acoustic pressure of the wave is small enough, the wave propagation in a homogeneous
media is described by the linear wave equation:

∇2p =
1

c2

∂2p

∂t2
. (2.2)

The wave propagation in a homogeneous tissue described by (2.2) is accompanied
by such physical phenomena as wave di�raction, attenuation, re�ection and refraction
[88].

Wave di�raction is caused by complex interference of multiple coherent waves origi-
nating from di�erent sources and can be constructive (the waves amplify) or destructive
(the waves vanish). Di�raction of ultrasonic waves produces a complex interference pat-
tern that is de�ned by the properties of tissue, the amplitude, phase and frequency of
the waves; and their spatial origin.

Attenuation is the decrease of the acoustic energy of the wave (wave amplitude) dur-
ing propagation. It depends on the wave frequency and is described by the exponential
law [185]:

H(f, x) = e−α0fx, (2.3)

where f is the frequency, x is the distance propagated through the tissue and α0 is
the attenuation constant of the particular tissue. From this equation follows that high-
frequency waves are more liable to attenuation that the low-frequency ones.

Wave re�ection and refraction appear when an acoustic wave crosses the interface
between tissues with di�erent densities and sound velocities. In this case a part of the
acoustic energy is re�ected from the interface while another part is transmitted further.
This process can be described by the Snell's law for pure specular re�ections:

sin θi
c1

=
sin θr
c1

=
sin θt
c2

, (2.4)

where θi, θr and θt are the angles of incidence, re�ection, and transmission (refraction)
correspondingly. Values c1 and c2 stand for the sound velocities in the incoming and
the outgoing tissues respectively. The frequency of the refracted and re�ected waves
stay the same as the incidence one, but their amplitudes are changed accordingly to the
transmission (T ) and re�ection (R) coe�cients [185]:

T =
At
Ai

=
2Z2 cos θi

Z2 cos θi + Z1 cos θt
, R =

Ar
Ai

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

,

where Ai, Ar, and At are the incident, re�ected and transmitted amplitudes and Z1 and
Z2 are the acoustic impedances of the tissues.

With increase of wave amplitude the linear propagation law (2.2) is no longer valid.
In this case such physical phenomena as distortion appears. Distortion is associated
with change of the waveform during propagation and generation of higher harmonics
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of the original frequency. The e�ect of non-linear distortion increases with propagation
distance.

The biological tissues are inhomogeneous, therefore the pure specular re�ections
described by (2.4) are contributed by scatter re�ections. Such re�ections can be modelled
by a set of small inhomogeneities in the tissue that retransmit the incident wave in all
possible directions (Huygens principle). This results in backscatter (waves directed back
to the transducer) and wave di�raction. The backscatter in ultrasound imaging has a
complex nature that can be described by two principle components: Rayleigh- and Mie
scattering. Rayleigh scattering is produced by the tissue inhomogeneities that are much
smaller than the wavelength, while the Mie scattering is caused by particles with the sizes
comparable to the wavelength. Intensity of Rayleigh scattering is proportional to the
fourth degree of the wave frequency and is identical in the forward and reverse directions,
while the intensity of Mie scattering is roughly independent of the wave frequency and is
larger in the forward direction. In both cases backscatter can be considered as a special
type of noise that provides additional information about the structure of the tissue that
is often used in analysis of ultrasound images.

Modern ultrasound scanners are able to reconstruct detected ultrasonic signals us-
ing two approaches, gray scale imaging and Doppler imaging. Gray scale imaging is
represented by A-mode, B-mode, C-mode and M-mode.

Figure 2.5.: B-mode ultrasound images of the heart, apical four-chamber view (left) and
parasternal long axis view with the mitral and aortic valves (right). Uni-
versity Medical Centre Mannheim, Department of Medicine I, Cardiology.

A-mode (amplitude) is the basic scanning mode that utilizes the principle described
above. After the pulse transmission the transducer is used as a receiver and records the
specular and scattered re�ections as a function of time. Assuming that sound velocity
in the tissue is known, the time can be translated into the distance and the structure of
the re�ectors can be visualised along the wave propagation line using the amplitudes of
the received signal.

In B-mode (brightness) imaging the A-mode is repeated by translating or tilting
the transmitter and the receiver in space. This produces a 2D gray scale image of
the tissue de�ned by the used transmitter movement (Figure 2.5). Modern ultrasound
transducers contain an array of piezoelectric crystals that allows moving the ultrasonic
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beam by electronically switching the crystals sequentially (linear-array transducers) or
in a phased manner (phased-array transducers).

In M-mode (movement) imaging the A-mode is repeated for a static transducer and
a moving object. As the result a 2D image of the object movement within the scanned
line can be obtained.

The C-mode allows obtaining images of planes parallel to the surface of the trans-
ducer. It can be achieved by rotating or wobbling a transducer in B-mode to acquire
images sequentially from di�erent scan planes. In order to avoid mechanical movement
of the transducer, electronic switching can be applied by utilization of 2D phased arrays
(see 3D ultrasound, Section 2.5.2).

A series of standard steps is used for image reconstruction in all modes of gray scaled
imaging. These steps include �ltering, envelope detection, attenuation correction, log-
compression, and scan conversion [185].

Doppler imaging allows visualizing velocities of moving tissues. This technique is
represented by three modes: continuous wave (CW), pulsed wave (PW), and color �ow
(CF) Doppler (Figure 2.6, 2.7). For tissue velocity visualization CW Doppler uses the
Doppler e�ect, while PW and CF Doppler imaging are based on pulse-echo principle
and calculate the velocity using time delay or phase shift between subsequent received
pulses. Considering image dimensionality PW Doppler is equivalent to the M-mode,
while CF Doppler corresponds to the B-mode. Due to the higher number of ultrasonic
pulses needed for PW and CF Doppler, these techniques are commonly several times
slower than the gray scaled imaging.

Spatial resolution of echography is relatively high and depends on the used wave
frequency. Due to its anisotropic property, the spatial resolution consists of the axial,
lateral and elevation terms. The axial resolution is commonly better than the lateral
and the elevation ones. The lateral and the elevation resolutions highly depend on the
size, the shape and focusing of a transducer. The range of wave frequencies used in
medical ultrasound (commonly between 1 and 20 MHz) provides the axial resolution of
up to 0.1 - 0.5 mm per pixel, that is often better than the resolution of the other medical
imaging modalities except radiography. On the one side, the range of the used ultrasonic
frequencies depends on the resonance frequency of a transducer, that, in turn, is de�ned
by the thickness of the piezoelectric crystals. On the other side, it is a trade-o� between
the spatial resolution and the strength of the wave attenuation e�ect (2.3) that results
in the maximal imaging depth (�eld of view, FOV).

Temporal resolution of ultrasound imaging is among the highest of medical image
modalities. It is mainly de�ned by the number of ultrasonic pulses used to acquire
one image and the FOV. In dependence with the selected imaging mode echography
can provide tens of images per second (normally 10 - 60 images/sec). Unfortunately,
ultrasound imaging su�ers from a number of speci�c artefacts such as side lobes caused
by imperfect shape of the ultrasound beam, and reverberations associated with recurring
re�ections of the waves from the transducer. Acoustic shadowing and enhancement,
multiple pathway and refraction artefacts [88] can also signi�cantly reduce the image
quality. Due to scatter re�ections ultrasound images often look more noisy than images
from the other modalities. However, unlike many other medical imaging modalities, the
scatter noise here carries additional information about the tissue structure.
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Figure 2.6.: Doppler ultrasound images of the heart. From left to right: M-mode +
Doppler and M-mode (top); PW and CW Doppler (bottom). University
Medical Centre Mannheim, Department of Medicine I, Cardiology.

Figure 2.7.: 3D cardiac ultrasound images acquired using the novel Philips iE33 xMA-
TRIX Echocardiography System. Apical view of the mitral valve, 3D + CF
Doppler (left); right ventrical and tricuspid valve (right). The images are
taken from http://www.healthcare.philips.com.
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Ultrasound imaging is a safe and relatively cheap imaging modality. Moreover,
it is highly transportable and does not require any special infrastructure. The only
side-e�ects that can potentially harm patient are associated with tissue heating and
cavitation. But, fortunately, these e�ects can be fully controlled by the settings of an
ultrasound scanning system. Due to the considered advantages, nowadays echography
is one of the most popular medical image modalities. It is applied in a wide range of
investigations of almost all parts of the body.

2.5.2. 3D ultrasound

The technique, based on 2D phased array transducers, is also known as 3D ultrasound
for its ability to reconstruct 3D volumes of the scanned area. It was �rst described
already in 1956 [98], but active development in this �eld started only after the patent
of von Ramm and Smith in 1987 [196]. The �rst commercial 3D ultrasound machine
was produced in 1989 by Kretztechnik AG (Zipf, Austria) [166]. Unfortunately, due to
the large number of piezoelectric elements 2D phased arrays transducers are still quite
bulky and the image reconstruction time is relatively big. In spite of this, commercial
3D ultrasound imaging system have become recently available. Today they are mostly
used for 3D/4D (3D + time) visualization of fetus and the heart [100] (Figure 2.7).

3D ultrasound imaging systems based on 2D phased arrays are often called fast
acquisition systems, because they are able to scan a selected 3D local region of an object
�at once� in a very short period of time [197]. Along with 2D phased arrays the fast
acquisition systems can utilize fast rotating 1D phased array transducers [54]. Such
systems are the most convenient solution for fast 3D imaging of local object regions
(such as the cardiac valves), though in many cases they are not able to cover the whole
organ of an investigated patient.

The most recent research in the �eld of 3D ultrasound imaging is related to devel-
opment of sequential triggered and freehand tracked 3D ultrasound systems (see Sec-
tion 3.1). The main idea of tracked 3D ultrasound consists in utilization of position
tracker devices for estimation of the transducer's spatial location and orientation during
scanning. Using the known pose of the transducer in the global coordinate space, all
received ultrasound data can be reconstructed into a single 3D volume that covers the
whole scanning area. Position tracking can be used both with 2D and 3D ultrasound for
extended 3D imaging, improved data representation and navigation. First the principle
of tracked 3D ultrasound was described in early 1980s [28], however development of
real-time tracked 3D ultrasound systems is actual until now.

Along with tracked 3D ultrasound, several authors are working on sensorless free-
hand 3D ultrasound methods [72, 73, 97]. Here the relative positions of slices in 3D
are not measured by a tracking system but are de�ned using some features within the
images themselves or by the assumption that the transducer is moved along a straight
path with constant orientation and speed. In spite of the fact that this technique cannot
yet provide accurate image reconstruction and requires high operator skills, it has been
implemented in some commercial ultrasound systems (e.g. Siemens ACUSON X300,
Philips CX50).

Since the last two decades the �eld of research in ultrasound medical imaging has
been gradually shifting from 2D to 3D [63]. Often in literature 3D ultrasound is related

24



2. Existent medical imaging techniques

to all ultrasound imaging techniques that are able to acquire 3D images (not only those
ones based on 2D phased array transducers, but also tracked and sensorless freehand
ultrasound and all fast acquisition systems). 3D ultrasound have shown a number of ad-
vantages over conventional 2D ultrasound [166]. It provides more natural representation
of surfaces of biological structures (that is actively used today e.g. in fetal examina-
tions) and allows more accurate measurement of organ volume. 3D ultrasound imaging
is able to visualize objects in 2D cross-sectional planes that are physically inaccessible
with the conventional 2D techniques (e.g. parallel to skin), to provide more data for
accurate diagnostics and geometry reconstruction of patients organs [189]. Signi�cant
contribution of 3D ultrasound has been introduced to echocardiographic examinations
(Figure 2.7), allowing direct assessment of ventricular volume and mass, examination of
speci�c cardiac abnormalities, myocardial performance and contraction [100, 201].

Despite all the listed above advantages, such problems as poor image quality and
insu�cient spatial coverage are still acute for 3D ultrasound imaging systems and re-
quire further investigation. The latest reports in this �eld show signi�cant improvement
of real-time imaging quality resulting from application of parallel computing (e.g. re-
placing existing FPGA- and CPU-based processing functions by CUDA in new Siemens
ACUSON SC2000). Today, the opportunity to extend the spacial coverage of echog-
raphy by developing mechanical and freehand tracked 3D ultrasound systems excites a
big interest for future investigations. In the next chapter we will discuss tracked 3D
ultrasound and introduce two experimental imaging systems based on this idea.
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ultrasound scanning systems

3.1. State of the art

Tracked 3D ultrasound is an imaging technique based on the advantages of both the
convenient ultrasound imaging and tracking (positioning) systems. Utilization of the
known spatial position of the ultrasound transducer allows treating the acquired ultra-
sound images as interrelated slices similarly to the basic principles of tomography and,
therefore, to reconstruct them into a single 3D volume or (after segmentation) into a
point cloud.

The idea of tracking the position of a transducer and gathering 2D ultrasound im-
ages into a single 3D volume is far from novel. The �rst experimental systems based on
this principle were proposed in late 1970s - 1980s and used magnetic [159], acoustic [28],
mechanical [182], optical [24, 143], inertial motion (accelerometer) tracking systems or
their combinations [77]. However, these systems were quite complicated, slow and did
not provide high reconstruction accuracy. During the last decade a lot of publications
and research work was dedicated to the problem of engineering and improvement of
the systems for tracked 3D/4D ultrasound data acquisition, interpretation and analysis
[166, 19, 190, 191, 77, 46, 158, 186]. Along with the engineering problems these develop-
ments considered such questions as volumetric reconstruction of inner tissue structures,
volume interpolation, device calibration and parallel acceleration. In spite of the fact
that volumetric reconstruction is becoming increasingly popular today, visualization of
anatomical surfaces has an important role in orthopaedics (diagnosis of bone fractures),
cardiac and abdominal diagnostics. Reasoning from this, here we concern the prob-
lems of development and evaluation of tracked 3D ultrasound imaging systems for 3D
reconstruction of surfaces of anatomical objects and the corresponding medical image
analysis.

Similarly to tomography, tracked 3D ultrasound needs an explicit step that trans-
forms ultrasound data from a set of 2D images into a 3D space. A number of notable
algorithms has been proposed for solution of this problem [181, 107, 158]. Nevertheless,
the main attention there is focused on the problem of reconstruction of ultrasound data
into a regular grid, that can be represented similarly to CT or MRI as a 3D volume.
Such an approach is a suited solution for reconstruction of dense 3D ultrasound data
where the inner structure of scanned organs and the corresponding intensities of vox-
els are important. However, in the case of surface reconstruction, processing of large
3D volumes can be successfully avoided. The ultrasonic data acquired for 3D surface
reconstruction is presented by an irregular set of binary contours and therefore is rela-
tively sparse. This allows using the point cloud model directly and avoiding additional
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memory consumption and computations needed for regular grid reconstruction and in-
terpolation. Furthermore, the increasing power of modern computers along with the
highly-optimized programming libraries [162, 168] are making it possible to operate
with point clouds e�ciently.

Nowadays, tracked 3D ultrasound imaging is presented by two principle branches:
freehand- [189] and sequential triggered [26] scanning.

Freehand scanning systems allow an operator to move the transducer manually in 3D
space, while its coordinates are continuously computed by a tracking device. This makes
freehand ultrasound a convenient and a powerful tool for 3D medical imaging. Gener-
ally, the freehand ultrasound scanning systems can be equipped with various position
trackers that provide di�erent accuracy [63, 92] and are based on one of the acoustical
[28], electromagnetic [19, 159], electromechanical [74], optical [190] or �bre optical [48]
principles. The optical and electromechanical position trackers (electromechanical arms)
are of particular interest here as they provide the best cost-accuracy relation. In spite
of the high accuracy and �exibility, optical tracking in some cases can be inconvenient
for clinical usage as it requires a direct optical contact with the tracked tool (that is not
always possible). From this point of view the electromechanical position trackers are
more preferable.

One of the �rst freehand scanning systems equipped with an electromechanical arm
was developed in 1982 by Geiser et. al. [74] and was used for calculation of left ven-
tricular wall motion. The system was clinically tested and provided the accuracy of
positioning a cross-section of the long axis of 6 mm. This result was promising and
corresponded to the state-of-the art ultrasound and tracking technologies. However, for
the past thirty years ultrasound imaging and positioning devices have been continuously
developed and improved. Therefore, estimating the accuracy of a modern freehand 3D
ultrasound system based on this principle is particularly interesting.

Sequential triggered scanning systems, in turn, make use of stepper motors for pro-
grammable 3D-positioning of the transducer and its coordinates calculation. They can
be considered as fast and automated but spatially-restricted analogue of the freehand
scanning systems. Today the sequential triggered scanning principle is most successfully
presented in clinical mammography (automated breast volume scanners developed by
Siemens and General Electric) for 3D volume reconstruction. These scanners are able
to provide high-resolution ultrasound volumes up to 15cm x 17cm x 5.0cm. Unfortu-
nately, similar systems are still not widely applied in orthopaedics, traumatology and
cardiology because of their complexity, need for high experienced medical sta�, still low
level of automation and, as the result, prolongation of the diagnostic and surgical time.
So, the problem of developing an e�ective automated ultrasound imaging system in the
mentioned clinical branches is quite acute today.

Regardless of some speci�c features all tracked 3D ultrasound imaging systems con-
sist of the common principle functional modules (Figure 3.1): transducer, ultrasound
machine, tracking device and workstation.

The signal received from the transducer is reconstructed by the ultrasound machine
into 2D(3D)-scans and is sent to the workstation. At the same time the workstation reads
the information about the transducer position and orientation from the tracking device
and realigns the acquired scans in 3D space correspondingly to the actual position of the
transducer. Finally, the transformed ultrasound data is reconstructed into 3D volumes
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Figure 3.1.: Principle functional modules of a tracked 3D ultrasound imaging system
(T - transducer, US - ultrasound machine, TD - tracking device, WS -
workstation).

or surfaces and visualized. Additionally, the functional modules can be extended with a
time-synchronization module (usually based on a ECG-device) for 4D image acquisition,
and a server for data storage or communication with a PACS.

The choice between the freehand and the sequential triggered scanning often de-
pends on its application. For example, compact tissue areas with relatively simple sur-
face geometry and easy access (e.g. the long bones of the extremities) can be scanned
automatically by use of sequential triggered systems. In the case of a more complicated
tissue shape and di�cult to access locations (e.g. inner organs of abdomen and thorax,
neck) automated systems can be quite complicated and it is often easier to use free-
hand tracked 3D ultrasound. In the following sections we consider each of these two
approaches, develop two experimental scanning systems based on the freehand- and the
sequential triggered principles, evaluate the accuracy and discuss their possible practical
applications.

3.2. Motivation and objectives

As it was mentioned in the previous chapter, all existent medical imaging modalities
have a number of speci�c advantages as well as drawbacks. One of the most signi�cant
drawback is related to the harm to the patient health appearing during the scanning
procedure. Such modalities as radiography, CT and nuclear medical imaging involve
considerable exposure to ionizing radiation, that produces a risk of damage to DNA and
subsequently can cause cancer. However, there are two modalities, MRI and ultrasound,
that are considered to be relatively safe for patients. MRI is an excellent medical imaging
technique providing 3D/4D images of high quality and resolution, but unfortunately
today it su�ers from extremely high costs for equipment, infrastructure and maintenance.
Hospital departments have to spend millions of dollars for an average MRI scanner and a
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specially equipped room, isolated from a strong magnetic �eld, external radio frequency
signals and supporting safe utilization of superconducting electromagnets.

From this point of view ultrasound imaging is obviously a much more preferable
technique, as it is tens (sometimes even hundreds) times cheaper, does not require special
infrastructure and is easy in maintenance. However, the disadvantage of ultrasound
imaging consists in its comparatively low image quality (though the spatial resolution
is commonly high) caused by a number of speci�c acoustic artefacts and the nature of
ultrasound itself, that is able to visualize only the scatter density and the tissue interfaces
re�ecting ultrasonic waves. 3D ultrasound, that has recently appeared in commercial
scanners, can cover rather restricted 3D volumes (such as parts of organs) and cannot
be applied for the whole body visualization. That is why the solutions that improve the
imaging quality and extend the possibilities of the conventional ultrasound to acquire
3D/4D images of large spatial regions of the body are essential today. And one of such
solutions is represented by the tracked 3D ultrasound.

Considering orthopaedics and trauma surgery, application of conventional projec-
tive radiographs, CT and MRI is also frequently restricted on practice. Namely, CT
provides excellent 3D image quality but it's usage is limited because of the high ra-
dioactive dose. X-ray images successfully provide information about axial deformities of
bones. But owing to their projective nature, measurements of lengths and detection of
small fractures are often considered as inaccurate, while measurements of torsion angles
are practically impossible. Through the fact that human bones contain relatively small
amount of hydrogen atoms, MRI does not provide good representation of bone struc-
tures. 3D tracked ultrasound, in turn, can be used for diagnostics of bone fractures and
deformities as well. It is able to provide riskless, non-invasive and very compact tools
for trauma surgeons.

Our objectives in this chapter are to develop two prototypes of the scanning systems
based on the tracked 3D ultrasound for reconstruction of anatomical surfaces of a) viscera
and b) the long bones of the extremities; to measure their accuracy and to compare it
with the accuracy of the existing medical imaging modalities. The developed systems
must satisfy the following requirements:

� non-invasiveness,

� easy in implementation,

� compact size,

� low costs.

3.3. A freehand tracked 3D/4D ultrasound imaging

system for tissue surface reconstruction

The developed scanning system is based on the conventional 2D ultrasound (B-mode)
and is equipped with an universal electromechanical tracker (electromechanical arm) for
digitizing 3D coordinates of the ultrasonic transducer. We consider the architecture of
the system and its calibration using a plane phantom, carry out basic validation of the
setup on a porcine heart specimen and discuss its basic functionality and features.
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3.3.1. Material and methods

System architecture

The system consists of the standard functional blocks (Figure 3.1) including a 2D ultra-
sound machine with several transducers, a tracking system, a workstation and (option-
ally) an ECG device for temporal synchronization (Figure 3.2).

Figure 3.2.: Principle functional modules of the tracked 3D/4D ultrasound imaging sys-
tem based on Immersion MicroScribe digitizer.

The ultrasound data are acquired using a linear transducer (linear array HL7 5-8
MHz 40 mm, convex array C3.5 2-5 MHz 60 mm or phased array 1.5-3 MHz). Position
tracking is performed using the electromechanical arm Immersion MicroScribe.

The decision to use an electromechanical arm was made after comparison of this
approach with several alternative techniques. We tested the system with an optical
stereo-camera and a multiple-camera tracking device. Other types of trackers have not
been considered due to either lower measurement accuracy or di�culties with their
application within a portable system.

First experimental setups started with an optical position sensor NDI Polaris Vicra
with the measurement accuracy of 0.35 mm root mean square (RMS). The ultrasound
transducer was marked with an optical tool, consisted of 4-5 light re�exive spheres of 8
mm diameter forming an unique geometric pattern. During scanning the transducer with
the optical tool was tracked by the position sensor and the coordinates of the transducer
were reconstructed at the workstation. However, a number of clinical experiments with
cardiac ultrasound demonstrated a signi�cant drawback of this approach. The position
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sensor required a direct optical contact with the optical tool �xed on the transducer.
Keeping this condition during data acquisition was problematic due to the special clinical
requirements to the positions of a patient and the locations of ultrasonic acquisition
windows. Frequently the optical contact was broken by physicians. As the result, the
scanning process became rather time-consuming and required special attention from the
side of medical personnel.

Therefore, an alternative solution was proposed. The optical system was replaced
by the electromechanical arm (digitizer) Immersion MicroScribe with the measurement
accuracy of 0.21 mm RMS (Figure 3.2). A series of experiments showed that this
approach is more robust to incautions during operation and introduces less inconvenience
to the scanning procedure. Providing six degrees of freedom (6-DOF) the digitizer with
the �xed transducer allow scanning patients from various directions within the operative
volume of radius 0.5 m without changing the initial setup of the system. The only
drawback of this approach consists in the requirement that the digitizer must be located
at the same place during the whole acquisition procedure. Otherwise a rigid reference
marker must be used to link the coordinate systems after each reposition of the device.
However, in this case the operative volume can be considerably extended without serious
modi�cations of the tracking system.

The workstation performs synchronization, image reconstruction and visualization
tasks. Synchronization consists of linking of the ultrasound scans received from the
ultrasound machine with the corresponding transducer coordinates obtained from the
tracking device. The system can also use temporal information provided by an ECG
device, that allows reconstructing 3D images of moving tissues. In this case the work-
station performs temporal landmarking and rearrange the acquired scans in separate
data stacks accordingly to their time events. If the ECG device is integrated into the
ultrasound machine (that is common for commercial cardiac ultrasound scanners), tem-
poral landmarking is performed by the ultrasound machine. In our clinical experiments
we used Philips iE33 echocardiography scanner, while in the labour a portable 2D ul-
trasound machine based on hardware from Medison Transducers and an external ECG
module EMI12 from Corscience GmbH were used.

Image reconstruction and visualization can be done in real-time or o�ine. Though
the system has a big potential to perform these tasks in real-time, only o�ine recon-
struction and visualization was implemented in this prototype.

Calibration

The goal of calibration is to compute the unknown transformation from the coordinate
space of 2D ultrasound images into the coordinate space of the digitizer tip. A com-
prehensive review of existing calibration techniques used for freehand 3D ultrasound
calibration is provided in [99].

The idea of the used calibration method is based on combining a plane object with a
cross-wire phantom (so-called plane phantom, Figure 3.3) [57]. The phantom geometry
has been measured on Siemens Emotion CT-scanner with the resolution of 0.34 × 0.34
× 0.5 mm / voxel. During the calibration procedure the phantom has been placed in
a water basin with a water temperature about 35 degree Celsius. The temperature
has been selected to provide the acoustic velocity compared with the mean speed of
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ultrasound waves in the human body.

Figure 3.3.: The plane phantom used for calibration. Original view (left) and CT recon-
struction (right).

The common practice for modelling the US calibration is to use four coordinate
systems (see Figure 3.2): the coordinate system of a B-scan (P ), the coordinate system
(R) of the digitizer tip (or the optical tool in the case of optical tracking systems)
tracked by the positioning device, the coordinate system of the tracking device (T ) and
the phantom coordinate system (C). The transformation from the system P to the
system C is describes as:

M = TCT · T TR · TRP · P, (3.1)

where T YX denotes a transformation matrix from a coordinate system X to a coordinate
system Y , M = (x, y, z, 1)T , P = (Sxu, Syv, 0, 1)T , (x, y, z) are the coordinates in C
and (u, v) are the coordinates on a B-scan. The values Sx and Sy are the scale factors
of the US image along OX and OY axes respectively. Using these de�nition we can
formulate the goal of calibration as to �nd the unknown transformation TRP from the
coordinate space P to R. The transformation T TR is provided by the tracking device
for each position of the transducer, the matrix TCT is acquired one time during the
calibration of the tracking device and is known.

During calibration the plane phantom is scanned from di�erent directions. For
each scan we obtain three equations that correspond to the �rst 3 rows in the relation
(3.1). After acquisition of m scans (in our experiments we took m ≥ 10) and detection
of the wire cross coordinates Pi, i = 1,m (automatic [57] or manual), the required
transformation matrix TRP is computed using the Levenberg-Marquardt algorithm [127]
for the least squares curve �tting problem. The resulting calibration accuracy (Table
3.1) is calculated as the root mean square (RMS) of the residuals Yi = ||FC −Mi||:

YRMS =

√√√√ 1

m

m∑
i=1

Y 2
i , (3.2)

where the relative coordinates FC of the wire cross are known from the CT model of the
phantom.
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Transducer Frequency range,
MHz

Accuracy RMS,
mm

Linear array HL7 5-8 0.25

Phased array Phillips iE33 1.5-3 0.5

Convex array C3.5 2-5 0.65

Table 3.1.: System calibration accuracy using di�erent types of ultrasound transducers.

Data acquisition

After the calibration procedure the system is ready for data acquisition and reconstruc-
tion. For 3D reconstruction the ultrasound data must be synchronized with the position
tracking device.

In our clinical experiments (Figure 3.4, 3.5, 3.6) we utilized manual synchroniza-
tion consisted in simultaneous acquisition of a B-scan and the corresponding transducer
coordinates by a signal generated manually by an assistant of the operating physician.
The acquired B-scans were stored in a clinical network, while the corresponding coordi-
nates were transformed into matrices T TR and written directly into the database at the
workstation. After the scanning procedure the ultrasound data were downloaded onto
the workstation, merged with the position data and is then ready for 3D reconstruction.
Such a complicated synchronization was explained by the restricted direct access to
the clinical imaging hardware and software. Though, from the technical point of view,
this process could be fully automatized. Temporal landmarking based on the embed-
ded clinical ECG was performed directly by the ultrasound system, so the information
about the corresponding cardiac event was accessible for each B-scan. The B-scans re-
lated to di�erent cardiac events were grouped in di�erent data arrays and reconstructed
separately.

Within the labour experiments, however, the synchronization was automatized and
the acquired B-scans with the corresponding matrices T TR were accessible at the work-
station in real-time without the merging step and ready for processing and 3D recon-
struction.

The 3D reconstruction procedure consists of two steps. First, all acquired B-scans are
pre-processed at the workstation and 2D contours of the scanned surfaces are segmented
using the ultrasound processing algorithm Rainfall provided by UltraOsteon GmbH [71,
115, 134]. A review of the existent medical image segmentation and edge detection
methods is given in Section 5.

Second, the points from the computed 2D contours are transformed into 3D space
using the equation (3.1). The resulted 3D points are stored as a point cloud that can
be visualized or transmitted for further 3D surface reconstruction. The description
of the surface reconstruction method specially developed for this task is presented in
Section 4.
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Figure 3.4.: ECG-synchronized cardiac ultrasound images acquired using Philips iE33
system (top); contour extraction principle, the left and the right parts of
the contours are excluded due to the higher geometric distortions on the
sides caused by ultrasonic artefacts (bottom).

Figure 3.5.: The pro�le (left) and a projective view (right) of 14 extracted cardiac con-
tours after 3D reconstruction. Contour extraction inaccuracies as well as
the patient breathing and motion result in considerable geometric artefacts.
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Figure 3.6.: A fragment of 3D surface reconstructed from 14 cardiac contours (left);
"Temperature map" depicts closeness of the reconstructed mesh to the orig-
inal data. Green to red color range corresponds to the distances from 0 to
5 mm, blue regions have no correspondence with the original points (right).

Data visualization

A variety of methods have been recently developed for 3D ultrasound data reconstruction
and rendering [63, 189]. Here we shortly describe the main visualization modes that were
tested during our experiments.

A reconstructed 3D point cloud (or their sequence in the 4D mode) is given to
the input of the surface reconstruction and visualization module and can be directly
rendered. Although the main goal of this module is to reconstruct and to visualize
the mesh surface of the input data, several alternative visualization modes (pseudo-3D,
voxel-based, and model-based) are also partially supported.

Surface rendering is a common technique used in medical imaging for anatomical
objects visualization that are represented as geometrical meshes (Figure 3.6, 3.7). This
approach shows a signi�cant advantage in rendering speed comparing with the volume
rendering method, but often possesses such drawbacks as mesh constructions inaccu-
racy, ambiguity or object oversimpli�cation. For reconstruction of 3D surfaces from the
acquired point clouds we analysed the existent methods and developed an alternative
one that is relatively fast and well suited for sparse and noisy point clouds (see Section
4).

In the voxel-based mode the acquired ultrasound data (3D point cloud or the original
data from B-scans, that is more relevant in this case) are converted into 3D volumes
by placing it in the regular Cartesian grid. A number of interpolation �lters [107, 158]
can be applied to this volume for hole-�lling and smoothing. In our experiments we
did not interpolate the resulting volume and visualized it as is. Volume rendering was
implemented using 3D textures. Voxel-based visualization is a popular data representa-
tion technique in 3D ultrasound as it supports Multi-Planar-Reformatting (MRP). MRP
allows extracting arbitrary planar cuts from 3D data that makes it possible to render
2D ultrasound slices even if they cannot be accessed physically by the ultrasound trans-
ducer during scanning. Orthogonal planes propose a convenient viewing and navigation
interface that can be used for control of measurement markers (used for calculation of
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distances and angles in 3D) and diagnostics.

Figure 3.7.: A fragment of cardiac 3D surface. The contour data consist of 9832 points
(reconstructed using Philips iE33, phased array 3 MHz). The mesh consists
of 3328 faces, the mean distance to the original data 1.94 mm, RMS is 2.76
mm.

In the pseudo-3D visualization mode the ultrasound data are represented as a set
of B-scans spatially-ordered (rotated and translated) in three dimensions (Figure 3.8)
subject to the corresponding ultrasound transducer positions. The advantage of this
method is the fast rendering and low system resources consumption comparing to the
other visualization modes. The pseudo-3D rendering can be considered as a preferred
real-time visualization and navigation mode.

Figure 3.8.: Visualization of clinical cardiac data using Philips iE33 ultrasound system
(phased array 1.5-3 MHz). Pseudo-3D (2.5D) visualization mode (left);
Model-based visualization mode (right).

The model-based mode allows visualizing ultrasound data relatively to an organ
model that is pre-loaded into the system and manually calibrated using a series of the
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reference B-scans for appropriate initial scaling, rotation and translation setting. For
our examination on cardiac data, a human heart model was created using cryosection
data from the "Visible Human" Project, National Library of Medicine and University
of Michigan [2] and a 3D content creation suite (Blender). (Figure 3.8). This mode
can be used for ultrasound navigation during scanning and for training. Together with
the dynamic 4D mesh-to-ultrasound morphing the model-based mode can introduce the
elements of augmented reality into the scanning process, that is a perspective �eld of
further investigations.

3.3.2. System validation

Validation of the system has been performed on a porcine heart specimen that have been
prepared (sutured up and embalmed) and placed in a specially constructed scanning box
�lled with water (Figure 3.9, 3.11).

Figure 3.9.: CT image of the scanning box (25×25×25 cm), the porcine heart speci-
men is accessible from two membrane windows (MITO, 3D texture-based
visualization).

The box is composed of 3 mm aluminum frame for high resiliency and 5 mm Plexiglas
sides with two scanning windows covered with a latex-silicone membrane transparent
for ultrasound. The heart specimen has been stretched out using hooks and nylon �bers
strained with steel springs in order to �x the organ quickly and to avoid deformations
during storage and transportation.

After the described preparation a CT volume of the heart model was acquired on
Siemens Somatom Emotion scanner with the spatial resolution of about 0.85 mm / voxel
(Figure 3.10). Next, the specimen was scanned several times using our experimental
tracked 3D ultrasound system Figure (3.12).
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Figure 3.10.: CT image of the porcine heart specimen with the fastening (left, mid-
dle) and after manual pre-segmentation (right) (MITO, 3D texture-based
visualization).

Figure 3.11.: Scanning the �xed heart specimen using the freehand tracked 3D ultra-
sound system.
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Figure 3.12.: Ultrasound images of the heart specimen acquired using the linear ar-
ray HL7 transducer (top); automatic contour extraction using UltraOs-
teon Rainfall algorithm, with the following truncation of the contour ends
(bottom).

The resulting models (CT and US 3D point clouds) have been registered using
the Iterative Closest Point (ICP) algorithm with a manual initialization. The system
scanning accuracy was estimated as the RMS of the distances between the closest points
of the models and had value of 1.2 mm.

Figure 3.13.: The pro�le (left) and a projective view (right) of 147 extracted contours
after 3D reconstruction.
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Figure 3.14.: Reconstructed 3D surface of the porcine heart specimen. The contour data
consist of 16059 points (reconstructed using linear array HL7 5 MHz). The
mesh consists of 7936 faces, the mean distance to the original data 1.15 mm,
RMS is 1.59 mm. Green to red color range corresponds to the distances
from 0 to 2 mm, while blue represents absence of correspondence. The
distances were calculated using the algorithm described in Appendix A.

3.4. A 3D ultrasound scanning system for automated

surface reconstruction of long bones

The second developed prototype is based on the sequential triggered scanning principle
and is designed for 3D surface reconstruction of the long bones of the extremities1.
Here we consider the architecture of the scanning system and its validation on arti�cial
and biological models [25]. The scanning system is planned to support orthopaedic
and trauma surgeons during contactless X-ray-free examinations of injured extremities,
providing numerical data and 2D/3D visualization of bone surfaces for optimal decision
making. It is designed to meet all the general requirements mentioned in Section 3.2
extended with additional two ones:

� high scanning speed,

� contactless (does not cause additional pain).

1The scanning body was assembled in the University Medical Centre Mannheim. The current version
is motor-free, all control is performed manually using �ne-mechanics screws.
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3.4.1. Material and methods

Scanner architecture

The general setup of the developed prototype consists of a scanning body (that performs
transducer positioning and tracking functions), ultrasound machine and a workstation.
The scanning body is a mechanical part of the system that includes a tank �lled with
water and a �xation block for ultrasound transducers (Figure 3.15a). The tank can be
rotated over 360 degrees around the vertical axis, while the transducer block can be
moved within 140 mm along this axis.

The system is equipped with one or two linear array transducers HL7 5-8 MHz. The
transducers can be placed either in a vertical or a horizontal position on the �xation
block in such a way that the beam emission is directed towards to the rotation axis of
the tank. All rotations and translations in the �rst version of the prototype are carried
out manually using �ne-mechanics screws. The distance between the transducer and the
rotation axis varies depending on size and shape of a scanned object. The transducers
are connected to the beam formers controlled by the workstation. B-mode ultrasound
images are acquired from di�erent positions and orientations of the transducer. Bone
contours are extracted automatically and reconstructed into 3D surfaces taking into
account the known geometrical transformations provided by the mechanical tracking
system.

Figure 3.15.: a) General scheme of the experimental sequential triggered ultrasound
scanning system (US - ultrasound machine, WS - workstation); b) multi-
bead phantom used for system calibration.
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Calibration

The idea of the calibration procedure is similar to the one described in Section 3.3.1.
Calibration of the system is carried out once after �xation of the ultrasound transducer.
The proposed calibration method is based on a multi-bead phantom that consists of
two nylon wires in 3D space (Figure 3.15b). The wires have diameter of 0.1 mm and
carry glass beads with the diameter of 1 mm that are �xed on various altitudes and used
as landmarks. The phantom geometry has been measured using the electromechanical
tracking system Immersion MicroScribe with accuracy of 0.21 mm RMS. The phantom
is placed into the scanning body �lled with warm water and scanned by the installed
transducer from various directions.

Figure 3.16.: The basic setup of the system.

Similarly with the calibration of the freehand ultrasound (Section 3.3.1), we use
the following coordinate systems: the coordinate system of B-scans (P ), the coordinate
system of the transducer �xation block (R), the coordinate system of the scanning
system itself (T ) and the coordinate system of the phantom (C). The transformation
from the coordinate system P to C is described by formula (3.1).

The matrix T TR is de�ned by the tracking mechanism of the scanning system for each
position of the transducer. The transformation TCT is calculated using the MicroScribe
digitizer once after the phantom has been installed. The goal of the calibration is to
�nd the unknown calibration matrix TRP that translates two-dimensional coordinates of
points from B-scans into the coordinate space of the the transducer �xation block. The
landmarks of the phantom with the known (pre-measured) relative coordinates Fi, i =
1, N are scanned from di�erent positions and the corresponding points Pi, i = 1, N are
manually detected on the acquired B-scans. In order to calculate the calibration matrix
TRP the following system of linear equations are solved using the Levenberg-Marquardt
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algorithm [127]:

Fi = TCT · T TRi · TRP · Pi, i = 1, N (3.3)

where Fi = (xi, yi, zi, 1)T - coordinates of the landmarks in the phantom coordinate
system, Pi = (Sxui, Syvi, 0, 1)T , (ui, vi) - corresponding coordinates on B-scans. Sx
and Sy are scale factors of B-scans along X and Y axes respectively and, �nally, T TRi
- transformations corresponding to the position of the transducer from which the i-th
landmark has been scanned. In general the system of equations (3.3) has 6 unknowns
(3 for rotation and 3 for translation), so, theoretically the number N of landmarks must
be not less than 2. But practical experiments show that a stable calibration is achieved
at much bigger values of N (in our experiments we used 10 ≤ N ≤ 14). The accuracy of
calibration was measured as RMS (3.2) of the residuals in the linear system (3.3), and
was about 0.16 mm in our experiments.

Data acquisition and representation

Similarly with the freehand system (Section 3.3.1), 3D reconstruction consists of two
steps: bone contours extraction and 3D coordinates calculation. At the �rst step bone
contours are extracted from the acquired B-scans automatically using the Rainfall algo-
rithm [71, 115, 134]. Then, 2D coordinates of the contour points Pj are transformed into
the coordinate space of the calibration phantom using the known transducer calibration
and the corresponding transformation matrices using formula (3.1). The scanned object
is stored in the system as a point cloud. In this form the data is available for further
processing, analysis (such as registration with other objects, surface reconstruction) and
visualization.

Figure 3.17.: Scanning a sheep bone with several �xed fractures using a two-transducer
setup (a vertical and a horizontal transducers). Vertical displacement
mechanism of the transducer block (left) and the rotational mechanism
(right).
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Figure 3.18.: Ultrasound images of the sheep bone specimen acquired using the linear
array HL7 transducer. Top: typical examples of images from the horizontal
(left) and the vertical (right) positioned transducers. Bottom: automatic
contour extraction using the Rainfall algorithm.

Data visualization

After the data acquisition and 3D-reconstruction the scanned object can be visualized
optionally as a point cloud or a mesh surface.

The point cloud visualization mode provides the most adequate raw representation
of bone ultrasonic data that can be used for diagnostics and analysis of the bone geom-
etry.

The surface visualization mode is utilized for an alternative data representation and
the standard export for external rendering applications. Like many anatomical struc-
tures, the long bones of the human extremities mainly have smooth surfaces, therefore
sharp geometric details are inherently excluded from the considered point clouds. It
makes the surface reconstruction process easier and more stable. Moreover, a series
of experiments show that due to the inherently smooth geometry of long bones it is
possible to emphasize bone areas with possible fractures by calculating local distances
from the reconstructed surface (with specially selected parameters of the reconstruction
algorithm) to the point cloud (Figure 3.20). However, this feature is not yet strictly
proven and needs further investigation.
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Figure 3.19.: A fragment of the sheep bone specimen scanned with the vertically po-
sitioned transducer. Left: the original contours reconstructed from 32
B-mode images (7168 points). Middle: surface mesh (5136 faces). Right:
distances from the mesh to the original data (green to red color range
corresponds to the distances from 0 to 1 mm respectively).

Figure 3.20.: A fragment of the sheep bone specimen with a fracture in the lower part (in
a frame), scanned with the horizontally positioned transducer. Left: the
original contours reconstructed from 264 B-mode images (40899 points).
Middle: surface mesh (5136 faces). Right: distances from the mesh to the
original data (green to red color range corresponds to the distances from
0 to 1 mm respectively).
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In our experimental system we propose to use the following two surface reconstruc-
tion algorithms: mesh-growing from sparse data based on the Complex Propagation
described in Chapter 4 and surface reconstruction from parallel slices (Section 4.6).
The �rst one can be used in both vertical and horizontal transducer scanning modes,
while the second one is suitable only for the horizontal mode, but provides a better
performance.

3.4.2. System validation

A validation study has been carried out on a distal femur sawbone from Synthes. The
main goal of the study was to test the accuracy and geometrical correctness of 3D
reconstruction provided by the developed system. The geometrical correctness was
estimated by 3D visualization of the acquired model and the following mesh surface
reconstruction (Figure 3.21). The accuracy was measured as the distance error between
the models reconstructed by our system and a preoperative reference model (Table
3.2) acquired from the same femur sawbone on Philips Mx8000D CT scanner with the
resolution of 0,2 x 0,2 x 0,2 mm. The reconstructed set consisted of ten models of 24
takes (ultrasound contours) each.

Model
Number of

takes
Mean, mm

Standard
deviation,

mm
RMS, mm

1 24 0.161132 0.119180 0.200418

2 24 0.167672 0.124697 0.208957

3 24 0.156245 0.117398 0.195435

4 24 0.156991 0.119513 0.197305

5 24 0.167658 0.128608 0.211304

6 24 0.167842 0.132509 0.213845

7 24 0.163644 0.125867 0.206451

8 24 0.162891 0.123839 0.204621

9 24 0.164278 0.123082 0.205272

10 24 0.164784 0.127320 0.208241

Table 3.2.: Distal femur sawbone Synthes. Distance errors between the model points
reconstructed by the developed prototype and the points of the reference CT
model after the registration procedure.

Additionally, the results of 3D reconstruction were compared with two sets of alter-
native models acquired from the same sawbone. The �rst set of models was acquired
using a touch probe with attached light re�ective balls. Spatial coordinates of the probe
were detected using an optical tracking system from Polaris Vicra. This method repre-
sented a standard intraoperative modelling approach. The set consisted of ten models of
24 takes (frames) each. The models were registered with the same preoperative reference
CT-model and the corresponding distance errors were calculated (Table 3.3).
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Figure 3.21.: Registration of the reference CT model (point cloud, 1.2M points) with the
data acquired using the tested scanner prototype. Ultrasound contours as
a point cloud (57338 points, 228 scans) (left) and the corresponding mesh
surface (7600 faces) (right).

Figure 3.22.: Validation on the distal femur sawbone Synthes. From left to right: the
reconstructed surface mesh (7600 faces); the mesh with the original ultra-
sound contours (228 scans); distances between the mesh and the ultrasound
contours; distances between the mesh and the reference CT data (green to
red color range corresponds to the distances from 0 to 1 mm respectively).

The second set of models was acquired using freehand tracked 3D ultrasound. A
navigated (with attached optical markers) ultrasound probe was moved over the distal
part of the femur. The position of the transducer in the operation space was determined
using Polaris Vicra. For each scan, the orientation of the ultrasound probe was selected
in such a way that the re�ection of ultrasound echoes from the bone surface was maximal.
The set consisted of ten models with 24 takes (ultrasound contours) in each. The models
were registered with the same preoperative reference CT-model and the corresponding
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distance errors were calculated (Table 3.4).

Model
Number of

takes
Mean, mm

Standard
deviation,

mm
RMS, mm

1 24 0.108124 0.066710 0.127047

2 24 0.108773 0.041309 0.116353

3 24 0.124175 0.071173 0.143126

4 24 0.120516 0.050279 0.130584

5 24 0.089583 0.036897 0.096884

6 24 0.143007 0.074936 0.161451

7 24 0.104318 0.047622 0.114674

8 24 0.124703 0.055100 0.136333

9 24 0.100614 0.036452 0.107014

10 24 0.100524 0.037861 0.107418

Table 3.3.: Distal femur sawbone Synthes. Distance errors between the points of
the touch probe models and the reference CT model after the registration
procedure.

Model
Number of

takes
Mean, mm

Standard
deviation,

mm
RMS, mm

1 24 0.185344 0.158972 0.244182

2 24 0.203526 0.196033 0.282581

3 24 0.186016 0.155833 0.242664

4 24 0.160486 0.128648 0.205684

5 24 0.162062 0.118180 0.200576

6 24 0.167543 0.117334 0.204544

7 24 0.203335 0.144615 0.249516

8 24 0.179706 0.122531 0.217504

9 24 0.211337 0.166038 0.268760

10 24 0.210310 0.191252 0.284267

Table 3.4.: Distal femur sawbone Synthes. Distance errors between the points of the free-
hand usltrasound models and the reference CT model after the registration
procedure.
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Figure 3.23.: Validation of the scanner prototype on the distal femur sawbone Synthes.
Left: 3D view of the reference CT model. Middle: the result of registration
of a touch probe model with the CT model (point clouds). Right: the result
of registration of a model acquired using the developed prototype with the
CT model (point clouds).

3.5. Results and discussion

Concerning the freehand ultrasound prototype, the estimated error provides only a �rst
picture of how accurate such a scanning system can be. The real accuracy obtained on
clinical data can considerably di�er from this value due to ultrasonic artefacts appear-
ing in the scanned tissues, patient movement and inaccurate scanning. However, the
obtained results show the order of magnitude of the accuracy (1.2 mm RMS relatively to
the corresponding CT model) that can be achieved by the proposed architecture in the
close to ideal conditions. This is although still less accurate than modern radiography,
CT and MRI, but signi�cantly better than the �rst freehand ultrasound systems [74].
From this point of view the obtained results are quite promising, but from another side
it is obvious that further investigation and development are needed before the system
can be applied in practice. Though the system was validated only on a heart specimen,
it can be used in the same way for 3D surface reconstruction of any viscera and bones
that are accessible for the conventional ultrasound. It also should be noted, that acqui-
sition of large amount of data using the freehand approach can be quite time consuming,
therefore automatic techniques are more preferable for detailed surface reconstruction.

The validation study of the second scanning system showed feasibility of 3D recon-
struction of long bones with an accuracy of about 0.2 mm RMS. This is comparable
to the accuracy of modern radiography, CT and MRI. However, this result is highly
depended on the accuracy of calibration and segmentation quality. The experiments
proved that the shapes of the long bones can be successfully reconstructed from sets of
2D B-Mode images and can be used further for fracture analysis and deformity mea-
surements. The problems of the reconstruction quality enhancement and the acquisition
time reduction seem to be solvable by a robotised (motor-based) system integration.

The accuracy of the developed prototype is slightly lower than the accuracy of intra-
operative touch-point modelling and is higher than the one of freehand ultrasound based
on optical probe tracking. Mechanical tracking systems do not su�er from orientation
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and illumination artefacts and provide regular data sets that can be processed in a more
e�ective way. Due to minimization of the human factor in the scanning procedure,
automatized sequential triggered ultrasound systems can provide better precision (the
degree to which repeated scans under unchanged conditions show the same results) than
the touch-point and freehand ultrasound systems. This was experimentally shown in
the performed validation study (Tables 3.2, 3.3 and 3.4).

The reconstruction accuracy in the case of real bones was slightly higher than in the
case of sawbones due to the higher density of real bones and therefore better re�ection of
echoes. Scanning with a transducer oriented parallel to the long axis of bones provides
better reconstruction in comparison with the transverse orientation of the transducer.
This result is explained by a higher amount of scatter re�ections detected by the trans-
ducer in the last case. We have also found out that the developed prototype is able to
reconstruct cross fractures if their thickness is bigger than 0.6-0.8 mm (depends on the
length of ultrasonic waves).

Integration of a robotized system can provide full automation and acceleration of the
scanning process without additional attention from an acquisition surgeon. The contact-
less scanning principle of the system allows a patient to avoid additional pain. The
considered approach makes it possible to develop low-cost diagnostic systems for analysis
of skeleton parts with a simple anatomy. However, we have to notice the following
limitations of the proposed system: 1) analysis of joint areas is extremely di�cult or
even impractical, 2) open fractures and any damages of the skin are contraindicated for
scanning with this system, 3) analysis of complex fractures has to be avoided, due to
the high amount of ultrasonic artefacts.
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Part II.

Medical image analysis.

Investigated and developed

special-purpose techniques
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4. Mesh-growing 3D surface reconstruction from sparse ultrasound data

Modern medical imaging devices produce a great amount of data. In most cases
these data are represented by 2D, 3D images or image sequences. In order to make it
accessible for medical diagnostics and treatment the acquired data must be processed,
analysed and prepared for visualization. These tasks are solved by a class of methods
that form the �eld of study of medical image analysis. Along with active development of
medical imaging technology it has become a highly essential and a wide �eld of scienti�c
research. Being a sub-discipline of a more general subject �eld, image analysis, medical
image analysis principally solves the same problems, but considering medical origin of the
images. This specialization often requires new sophisticated computerized quanti�cation
and analysis algorithms and tools that can be unique for a concrete medical imaging
modality.

The most common problems solved by the methods of medical image analysis are
image segmentation, �ltering, various types of 2D and 3D reconstruction, object detec-
tion and recognition. In the following chapters we will discuss 3D surface reconstruction,
image segmentation and object detection. We provide a review of the state of the art
methods for each problem and describe several special-purpose techniques, that although
have been initially developed for medical imaging applications, can be also used for so-
lution of more general problems.

4. Mesh-growing 3D surface

reconstruction from sparse

ultrasound data

4.1. State of the art

Surface reconstruction from point clouds is a major topic of research in the �eld of
computer vision, engineering, virtual reality and computational medicine. There is a
wide range of applications that utilize surface reconstruction and give rise to a number
of conjugated exploratory problems. Various types of mechanical, optical and ultra-
sonic sensors are involved in such applications to scan surfaces of 3D objects. The
reconstructed surface models are widely used for further simulation, shape analysis,
animation and production of various visual e�ects.

Since the last decade a great number of 3D surface reconstruction methods has
been developed. They di�er in the application �eld, characteristics of input data and
properties of generated surfaces. Recent overviews of existing methods can be found in
[170, 35, 142]. Most generally they can be divided into two main classes [95]: implicit
and explicit. The implicit methods approximate an input point cloud by an implicit
function and reconstruct the surface as a zero-level set of the evaluated function. The
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recent research in this �eld is mainly presented by the methods of moving least squares
[128, 129], Poisson surface [111], partition of unity and radial basis functions [187]. The
explicit methods, in turn, are aimed at direct triangulation of a given point cloud. They
are presented by Voronoi/Delaunay-based and mesh growing approaches. The �rst ones
reconstruct a surface mesh by performing the 3D Delaunay triangulation [13] of the
point cloud, e.g. Crust [5], Cocone [6] or their modi�cations [7]. These algorithms
provide theoretical guarantees for mesh reconstruction under several conditions for well-
sampled data [5] but encounter with di�culties in the case of noisy and under-sampled
point clouds. Within the mesh growing approaches the surface reconstruction is started
from a seed triangle and the mesh is iteratively propagated under some criteria. These
algorithms utilize the techniques based on ball-pivoting [21], intrinsic property of point
clouds [135], Gabriel 2 - simplex (G2S) criterion [53] and 2.5D active contours [56]. In
spite of the fact that the mesh growing methods may produce artefacts in regions with
high surface curvature and complex geometry, they work well on noisy and irregular
data and implement an intuitive and �exible surface reconstruction paradigm.

Another important problem that often follows 3D surface reconstruction is enhance-
ment of the built surface meshes. There are two main classes of the mesh enhancement
methods presented in the literature: mesh smoothing (also called nodes relaxation) and
subdivision surface. The �rst class [84] involves the methods of spatial modi�cation
of the mesh nodes preserving its topology. These methods produce relatively smooth
surfaces without additional complication of the intra-mesh connections. But as it fol-
lows from the de�nition, the mesh smoothing methods are not preferable in the case
when it is important to preserve the coordinates of the original nodes and to avoid high
deviations from the initial mesh shape.

The methods from the second class solve the smoothing problem by introducing
additional connections into the mesh topology. Namely, they recursively subdivide the
mesh faces into sub-faces that better approximate a smooth surface. Considering their
re�nement schemes the subdivision surface methods can be separated into approximating
and interpolating subclasses. Nowadays the approximating subdivision methods (e.g.
Catmull-Clark [30], Doo-Sabin [55], Loop [137]) have become a powerful tool widely used
in computer graphics and geometric modelling. They produce relatively fair surfaces (the
limit surfaces possess up to C2 continuity) but similarly to the smoothing methods only
approximate the initial mesh acting as low-pass �lters. Nevertheless, in the last years
several works [36, 52, 51] presented approximating subdivision schemes for construction
of meshes whose limit surface interpolates the nodes of the initial mesh. Such methods
are usually more complicated and require non-trivial setup of supplementary parameters
that have signi�cant in�uence on the shape of the limit surface [52].

Alternatively, the classical interpolating subdivision methods (e.g. Butter�y scheme
[60, 209], Kobbelt [114]) are relatively simple and produce rather smooth surfaces that
interpolate the initial mesh nodes. Later works on mesh interpolation [203] have in-
troduced face based and normal based subdivision schemes that better preserve sharp
features of the control mesh but need more computational time. It should be noticed
that the subdivision surface methods are much more sensitive to mesh irregularities
and inferior to the smoothness of the approximating schemes (normally C1 continuity).
Nevertheless, these two disadvantages often play a secondary role in the selection of a
fast and simple interpolating method. Moreover, excessive surface smoothness and high
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deviations from the initial mesh shape may be undesirable in medical applications where
local anatomical features have to remain after the smoothing process.

4.2. Objectives

In this chapter we refer to the problem of surface reconstruction from noisy sparse
data received from tracked 3D ultrasound scanners [92, 91]. Here we consider mainly
freehand ultrasound and sequential triggered scanning systems described in Chapter 3.
We target at reconstruction of surfaces from anatomical structures such as long bones of
the human extremities, myocardium and other viscera with relatively smooth surfaces
and, therefore, do not consider the surfaces with complicated geometry such as joints
and the small bones of the hand and foot. So, complex geometric features are inherently
eliminated in the corresponding point clouds. However, due to the nature of the tracked
3D ultrasound and the architectural features of the mentioned scanning systems, the
obtained data is mostly irregular, noisy and can be rather sparse.

Taking into account these properties, we aim at developing a fast surface recon-
struction method that is able to process irregular point clouds. Particularly, due to its
simplicity and tolerance to sparse data, we are focusing on the mesh-growing approach
based on 2.5D active contours [56] and its adaptation for the obtained object clouds.

4.3. Material and methods

Let P = {Pi}, Pi ∈ R3 , i = 1, N be a point cloud in 3D representing an anatomical
surface S ⊂ R3 acquired using a freehand or a sequential triggered 3D ultrasound
scanning system. Due to the properties of such scanning systems the points in P are
grouped into a set of planar contours forming in 3D space a sparse image of S. The
main goal of the proposed algorithm is to reconstruct the original surface S using the
given point cloud P . At the initial stage the acquired points are stored in a kd-tree
container and initially marked as unprocessed. We denote as Pu and Pv the sets of
unprocessed and already processed points respectively. The proposed method realizes
an interpolation growing model and consists of three steps: initializing, mesh growing
and post-processing.

4.3.1. Mesh initialization

At the initialization step a seed triangle S0 is created in accordance with the following
rule:

a) the �rst vertex P 1 ∈ Pu of the triangle is selected in a random way from the
available unprocessed points;

b) the second vertex P 2 ∈ Pu is chosen as the nearest unprocessed point to P 1 such
that ∆min < d(P 1, P 2) < ∆max , where d(x, y) is the L2-norm of the vector x− y, ∆min

and ∆max are prede�ned parameters that respond for the scale of the mesh triangles;
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c) the third vertex is de�ned by the following relation that forces the resulted triangle
to be close to an equilateral one:

P 3 = arg min
P∈Pu

∆min<d(P,P 1), d(P,P 2)<∆max

ρ(P, P 1, P 2) + ρ(P, P 2, P 1),

where ρ(x, y, z) = |d(x, y) − d(y, z)|. The edges of the seed triangle S0 are marked as
active and are considered as the initial deformable contour that will iteratively expand
over the object surface. The vertices P 1 , P 2 and P 3 are marked as processed and moved
from Pu to Pv.

4.3.2. Mesh growing

At the growing step the mesh boundaries that include active edges propagate iteratively.
In a general form the process of the boundary propagation is described by the following
di�erential equation proposed in [56]:

∂S(x, t)

∂t
= ~F (x, t), S(x, t0) = S0(x),

where S(x, t) is a parametric representation of the contour at time t > t0, x ∈ [0, 1).
S0(x) is the initial contour and ~F (x, t) de�nes the propagation direction at the contour
position x and time t. For the calculation of the surface growth direction we propose to
use the following approach, that we call the Complex Propagation:

~F (x, t) = (1− α)~ν(x, t) + α~τ(x, t). (4.1)

Here ~ν(x, t) is the inertial propagation vector de�ned by the preceding expansion of
the reconstructed surface and ~τ(x, t) is the tangential propagation vector that is de�ned
by the local tangent plane of the point cloud at the position x and the time t. The local
tangent plane is calculated within the neighbourhood of x with the radius ε:

Nε(x, t) = {P ∈ P, d(P, S(x, t)) < ε}, (4.2)

using the principle component analysis (PCA). The parameter α ∈ [0, 1] is the point
cloud saturation factor that de�nes the rate of inertial and tangential growth within
the surface propagation process in dependence with the local density of the point cloud.
Introduction of the inertial term allows sustaining of the propagation process in local
regions of the point clouds where the data are sparse and irregular (Figure 4.1b), while
the tangential term provides robustness of the reconstruction process to the noisy data
and closeness of the surface to the point cloud in regions with su�cient point density
and strong geometric variations such as high curvature and discontinuities (Fig. 4.1c).

The saturation factor α can be de�ned as a constant value for uniform point clouds
or calculated as the adaptive saturation for non-uniform sparse data:

α = αε(x, t) =

{
|Nε(x, t)|/λε , |Nε(x, t)| < λε ,

1, otherwise
(4.3)

where λε is the prede�ned saturation threshold value. This intuitive rule allows the
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Figure 4.1.: 2D illustration of contour propagation. Examples of correct results: b)
inertial propagation on sparse data, α = 0 ; c) tangential propagation on
dense and complex data, α = 1 . Examples of invalid results: a) process
interruption on sparse data with tangential propagation, α = 1 ; d) coarse
reconstruction on dense and complex data with inertial propagation, α = 0.

growing procedure to rely on the inertial propagation in the regions with the low point
presence and to utilize local object information in the areas with the high point density.
It should be noticed that for constant saturation factor α = 0 the propagation function
(4.1) is similar to [56]. Considering time discretion the contour propagation process is
approximated by the explicit iterative equation:

S(x, ti+1) = S(x, ti) + ~F (x, ti)∆ti , S(x, t0) = S0(x), i ∈ N,
~F (x, ti) = (1− αε(x, ti))~ν(x, ti) + αε(x, ti)~τ(x, ti).

(4.4)

In practise, at each iteration ti the contour S(x, ti) , x ∈ [0, 1) , is approximated by
a sequence of linear segments {Sxk,ti}

N(ti)
k=1 and the reconstructed object surface is repre-

sented by a triangle mesh. During the propagation an approximation of the contour ex-
pansion process (4.4) is performed. Each active contour segment Sxk,ti = [Pxk,ti , Pxk+1,ti ]
produces a triangle Txk,ti = (Pxk,ti , Pxk+1,ti , Py,ti+1

) where:

Py,ti+1
= arg min

d(P,R)<∆p

P∈P ∗u (i)

d(P,R),

R =
1

2
(Pxk,ti + Pxk+1,ti) + ~F (

xk + xk+1

2
, ti).

Here P ∗u (i) = Pu ∪ j=1,i

k=1,N(j)

{Pxk,tj} is the set of all unprocessed points from P and all

nodes from the already built mesh at the iteration ti. The parameter ∆p de�nes the
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maximal allowed distance between the propagated point R and its projection on the
point cloud.

Figure 4.2.: a)Surface S(x, ti) propagation scheme at iteration ti. The parameter σ
de�nes thickness of the surface and the height of the dipyramid-shaped
neighbourhood; b) Dipyramid-shaped neighbourhoods of triangles T1 and
T2 : no collisions (left), collision (right).

The vectors ~ν and ~τ are de�ned as follows. The vector ~ν is parallel to the tangential
plane of the parent triangle for the segment Sxk,ti (the triangle that contains the edge
Sxk,ti). The vector ~τ is parallel to the local tangential plane of the point cloud. The
angle γ between these vectors and the corresponding contour segment Sxk,ti (Figure
4.2a) can be set as the constant π/2 (the normal of Sxk,ti) or be equal to the angle
between Sxk,ti and the prolongation of the median line of the edge Sxk,ti in its parent
triangle. The lengths of the vectors can be either constant, that provides uniform
propagation speed, or depend on the properties of the constructed contour (e.g. the
curvature). In our experiments we used the constant vector lengths ∆min and the angle
γ de�ned by the median lines to the corresponding segments. This allows the algorithm
to construct relatively regular meshes with well balanced triangles avoiding expensive
computations.

After �nishing the process of the triangle creation, the edge Sxk,ti becomes inactive
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and a series of tests is performed. First, the new triangle Txk,ti is inspected for collisions
with the current mesh. This is carried out by searching intersections of the triangle
in some neighbourhood with the mesh triangles. If a collision is detected, the triangle
Txk,ti is rejected. We propose to use the dipyramid-shaped neighbourhoods to detect the
intersections (Figure 4.2b). The test of two dipyramids for collision is performed using
the Separating plane theorem [62]. Second, the new contour edges are tested for possible
occurrence of irregular acute-angled triangles. Such triangles can be eliminated by
stitching adjacent contour segments and attaching new triangle vertices to the existent
mesh nodes. This helps to avoid appearance of holes, mesh artefacts and collapsed
triangles in the reconstructed surface mesh.

The points whose orthogonal projections onto the tangential plane of Txk,ti lie inside
this triangle are marked as processed if their distance to the plane is less than the
prede�ned value σ. After the accomplishment of these tests the triangle Txk,ti is inserted
into the mesh and its edges (Pxk,ti , Py,ti+1

) and (Py,ti+1
, Pxk+1,ti) are marked as active

within the new contour.
The initialization and mesh-growing steps are repeated until all points from P are

processed.

4.3.3. Post-processing

The goal of the post-processing step is to improve the aspect ratio of the mesh triangles
and to make the mesh more realistic by determining the amount of smoothing applied
to the mesh. We demand that the mesh post-processing procedure satis�es three con-
ditions:

a) smoothes the mesh;

b) keeps the minimal spatial deviation of the optimized mesh from the initial one
(it is especially important for medical applications where local anatomical features have
to be preserved after the mesh processing);

c) can be applied in real time (i.e. to be highly productive).

The aspect ratio is optimized by performing the edge swapping procedure. It pur-
poses at turning the average valence of the mesh nodes to ν = 6 by minimizing the term∑
P∈Pmesh

(valence(P )− ν)2 over the set of all mesh nodes [56].

After this, a mesh enhancement procedure is performed. Since the goal of the post-
processing step is precise �tting of the smoothed surface to the initial mesh nodes, high
performance and simplicity, it was proposed to use interpolating subdivision based on
the modi�ed Butter�y scheme [209]. This method is computationally e�ective, supports
irregular triangle meshes and produce su�cient smoothing e�ect.
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4.4. Evaluation of the method

Evaluation of the method has been done by calculating the average Euclidean distance
between the original point clouds and the corresponding reconstructed meshes. The
distance calculation procedure is based on a consequent search of the closest mesh face
(and the corresponding closest point on it) for each point from the given point cloud.
This is performed using the method based on the kd-tree search and the maximal shape
radius of the mesh faces, described in Appendix A. Due to the properties of the pro-
posed surface reconstruction method, the resulted meshes are relatively regular and their
maximal shape radius can be either de�ned within the reconstruction algorithm as an
additional restriction for the propagation vector and the projection operation, or can be
calculated directly.

Figure 4.3.: Mesh reconstruction error (E, % of the model's shape diameter) depending
on the number of faces (N). The sphere model (a)-(c): 65160 vertices, the
Stanford bunny model (d)-(f): 35947 vertices. Reconstruction time (T,
seconds): a) T = 8.8; b) T = 6.3; c) T = 6.2; d) T = 8.5; e) T = 3.2; f)
T=3.1.
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Figure 4.4.: Mesh reconstruction from 3D freehand ultrasound data. A fragment of a
swine cadaver myocardium: a) region of the left ventricle, 3911 points; b)
reconstructed mesh, N = 8128, T = 0.44s; c) reconstruction error map, E
= 0.68mm.

Figure 4.5.: Mesh reconstruction from 3D sequential triggered ultrasound data. A distal
tibia of a sheep cadaver: a) ultrasound data, 53674 points; b) reconstructed
mesh, N = 28992, T = 12.1s; c) reconstruction error map, E = 0.32mm.
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In order to provide a quantitative estimation of the reconstruction accuracy for each
local region of a mesh, a rating value is assigned for every face of the resulted mesh. These
values are calculated as the average distance between the faces and their corresponding
points from the original point cloud. The resulted rating values were mapped over a
color space and used for visualization of the mesh reconstruction accuracy (Figure 4.3-
4.5). The root mean square value (E) of the distances from the points to the mesh is
used as a general reconstruction accuracy characteristic for the whole mesh model.

A set of tests was carried out on dense arti�cial data. The pictures of the recon-
structed surfaces, the reconstruction time (in seconds) on a workstation Intel Core i7
2,80GHz 4Gb RAM and errors E (in percentage terms of the original model's shape
diameter) are given in Figure 4.3.

Further, the proposed method was tested on two sparse medical datasets. First,
a segment of the left ventricle of a swine cadaver heart was scanned in a water basin
using a freehand tracked 3D ultrasound system [92]. The cardiac ultrasound data (3911
points) consisted of 30 2D non-parallel images in 3D space were reconstructed on the
same workstation. The quantity of mesh polygons, the reconstruction time and the
root mean square value were estimated as 8128, 0.44 seconds and 0.68 mm respectively
(Figure 4.4).

Second, a distal tibia of a sheep cadaver was scanned using the 3D sequential trig-
gered scanner. The ultrasound data were stored in 612 2D images and 53674 points
of bone surfaces were automatically extracted (Figure 4.5a). A surface mesh of 28992
triangle polygons was reconstructed on the same workstation in 12.1 seconds (Figure
4.5b,c). The root mean square value was measured as 0.32 mm (Figure 4.5c). In the
performed experiments the mesh regularity value r was between 0.5 and 0.7.

At the next step the dependencies of the surface reconstruction accuracy from the
saturation factor α (4.3), from the average size of the mesh faces (S) and from the
neighbourhood radius ε (4.2) were investigated. A synthetic model with irregular surface
point density and curvature was generated (Figure 4.6a) and used in a number of tests
together with the earlier utilized medical models. As a result, the tangential-based
reconstruction accuracy started to increase with growth of the neighbourhood radius
ε used for the local tangential planes calculation (4.2), but after some model-de�ned
value ε* it tended to decrease (Figure 4.7a). For the optimal ε*, the relation of the
reconstruction error E to the saturation factor α for the synthetic model is shown on
Figure 4.7b.

The experiments shown that the Complex Propagation scheme provides more recon-
struction accuracy than the pure tangential or inertial mesh growing (Figure 4.6b-c).
The optimal saturation factor α* that corresponds to the minimal reconstruction er-
ror (Figure 4.7b) can be experimentally found for a given class of models with similar
properties (e.g. similar shape, point density, surface curvature and complexity). If α*
is however unknown the adaptive saturation scheme (4.3) can be used. In spite of the
fact that this scheme does not provide maximal reconstruction accuracy it results in the
reconstruction error of the same order as the average error on α ∈ [0, 1] (Figure 4.7c).
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4.5. Results and discussion

The proposed surface reconstruction method adaptively combines the inertial and the
tangential propagation directions (4.1) that makes the mesh-growing process more robust
to irregular and sparse data. A series of experiments on synthetic and ultrasound data
showed quite a good accuracy of surface reconstruction. The reconstruction error was
measured as the averaged distance between the faces of the mesh and the points from the
cloud. The reconstructed surfaces correctly interpolate the initial data and demonstrate
an appropriate smoothness.

Figure 4.6.: a) Synthetic model: deformed sphere of non-constant radius R(α, β) =
R(1 + 0.3cos(2α + 2β)) with low point density in the upper part (α, β ∈
[0◦, 90◦]) and high curvature in the right part; b) tangential propagation-
based surface reconstruction (α = 1), E = 0.5 with an artefact (in the
frame); c) adaptive saturation-based surface reconstruction, E = 0.22; d)
inertial propagation-based surface reconstruction (α = 0), E = 0.32 with
an artefact (in the frame).

It was found that for some models the optimal linear combination of the propagation
terms di�ers from the trivial ones (α = 0 and α = 1). The tangential surface growing
(α = 1) may produce artefacts within areas with insu�cient point density (Figure 4.6b),
while the inertial surface growing (α = 0) is suboptimal on complex surface regions
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(Figure 4.6d). It was found that a linear combination of the considered terms can
overcome these problems and reduce the reconstruction error. Nevertheless, the optimal
value of the linear parameter α* has to be experimentally evaluated for a processed
class of models that can be a limitation of the proposed approach. Alternatively the
adaptive saturation scheme (4.3) can be used. It seems to provide the reconstruction
accuracy comparable with the average accuracy on the set α ∈ [0, 1]. It also should be
noted that the accuracy of reconstruction highly depends on the size of the triangles
used within the growing procedure. In some cases, due to suboptimal selection of the
triangle size (as well as the parameters ε and σ), the method can produce holes or mesh
oversimpli�cations. That is another drawback of the method.

Figure 4.7.: Synthetic model. Relation of the reconstruction error E to: a) the neigh-
bourhood radius ε for the tangential propagation (α = 1); b) the saturation
factor (β = 1−α), the mean value level and adaptive propagation error level
(λε = 1200) are 0.61 and 0.22 correspondingly; c) the average size S of the
mesh faces (adaptive saturation error and the average error on α ∈ [0, 1]).

An additional interpolating surface subdivision procedure is integrated into the post-
processing step of the algorithm that guarantees smoother surface geometry. The imple-
mentation of the algorithm utilizes kd-trees that results in su�cient acceleration of the
processing speed. The method is quite intuitive, provides good accuracy and can be suc-
cessfully utilized in the applications aimed at reconstruction of surfaces from irregular
and sparse data.
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4.6. Outlook

As it can be seen in our experiments, the point clouds acquired by the sequential trig-
gered ultrasound scanner with the horizontally oriented transducer (Section 3.4) have
a regular structure. The points are located at parallel slices in 3D space and form
point stacks with the high in-slice resolution and the low inter-slice one. This infor-
mation was not explicitly used by the developed mesh-growing surface reconstruction
method. Therefore, a more optimal solution for reconstruction of such type of data can
be found.

As a possible solution we propose to use a technique based on a combination of a 2D
case of the described in this chapter method with the existent algorithms for 3D surface
reconstruction from parallel contours [180, 39]. So, the technique consists of two basic
steps:

1) Reconstruction of a 2D contour within each B-scan separately using a 2D contour-
growing analogue of the complex propagation scheme (4.1);

2) Tiling and stitching. The tiling procedure is applied for every pair of neighbour-
ing parallel contours (we used the algorithm proposed by Christiansen and Sederberg
[39]). The resulted surface patches are stitching together into one mesh.

After these two steps we obtain a surface approximating the original data (Figure
4.8). A number of experiments showed that this reconstruction is about three times
faster that the general 3D mesh-growing method. However, it was found that the result-
ing mesh has a serious lack of smoothness. Indeed, the proposed two-step approach does
not involve any inter-slice smoothness terms. Therefore, a third step must be performed
in order to enhance the resulting surface.

3) Mesh smoothing that preserves closeness of the surface to the point cloud.

The standard subdivision surface methods described in Section 4.3.3 seem to be not
very helpful in this case due to quite a strong disturbance of the surface smoothness. The
standard node relaxation techniques could help, but unfortunately they produce smooth
meshes that can signi�cantly deviate from the original point cloud. Therefore, in order
to obtain a smooth mesh that approximates the point cloud properly, we propose to
compute it using the following energy minimization problem

E(X,P ) = γEs(X,P ) + (1− γ)Ed(X,P ) −→ min
X∈R3m

,

where vector X is the spatial coordinates of m mesh nodes, vector P ∈ R3n is the
coordinates of n points from the cloud, Es(X,P ) is the internal energy responsible for
the mesh smoothness, and the term Ed(X,P ) is responsible for closeness of X to P .
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Figure 4.8.: The original bone ultrasound data acquired using the sequential triggered
ultrasound scanner (left). The reconstructed surface after two (center) and
three steps (right). Term Es is based on the Laplacian smoothing operator.

Accordingly with this, the �rst and second steps produce the initial rough mesh that
interpolates the point cloud. At the third step the initial mesh is enhanced in such a
way that the resulting surface represents a trade-o� between smoothness and closeness
to the original data de�ned by the external parameter γ ∈ [0; 1].

Our preliminary tests showed that such an approach is quite an e�ective solution
for surface reconstruction from noisy parallel slices that can outperform the general
3D mesh-growing approach in speed and quality. The future work will be targeted
at improvement of this method and development of alternative ones that consider the
speci�c properties of the input data.
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5.1. State of the art

The goal of image segmentation is to identify homogeneous regions on an image de-
pending on pixel intensities, their mutual location and a number of derivative properties
such as object shape, texture, distribution of intensities, etc. There are three principal
approaches to the concerned problem: manual, automatic and semi-automatic image
segmentation. The �rst approach has been the prevalent standard for many years in
clinical research and is used for complex anatomical structures segmentation. Unfor-
tunately, manual segmentation has a number of disadvantages such as human errors,
high time consumption and limited adaptation to multi-dimensional (3D and 4D) data.
On the other hand, automatic segmentation methods process multi-dimensional data in
relatively short time, but usually have a number of problems with quality and, in the
long run, need an expert intervention into the �nal results or into the initialization (that
is called semi-automatic methods). In this section we discuss the existent automatic and
semi-automatic image segmentation methods.

Automatic and semi-automatic medical image segmentation has been intensively
studied by image analysis community since 1960's. As the result a wide variety of tech-
niques has been developed till today. The existent image segmentation methods can
be roughly divided into the next four classes: clustering-based, region-based, deformable
models, and active shape models. Along with this, a certain part of them can be merged
into the groups of methods that make use of the variational framework [174] and the
probabilistic graphical models [9].

Clustering-based methods

Clustering [4] is the principal statistical data analysis technique of unsupervised
learning that is widely used in image analysis and pattern recognition. The goal of clus-
tering is partitioning a data set into subsets of clusters based on some distance measure.
Clustering di�ers from data classi�cation (that is also used in image analysis) in one
basic feature: clustering does not use training sets for learning the algorithm of clas-
si�cation. Clustering-based algorithms utilized for image segmentation are represented
by such well-known techniques as k-means [86] and fuzzy c-means, FCM [23]. In their
standard form these algorithms are not widely applied in medical segmentation tasks,
however they can be used in combinations with more advanced image segmentation
techniques. As an example, k-means and FCM are used within a spatio-temporal model
for segmentation of cardiac ECG-gated MR image sequences [67], or within the Gibbs
random �eld model [112].

Recently a more e�ective clustering-based image segmentation technique has been
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proposed, called spectral clustering [178, 11]. The method utilizes the similarity ma-
trix of the data S = (sij), that represents a measure of the similarity between each
pair of pixels i and j on the image. Spectral clustering makes use of the eigenvalues of
the similarity matrix that allows reducing dimensionality of the clustering problem and
therefore increase the speed and e�ectiveness of the algorithm.

Region-based methods

Region-based class includes a number of methods that are well studied and widely
used in medical image segmentation. The main feature of the region-based methods
consists in utilization of global information from the image regions (e.g. statistics,
textures, boundaries) for pixel labelling, region splitting or merging [176]. The most
popular methods applied in medical image segmentation are based on region growing
[42, 85], Bayesian and Markov random �eld, (MRF) based models [75, 133, 34].

Region growing algorithms start segmentation from the labelled seed pixels (voxels)
that are selected in image I manually or automatically inside the regions of interest. The
goal of a region growing algorithm is to expand from a seed pixel and to label all homo-
geneous regions. In order to perform this task a pixel similarity measure P (i, j), i, j ∈ I
and a threshold T are selected. For already labelled pixels i ∈ I the algorithm recur-
sively marks new pixels j ∈ N(i) with the same label if P (i, j) > T . Here N(i) denotes
the neighbouring set for the pixel i ∈ I. Nowadays the research in the region growing
medical image segmentation is aimed at construction of new optimal growing criteria
(the measure P is becoming more and more sophisticated and depends on a variety of
parameters) and at acceleration of the algorithm [155].

MRF based image segmentation [133] forms a big class of probabilistic methods
that treat the image as a realization of a random �eld and utilize mutual dependence of
the pixels (voxels) in neighbourhoods. This approach is widely used for medical image
segmentation since 1980's and till today it has become a variety of modi�cations and
improvements. MRF based methods are considered to be edge preserving and allow
saving global boundary and shape properties of the segmented objects. However the
process of calculation maximum a posterior (MAP) estimation of the image regions is
computationally expensive. Several solutions for this problem were proposed. Geman
and Geman [75] pro�ted by the Hammersley-Cli�ord theorem and proposed to use the
Gibbs distribution:

P{X} = 1
Z
e−U(X)/T ,

for image restoration within Bayesian framework. Here,

Z =
∑
z∈X

e−U(z)/t,

denotes a normalizing factor, X is the set of all possible images with MRF property in
3D, where

U(X) =
∑
C∈C

VC(X),
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models the energy function of the image X. The value C is the set of all cliques de�ned
on the image X and "temperature" T is responsible for degree of "peaking" of P{X}
[34].

Use of the Gibbs distribution within the random �eld models allows reducing the
MAP estimation problem to the problem of minimization of an energy function. Never-
theless, the methods based on the described by Geman and Geman [75] model did not
use any boundary information for qualitative objects segmentation and edge preserva-
tion. Therefore, Chen and Metaxas [34] proposed a new energy function for the Gibbs
prior model that integrates objects boundary information and provides a better segmen-
tation quality. They used the iterated conditional modes (ICM) algorithm [22] for energy
minimization, but this approach seems to be rather time consuming and implements a
greedy strategy. As a result, a lot of works were dedicated to the problem of optimal
computation of the MRF MAP estimation, that is a NP-hard problem. A number of
interesting solutions were introduced: modi�ed metropolis dynamics [109], mean �eld
annealing [207], modi�ed simulated annealing [139, 113], methods based on the max-
sum problem and duality theory of linear programming [198]. Several authors [192] use
Markov chain Monte Carlo (MCMC) method [149] to solve the labelling problem. The
idea of MCMC is based on constructing a Markov chain with the desired distribution
as its equilibrium distribution. The desired distribution represents parameters of the
model that is under consideration and can be obtained from the state of the chain after
a large number of steps. The error of the approach is proportional to the number of the
steps.

The original methods described by Geman and Geman [75], Chen and Metaxas [34]
are mainly intended for processing of 2D data. However, later works in this �eld of
research [104, 38] extended the MRF based image segmentation to 3D. Thus, now this
approach is successfully applied in 2D/3D medical tasks [139, 164].

In our earlier paper [90] we proposed to combine the 3D MRF model with the high-
order statistical gradients [153] for cardiac MRI image segmentation. The statistical
gradients were introduced into the energy function U(X) as an additional term in order
to exploit the image regions with hidden boundaries which look like random textures.
Although utilization of the high-order statistics allows improving segmentation of MRI
brain images [153], our experiments on cardiac MRI and ultrasound data did not show
signi�cant improvement of the segmentation quality.

Deformable models

The main idea of the deformable model methods [141] is to deform some elastic
body (e.g. curve or surface) to the desired object considering the in�uence of physical
forces and constraints. This class of methods can be divided into several subclasses such
as active contour models (ACM) [108], dynamic deformable models (DDM) [140] and
deformable templates [167].

Active contour models also known as "snakes" are a popular approach of image
segmentation that was �rstly proposed by Kass in 1987 [108]. A snake is a geometrical
contour parametrically de�ned on image I,

s(r) = (x(r), y(r)) ⊂ I, r ∈ R.
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The shape of the contour s(r) is de�ned by the energy function

E(s) = Eint(s) + Eext(s).

The term Eint(s) models the internal deformation energy of the snake while Eext(s)
models the external energy. The goal of the method is to minimize the energy over
all contours de�ned on the image. According to the calculus of variations the optimal
contour can be found using the Euler-Lagrange equation [141].

There are a lot of various implementations of this idea in medical image segmen-
tation, such as active contours without edges [31], stochastic active contours [154] and
minimal path deformation contour [202]. But in most cases these methods require a
user pre-initialization and the segmentation quality strongly depends on it. Neverthe-
less new fully automated deformable model techniques have been recently developed
[110, 145, 152].

It should be also noticed that the deformable models utilize only generic a-priori
information about the shape of the segmented organ. This can be suboptimal in the case
when the shape of the object can be approximated by some geometrical rule. Therefore,
a modi�cation of the deformable models called deformable templates was introduced for
medical image segmentation [167].

Spatio-temporal segmentation of some biological tissues such as the heart is an
important matter for diseases diagnostics. Therefore the deformable models have been
extended to 4D and produced the the class of dynamic deformable models [140, 105, 208].
The main idea of this approach is to unify the shape and motion in one process that
can be modelled using the principles of the Lagrangian mechanics. In this multidi-
mensional case the snake can be de�ned as a dynamic contour s(r, t) = (x(r, t), y(r, t)),
r ∈ R, t ∈ [0, T ], and can be calculated using the Lagrange partial di�erential equations.

Active shape models

Active shape models (ASM) for locating structures in medical images were �rstly
proposed by Cootes et al. in 1993 [40]. ASM represent a statistical model of object
shapes which can be iteratively deformed and merged with the desired object in order
to segment it. The degree of the deformations is controlled by a statistical shape model
(SSM) that allows ASM to vary with the constrained freedom de�ned by a training set
of objects. The approach is rather similar to ACM with the additional global shape
constraints. In order to de�ne these constraints a point distribution model based on
landmark points is constructed. Let X = {X1, X2, ..., Xn} be a set of n aligned shapes in
3D. Each shape consists of m points and is represented as a vector in R3m, Xi = (xij)

3m
j=1,

i = 1, n. The mean shape X̄ of the set is de�ned by the expression

X̄ =
1

n

n∑
i=1

Xi

In order to de�ne the modes of variations, a 3m×3m covariance matrix Σ is calculated,
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Σ =
1

n

n∑
i=1

(Xi − X̄)T (Xi − X̄).

Let {v1, v2, ..., v3m} be the eigenvectors of Σ with the corresponding eigenvalues
{λ1, λ2, ..., λ3m}. Then the variation of the statistical models in the process of seg-
mentation is represented by the equation

X = X̄ + V T b,

where V = [v1, ..., v3m] is the matrix of 3m eigenvectors and b = (b1, ..., b3m) is the
vector of eigenvector weights. Thus, varying the parameter b during the segmentation
procedure, new optimal models can be generated. These models are shape-constrained
and possess basic shape properties similar to the ones of the models from the training
set X. The variations along the eigenvectors with the largest modules of the eigenvalues
are of the biggest interest here, as they represent the most signi�cant statistical shapes
of the model set.

Due to its �exibility and the ability to inherit the shape of the training set, the ASM
technique is well applicable for medical image segmentation tasks [41, 193]. Recently two
modi�cation of this technique have been developed: active appearance models (AAM)
[69] and active feature models (AFM) [119]. The AAM is the extension of the ASM
based on both statistical shapes and local texture variations. So, the AAM method
(also known as "smart snakes") combines the properties of both ASM and ACM and
can improve the quality of automatic image segmentation. The AFM methods are quite
similar to AAM and are based on combination of statistical shapes models and local
texture descriptors for texture representations. The AFM approach has advantages with
complex image data (e.g. anatomical structures) with high texture variation. In this
case it AFM can improve accuracy and speed of the AAM method. One more modi�ca-
tion of the snakes model, called "di�usion snakes", was earlier proposed in the literature
[45]. It introduces non-linear shape statistics into the Mumford-Shah functional [148]
and provides additional robustness against noise, clutter and occlusions.

A popular approach to image segmentation is related to utilization of variational
models, and consists in optimization of some functional that de�nes the required seg-
mentation of an image. The recent research in this �eld is represented by such directions
as convex approximations of the popular variational models (e.g. Mumford-Shah [173],
Chan-Vese [65], based on the Gromov-Wasserstein distance [172]), total-variation-like
regularizers [126], level sets [87, 44] and integration of statistical shape priors into the
variational models [43, 27].

5.2. Segmentation of ultrasound medical images

Practically, all described above methods can be used for segmentation of medical ultra-
sound data. With varying degrees of success di�erent implementations of deformable
models (ACM) [116], region-growing [85] (including morphological- and watershed-based
methods [132, 71]), active shape models (ASM) [94] and clustering [11] have been ap-
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plied to this problem. A number of specialized techniques based on probabilistic models
including Bayesian frameworks [103], Kalman �ltering [1] and Monte-Carlo methods
[10] have been also proposed. Some authors make use of grey level distributions and
the well-known methods based on intensity derivatives and edge detectors (e.g. Sobel
operator, Canny �lter, etc.). However, it was shown in [147] that the local image phase
is more robust for acoustic boundary detection than the intensity gradient. Therefore
local phase-based methods, e.g. [83, 163], are more preferable for this task.

On the one side, specialized methods provide better segmentation quality than the
standard edge detection and morphological techniques. On the other side, the com-
putation time is an important aspect that must be considered during selection of an
appropriate image segmentation algorithm. Majority of sophisticated algorithms can
work only in o�ine mode due to the huge amount of computations. Therefore, a trade-
o� between the quality and the computation time must be found. In order to perform
ultrasound contour extraction in real-time mode, in our applications we used the Rain-
fall algorithm [71, 115, 134]. It is based on a modi�ed watershed segmentation technique
and provides acceptable contour extraction accuracy and su�cient speed.

Regardless of the used mathematical model, an image segmentation method applied
to the ultrasound data must consider a series of speci�c features of ultrasound modality
[103]. The method must not completely rely on the image intensity but must �lter the
image in order to emphasize the needed features. It should be taken into account that
the surface response can be quite thick (up to 2 - 4 mm). The method should involve
such ultrasonic features as tissue shadows, re�ections and incidence angle. In the case
of bone ultrasound it should be considered that the bone surface is highly specular. On
an image it is represented by a high intensity feature followed by a shadow feature. The
high intensity feature looks like a curve with the shape closely (but not completely)
resembling the bone surface and having the thickness up to several millimetres. It was
shown in [103] that the actual surface on an image is close to the highest gradient
and the highest intensity points. Since there are inherent uncertainties in resolving the
surface location from a single B-mode image, it is preferable in tracked 3D ultrasound
to capture the likelihood of the surface occurrence from each 2D image and to combine
these 2D likelihoods into a superior 3D likelihood of the surface. All the mentioned
above facts show that development of a correct segmentation method for ultrasound
data is a challenging multivariable problem.
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6.1. State of the art

The main task of object detection is to �nd instances of a speci�c object or a set of
objects in a generic image, that can be represented by a 2D image, a video sequence,
a 3D scene or a point cloud. Commonly this process is getting complicated by the im-
age variability (illumination, intensity transformations, noise), object transformations
(similarity, a�ne or non-rigid) and object occlusions. Object detection is closely related
to object recognition that is aimed at identifying a speci�c object and its classi�cation
among objects of a general class in a particular region of the image [8]. Both object
detection and object recognition present one part of a complex computer vision problem
that is aimed at development of an arti�cial system similar to the biological system
eye-brain [175, 165], so they often utilize the common feature extraction and learning
algorithms. From the point of view of computer vision, object recognition follows object
detection in the visual processing pipeline and is applied to already detected objects
for further identi�cation. From another point of view, the modern implementations of
object recognition methods often integrate the detection step and are able to identify
the objects from unprocessed images using a huge database of the object classes. More-
over, as it was mentioned in [125] both in computer vision and in human vision, object
recognition and image segmentation are heavily intertwined processes. The knowledge
from recognition is often used for guiding the segmentation process and, oppositely, the
use of top-down segmentation usually improves the recognition results. Due to the close
relation of these two processes the same techniques (e.g. deformable and active shape
models) are often utilized in both segmentation and object recognition tasks.

Object detection methods were comprehensively reviewed by Amit in [8]. Accord-
ingly to this work the object detection methods can be classi�ed into three main classes:
deformable-template models, searching correspondence space, and searching pose space.

Deformable-template models

The methods from this class [8] are commonly based on relaxation techniques for
maximizing posterior distributions. They are well suited for detecting non-rigid objects
(particularly in biological and medical images), but all su�er from a similar drawback:
location and scale must be roughly known, that means that initialization provided by
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the user is necessary. These methods are closely related to the ones utilized in image
segmentation and usually make use of the variational models.

Searching correspondence space

The methods from this class [80] search for arrangements of some local features
(SIFT [138], SURF [17], histogram descriptors [136], etc.) in the processed images con-
sistent with the arrangements of the same features in the template model. For example,
when the relationship between a pair of image features and a pair of template model
features is considered, the method provides invariance of detection to object pose. For
the correspondence search the probabilistic graphical models [171, 20] are often utilized.

Searching pose space

This class is presented by the variety of methods based on the Hough Transform
(HT) [96] or pose clustering [183]. To this class we also attribute the methods based
on the divide-and-conquer search in the pose space [117], and implicit shape models
[124, 125] that combine local-feature codebooks and probabilistic Hough voting into
one process performing image segmentation and object detection tasks. Having such
advantages as noise resistance, tolerance to boundary gaps and robustness to objects
overlapping, the methods from this class give rise to complications induced by high
dimensionality and memory consumption. Particularly, it is essential for the problem of
arbitrary shapes matching invariantly to some transform (e.g. a�ne, projective) in two
or thee dimensions that widely occurs in medical and industrial applications.

6.1.1. Hough Transform based object detection

Originally the Hough Transform was proposed by Paul Hough in 1962 to extract straight
lines in the particle tracks recognizing procedure [96]. It was popularized in 1972 image
analysis after the work of Duda and Hart [58], who proposed to use the Hough Transform
for more general curves �tting and introduced the common rho-theta parametrization
for lines representation (Figure 6.1) that was already standard for the Radon Transform
[161]. In 1981, the Hough Transform was extended by Ballard to the detection of
quadratic curves and to the extraction of general shapes using the Generalized Hough
Transform [15].

A great number of optimizations and modi�cations has been proposed in this area
till today. A series of works in HT were dedicated to the problem of accumulator array
size reduction, that was particularly important for the approaches worked with high-
dimensional parametric spaces [156]. The Fast Hough Transform (FHT) introduced by
Li [130] realized the coarse-to-�ne strategy of the parameter space exploration, so that
only the subsets of parameters which contain more than a speci�ed number of votes were
investigated in greater details. Another modi�cation of the HT is the Adaptive Hough
Transform (AHT) that implements an iterative multi-resolution peak search in the pa-
rameter space using a small �xed size accumulator and the parameter limits calculation
procedure [101]. Proposed by Princen et al. [156] the Hierarchical Hough Transform
(HHT) works with a pyramidal structure of sub-images extracting short line segments
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Figure 6.1.: Example of 2D line detection using the Hough Transform. The original
image (top left); pre-processed image after application of the Sobel operator
(top right); the standard Hough transformation of the pre-processed image is
the set of sinusoids in the rho-theta space (bottom left); lines corresponding
to local maximums in the Hough space (bottom right).

and combining them within local neighbourhoods into longer lines. The Randomized
Hough Transform (RHT) proposes an iterative stochastic approach to the problem of the
HT-based object recognition [200]. The algorithm uses a set of points sampled randomly
from the edge image and de�nes only one point from the parameter space, therefore only
one corresponding cell of the accumulator array is incremented. The process continues
until a speci�ed threshold in the cell is reached or the number of iterations is exceeded.

Most of the �rst developed methods were designed to extract a very narrow class of
analytic curves such as lines and ellipsoids that was often insu�cient for their successful
application in real scenes. Hence, a number of later papers [122, 150] concentrated on
the development and improvement of techniques for general shape extraction based on
the GHT. Originally the GHT invented by Ballard [15] is not invariant to geometric
transformations, therefore many improvements and modi�cations [66, 3, 61] have been
proposed to consider a more general shape transformation (e.g. similarity and a�ne).
In [12] it was proposed to used such invariant image features as local Fourier-based
descriptors, that made the transform also more robust to noise. A number of works
[3, 144, 184, 37] realize so called n− to− 1 mapping approach, accordingly to which the
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image features are selected as n-combinations instead of single points. The advantage of
this approach is that each n-combination of image points produces votes in the param-
eter space considering some type of geometric invariance (e.g. pairs of points support
invariance up to the similarity transform, triplets of points support the a�ne transform).
It is also possible to reduce the dimensionality of the Hough space by using subspaces
corresponding to di�erent parameters independently [3], and therefore decrease memory
consumption of the algorithm. The drawback of the n− to−1 mapping approaches con-
sists in increased computational complexity (exponentially in n), redundant mapping
and spurious voting, that is the object of the further improvement in this �eld [37].

The recent approaches on Hough transform-based object recognition are dedicated
to the problem of construction an optimal mapping of the image features into the votes
in the Hough space, such as the implicit shape model (ISM) [124, 125], Hough forests
[68] and the principled implicit shape model (PRISM / Fast PRISM) [123]. These meth-
ods operate in the high-dimensional Hough parameter spaces and are optimized for the
features that are typical for digital photos, video sequences and real-world scenes. A
number of the latest techniques learn the problem of vote processing and accumulation,
including probabilistic models [16, 146] and optimal strategies for the Hough space anal-
ysis such as intrinsic and minimum-entropy Hough transforms [199]. The common trend
here is to reduce the number of votes per feature that will decrease the "uncertainty
mist" in the Hough space and produce better accuracy of the object recognition process.
The cutting-edge minimum-entropy approach solves this problem by introducing vote
weights and considering the Hough transform as a kernel density estimation problem. It
performs minimization of the vote distribution entropy in the Hough space with respect
to the vote weights using the iterated conditional modes (ICM), that provides the high
level of accuracy and speed comparing to other methods [199].

6.1.2. Classi�cation of the existent HT-based methods

Summarizing the variety of the existent Hough Transform based methods, we classify
them using the following criteria:

a) dimensionality of the object space (2D or 3D) and the Hough space (from 2D to 8D);
b) type of the feature-to-vote conversion function;
c) vote analysis principle in the Hough space.

Since the object space is commonly one of 2D (photo, medical and industrial images)
or 3D (real life scenes, medical volumes), the Hough space dimensionality varies from
2D in the primitive object recognition problems (e.g. the original Hough Transform for
2D line matching) to 8D in the most complex ones (3D object matching invariant to
translation, scaling and rotation).

Concerning the second criteria, the majority of the methods utilize such image fea-
tures as pixel/voxel intensities, boundaries gradients, di�erent types of invariant de-
scriptors and their combinations, applying special methods of image segmentation and
analysis [124, 125, 68]. The extracted features are mapped into sets of parameters in the
Hough space using some feature-to-vote conversion function. Such sets of parameters
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receive so called "votes" that can be e.g. accumulated during the whole feature conver-
sion procedure. The parameter with the maximal number of votes de�ne the positions
of the detected objects. The used feature-to-vote conversion functions, that can vary in
their nature and complexity, de�ne the principal quality of the HT-based methods.

Nevertheless, due to the high dimensionality of the parameter spaces, and as the
result, a huge number of discrete elements in them, the direct analysis of the votes (such
as vote accumulation and brute force search for maximum) is often impossible. There-
fore, a number of optimizations and approximations of the vote analysis process were
developed. They all can be divided into the following classes [199]: standard, approxi-
mate, irregular, hierarchical and iterative optimization.

Standard or grid approaches use multidimensional arrays for vote accumulation
that cover the full Hough space. They were initially proposed in the �rst HT algo-
rithms and were successfully used for low-dimensional object recognition due to their
high speed. But with the growth of the HT dimensionality usage of the grid approaches
has become ine�ective due to their exponential memory consumption.

Approximate approaches use reduced-dimensional approximations of the full
Hough space to �nd the vote peaks. It is done by dividing a high-dimensional Hough
space into several subspaces of smaller dimensionality and then analysing these sub-
spaces separately. As an example, a 6D (translation/rotation) space can be reduced
into two 3D subspaces (one for translation and one for rotation) with the following peak
search in these two subspaces [64]. Together with this, the peak search can be also
performed over the translation subspace with the further computation of the average
rotation for the found peaks [188]. Due to operation in low-dimensional subspaces these
methods are relatively memory undemanding, but give only an approximate solution
that can vary in quality.

Irregular approaches exploit sparsity of the Hough space by sampling it only in the
regions where objects are likely to be detected. The Randomize Hough Transform [200]
and the intrinsic Hough transform [199] fall into this category.

Hierarchical approaches, such as the Fast [130] and Adaptive [101] Hough Trans-
forms, explore the full space in a coarse-to-�ne manner, avoiding precise analysis of the
areas with the low total number of votes. Though the complexity of such vote analysis is
high, the coarse-to-�ne technique allows signi�cantly reducing the memory consumption.

Iterative optimization approaches �nd vote peaks in the full space through opti-
mizing some functional. The mode-seeking approaches (mean shift [205], medoid shift
[177], quick shift [195]) that fall into this group need a multiple initialization and are not
guaranteed to �nd every peak. Nevertheless, due to their reduced computational com-
plexity they are successfully applied to high-dimensional Hough spaces. The minimum-
entropy approach [199] can overcome the drawback of the multiple initialization but it
utilizes a "greedy" strategy in the iterative local optimization that does not in general
produce an optimal solution.
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As an example, according to the above classi�cation the standard Hough Transform
for 2D line detection can be classi�ed in the following way: a) dimensionality of the
object space is 2D, dimensionality of the parameter space is 2D; b) feature-to-vote
function: object points are mapped into sinusoids in the rho-theta parameter space; c)
vote analysis principle: standard (grid-based).

In the following sections we consider the features of the Generalized and the Fast
Hough Transforms.

6.1.3. Generalized Hough Transform

First, we consider the formal de�nition of the Generalized Hough Transform and take a
look on the relation of the GHT and the RT. This relation as well as elaboration of a
conventional mathematical de�nition of the GHT was an object of discussions for many
authors since the last years. A number of authors noted that the GHT and RT are
very closely related to each other [49, 194], however several works mentioned disparity
of these two transforms [157].

First of all we introduce the basic notations and variables. Let X ⊂ RN be a N -
dimensional set of spatial coordinates and I = {I(x) : X→ R} is the space of all images
de�ned on X. We consider also P ⊂ RM as the M -dimensional parameter space and the
constraint function:

C(x, p) : (X,P)→ R,

that de�nes a desired template. The template represents a parametric subset of points
in the set of spatial coordinates that satisfy the equation C(x, p) = 0 for p ∈ P. Each
parameter value p ∈ P de�nes some geometric transformation of the template in space
X. The RT in a general form is a mapping from the image and parameter spaces into
the set of real numbers:

RTC : (I,P)→ R,

and may be de�ned by the formula:

RTC(I, p) =

∫
X

I(x)δ(C(x, p))dx, (6.1)

where δ(x) is the Dirac delta function and δ(C(x, p)) is the transformation kernel. Orig-
inally the RT was de�ned as the integral of a function over hyperplanes speci�ed by the
parameter p ∈ P.

In the context of the Radon Transform the GHT can be speci�ed as its discretiza-
tion in the case of binary images, i.e. when I = {I(x) : X→ {0, 1}}. However, such
a theoretical interpretation �rst given by Deans (1981) does not explicitly consider the
structure of the practical realization of the GHT and the idea of the voting process,
proposing so called reading/writing paradigms [194] for better explanation of the di�er-
ence in calculations of the RT and the GHT. The main feature of the GHT realization
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in practice consists in utilizing the voting mapping that is a mapping from the set of
spatial coordinates X to the space of all subsets of the parameter space1:

HC : X→ P∗, P∗ = {P ∗, P ∗ ⊆ P}.

We de�ne the voting mapping by the formula:

HC(x) = {p ∈ P, C(x, p) = 0} , x ∈ X. (6.2)

It means that for each point x ∈ X the voting mapping de�nes a set of parameters for
which x has voted. Using this de�nition the GHT may be written in the form:

GHTC(I, p) =

∫
X

I(x)δ(ρ(HC(x), p))dx, (6.3)

where ρ(P ∗, p) : P∗,P→ R is a distance between parameter p and the subset P ∗ in the
parameter space. In this context the equation (6.3) de�nes the same transformation as
it was speci�ed by (6.1), but this equation view allows us to emphasize the features of
the GHT calculation in practice.

The algorithm that realizes the GHT practically works with discrete spaces X and
P. In this case the transformation (6.3) can be written in the form:

GHTC(I, p) =
∑
x∈X
I(x)=1

1p∈HC(x). (6.4)

From the equation (6.4) follows that the values of GHTC(I, p) equal to the number
of the votes that are given to the parameter p ∈ P by all object points (features) of the
image, i.e. x ∈ X, I(x) = 1. Therefore, for optimization of the calculation process we
can allocate an accumulator array that stores all the votes of all the object points using
only one traversal through the image (the grid voting principle). The further calcula-
tion of the value GHTC(I, p) for any p ∈ P is ful�lled in constant time by accessing to
the corresponding element of the accumulator array. This exposes the main idea of the
standard Hough formalism, that makes the GHT a computation e�ective, but on the
other hand a memory consuming method. It also should be noticed that usage of the
GHT is preferable for the tasks where the votes are needed to be calculated for large
sets of the parameters (e.g. in the problem of the global maximum search). The discrete
RT approach is more optimal in the cases when the vote number is needed to be found
for a certain point in the parameter set.

In the above de�nition we considered the object points (a set of N -dimensional spa-
tial coordinates x ∈ X with the property I(x) = 1) as the only possible features that
produce votes in the Hough space. In a more general case the features can have a more
complex view and consist of a number of additional characteristics (e.g. gradients, local

1It should be noted, that in the most general case X is considered as the space of image features. In
this case the voting mapping is nothing else as the feature-to-vote conversion function mentioned
above. For more clearness we suppose here that the image features are presented by the coordinates
of the pixels that belong to objects.
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descriptors). In this case the set X includes these additional dimensions and is inter-
preted as the set of features. The corresponding general form of the voting mapping
(6.2) HC(x) : X→ P∗, is called feature-to-vote conversion function.

The classical GHT algorithm proposed by Ballard [15] in 1981 uses one reference
point parametrization for detection of non-parametric objects with arbitrary shapes in
2D. The parameter space in this case is two dimensional and coincides with the image
spatial coordinates X. The object recognition procedure is based on two consistent steps:
a) conversion of the processed image features into votes, and b) the vote analysis.

Standard GHT feature-to-vote conversion. First, the template model encoding
is performed. A reference point p ∈ X is selected within the template domain according
to some rule (e.g. mass center of the template model) and the template model (the
shape that must be detected) is represented in so called R-table format (Table 6.1).
According to this format every boundary point of the template model c ∈ X is encoded
as a pair (r, α), where r is the length of the vector connecting c with p, and α is the angle
between this vector and OX (Figure 6.2). The resulting pair is stored in the R-table in
a row, that is de�ned by the angle φ between OX and the boundary gradient calculated
at the point c.

Figure 6.2.: Parameters used in the template model encoding of the GHT.

Gradient angle Encoding pairs

0 (α11, r11) (α12, r12) ... (α1n1 , r1n1)

∆φ (α21, r21) (α22, r22) ... (α2n2 , r2n2)

2∆φ (α31, r31) (α32, r32) ... (α3n3 , r3n3)

... . . .

(m− 1)∆φ (αm1, rm1) (αm2, rm2) ... (αmnm , rmnm)

Table 6.1.: The R-table example.

After the template model is encoded the object image (where the model detection
is performed) is ready to be processed. At every object boundary point b = (bx, by) the
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absolute gradient angle φ is calculated, and the pairs (b, φ) are considered as the image
features. For each feature (b, φ) the parameters (reference points) that should receive
votes are de�ned according to the relations:{

px = bx − r cosα,

py = by − r sinα,
(6.5)

for every pair (r, α) from the row of the R-table speci�ed by the value of φ. This al-
gorithm de�nes the standard GHT feature-to-vote conversion function HC(b, φ) which
maps an image feature (b, φ) into a set of reference points {(px, py)} that receive votes.
The main purpose of the following step is to �nd the unknown vote peaks in the param-
eter space, i.e. the coordinates of the reference points that received the high amount of
votes.

Standard GHT vote analysis principle. In order to the �nd vote peaks all cal-
culated votes using (6.5) are consistently accumulated in a preallocated two-dimensional
array (grid). Upon completion of the feature-to-vote conversion for all object points,
the accumulator elements with the high number of votes specify the coordinates of the
desired reference points. For each such reference point the recognized template model
position within the object image can be reconstructed using the R-table and a straight-
forward decoding procedure. This is the main idea of the standard GHT-based object
recognition proposed by Ballard [15].

The main inconvenience of the GHT is that it was originally developed for detection
of only one geometrically transformed instance of the template. Later, in order to
overcome this limitation, the method was modi�ed for detection of the a�ne transformed
versions of the template by means of introduction into (6.5) external scale-rotation
parameters and extension of the parameter space. However, this made the GHT too
bulky as the voting process used the brute force search in the scale-rotation subspace.
Namely, the whole GHT voting procedure was performed for each instance of the scaling
and rotation parameters, that exponentially increased the computational complexity of
the algorithm. In Section 6.3 we introduce an alternative and more intuitive way to
expand the GHT-based object recognition up to the rotational and uniform scaling
invariance.

6.1.4. Fast Hough Transform

An alternative approach to the problem of the vote analysis for the standard GHT, called
the Fast Hough Transform (FHT), was proposed by Li [130, 131] in 1986. The FHT
is based on the idea of the coarse-to-�ne parameter space exploration. It reduces the
complexity of the standard grid vote analysis by considering a hierarchically organized
parameter space. The FHT feature-to-vote conversion function maps the image features
into the parameters that form hyperplanes in the Hough space. Accordingly to the FHT
vote analysis principle, the parameter space is iteratively subdivided and the number of
votes that receives each subspace is de�ned by the number of hyperplanes intersecting
this subspace (Figure 6.3). The voting and the subdivision procedures are recursively
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performed for the subspaces with the high number of votes until the subspaces cannot
be further subdivided. All subspaces at the last subdivision iteration form the desired
set of the parameters that de�ne the locations and the poses of the detected objects.

Figure 6.3.: An example of the hierarchical 2D space subdivision based on the number
of intersections with 2D hyperplanes (thick lines) used in the FHT. The thin
lines show the borders of 2D hypercubes for 4 iterations (on each iteration
only one subspace is further subdivided.

The hierarchical vote analysis principle leads to signi�cant reduction of memory
consumption comparing to the standard one, as it uses "low-resolution" arrays for vote
accumulation. The size of such accumulator arrays is de�ned by the number of the
subspaces produced by a parent space at each iteration. For example on the Figure
6.3 the FHT algorithm uses a 2 × 2-array for vote analysis, while the GHT needs a
16× 16 one. On the other hand the FHT performs the vote analysis procedure in four
iterations (four calls of the feature-to-vote conversion routine), while the GHT needs
only one. From this follows the main informal property of the hierarchical vote analysis
principle: it "converts" the excess memory consumption into additional computational
time and possible peak omission errors. This property is especially essential for the high-
dimensional and high-resolution GHT-based transforms when the sizes of the standard
accumulators can exceed hundreds of terabytes. For example, a grid accumulator for the
4D parameter space analysis (translation, uniform scaling and rotation) with the reso-
lution of 1024 elements in each dimension needs about 4TB of memory, that is hardly
implementable on a convenient workstation. The modern GHT-based algorithms [199]
operate with the high-resolution parameter spaces up to 8D, that absolutely eliminates
usage of the standard accumulators. On the other hand, the increase of the computa-
tional time that ensues from the hierarchical principle, is compensated by the growing
power of the modern processors and GPU's providing the possibility to parallelize the
algorithm e�ectively.

As we already mentioned, in spite of the advantage in low memory consumption the
FHT method has several complications [102]. The subspaces for the recurrent subdi-
vision are selected by the number of their votes that must exceed some threshold. In
complex images this threshold may be di�cult to determine. From this follows the main
drawback of the method: if the threshold is set too low the e�ciency of the method will
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decrease as the algorithm will explore too many subspaces. On the other hand, if the
threshold is set too high the hierarchical vote analysis will produce peak omission errors.
It can happen when a subspace that contains a vote peak has a small total number of
votes and is skipped by the subdivision algorithm. In this case the right object location
and the pose will not be detected. In order to solve this problem an optimal subdivision
policy should be used. Also, it should be mentioned that the original FHT method
does not explain properly how all two-dimensional shapes can be naturally mapped into
hyperplanes.

6.2. Motivation and objectives

In spite of its popularity the GHT has an imperfect feature: it does not implicitly gather
the votes for the object scale and orientation. The common technique that allows using
the GHT in rotation-scale invariant object detection is based on the exhaustive search
within the prede�ned range of scales and angles. For each �xed pair (angle, scale) the
standard search for the position is performed, that is a rather ine�ective approach. One
intuitive solution to improve this drawback is to introduce the second reference point
into the GHT. This, on the one side, allows the transform to consider rotation-scale
information from the objects in a more e�ective way, but on the other side, extends the
parameter space from 2D to 4D. That results in a signi�cant increase of the size of the
accumulator array used in the standard GHT vote analysis.

The idea of two reference points utilization in the GHT-based object recognition
was �rst proposed by Yip et al. [204]. This method contained a quite complicated
voting procedure using supplementary invariant tables associated with the Ballard's
R-table and two-dimensional arrays for accumulation of three- and four-dimensional
parameters without further re�nement in 4D, that produced only approximations of the
exact solutions. Several two-point variations of the GHT were also introduced in the
works of Chau and Siu [32], however these methods did not use two-reference points
for object parametrization. They proposed an indexing scheme and a search algorithm
based on the characteristic angle non-invariant to rotation and scaling. Later they
improved their method and developed the adaptive approach that provides better shape
encoding and reduces the number of false votes [33].

In this chapter we aim at developing a straightforward modi�cation of the Generali-
zed Hough Transform for 2D object recognition that is invariant to uniform scaling and
rotation. Because of the extension of the parameter space from 2D to 4D, the standard
vote accumulation used in the GHT is becoming too memory consumptive. Therefore,
the second our objective is to develop the corresponding e�ective vote analysis method.

6.3. Material and methods

The proposed transform, called Dual-Point GHT (DPGHT), operates in a 4D parameter
space and is based on the two-reference-point parametrization that is used for template
encoding and the feature-to-vote function construction [93]. The features of template
models are encoded relatively to the reference points and do not fastened to the global
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image coordinate system. The two-reference-point parametrization is an intuitive and a
�exible tool for 2D object recognition that allows extracting models invariantly to the
similarity transformation and can be applied in various tasks for objects detection up
to rotation and uniform scaling.

In this section we will introduce two alternative feature-to-vote functions and ana-
lyse their properties. The �rst function maps image features into sets of constrained
four-dimensional lines, while the second one transforms the features into constrained
hyperplanes in the parameter space. As the image features the both functions utilize
object boundary location and tangent vectors. Utilization of the boundary tangents
reduces the number of false evidences during the voting procedure and improves the
quality of results. We will also introduce two di�erent approaches to the vote analysis.
The �rst approach can be classi�ed as an approximate one, while the second one is based
on an optimized hierarchical vote analysis strategy that minimizes the probability of the
vote peaks omission. Depending on the combination of the proposed feature-to-vote con-
version functions with the vote analysis techniques we distinguish three variations of the
Dual-Point GHT shown in Table 6.2.

Dimensionality
(Object space/
Hough space)

Feature-to-vote conversion
function

Vote analysis principle

2D/2D(4D)
Feature (intensity + gradient)

to Lines in 2D
Approximate (two 2D projections)

2D/4D
Feature (intensity + gradient)

to Lines in 4D
Optimized hierarchical

2D/4D
Feature (intensity + gradient)

to Hyperplanes in 4D
Optimized hierarchical

Table 6.2.: Variations of the proposed Dual-Point Generalized Hough Transform.

6.3.1. Feature-to-vote conversion function

We distinguish two basic classes of feature-to-vote conversion functions that can be
used in the GHT-like object recognition methods: unconstrained and constrained. The
functions from the �rst class map image features into unconstrained sets in the parameter
space such as lines, hyperplanes and curves, maximizing the number of both true and
false evidences. The functions from the second class realize a more selective voting
process by mapping image features into constrained sets or even single points in the
parameter space minimizing the number of false evidences and trying to preserve the
number of true ones. This class is presented by some modern methods [3, 16] that involve
probabilistic models and local object features for suppression of the false evidences. The
proposed further line-based and hyperplane-based feature-to-vote conversion functions
belong to the constrained class.

Line based feature-to-vote conversion

Similarly to the conventional Dual-Point GHT [204], two di�erent reference points
P1 = (P1x, P1y) ∈ X and P2 = (P2x, P2y) ∈ X are selected within the template do-
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main according to some rule (e.g. inside the template model symmetrically to its center
of mass). Analogously to the GHT the template model is �rst encoded and represented
in so-called α-table format as follows (Table 6.3). Every boundary point of the model
C ∈ X is mapped into a pair (α, β), where α is the angle between vectors P1C and P1P2

and β is the angle between P2C and P1P2 as it is shown on the Figure 6.4. The resulting
pair is stored in the α-table in the row that is de�ned by angle γ between the vector
CP1 and the boundary tangent vector T calculated at the point C.

Figure 6.4.: Parameters used in the DPGHT template model encoding.

Tangential angle Encoding angles

0 (α11, β11) (α12, β12) ... (α1n1 , β1n1)

∆γ (α21, β21) (α22, β22) ... (α2n2 , β2n2)

2∆γ (α31, β31) (α32, β32) ... (α3n3 , β3n3)

... . . .

(m− 1)∆γ (αm1, βm1) (αm2, βm2) ... (αmnm , βmnm)

Table 6.3.: The α-table example.

After the template model is encoded the object image is ready for processing. At
every boundary object point b = (bx, by) the unit boundary tangent vector T = (Tx, Ty)

T

is calculated and the pairs (b, T ) are considered as the image features. For each feature
(b, T ) and every pair (α, β) with the corresponding γ from the α-table, the parameters
that should receive votes are represented by a line in the 4D space:

L = L(α, β, γ) = D · t+B, t ∈ R, (6.6)

where B = (bx, by, bx, by)
T , and D is the product of the 4 × 2 directional matrix of two

rotational 2× 2 blocks and the tangential vector T :

D =

[
Rot(γ)

Rot(γ + β − α) · sinα/ sin β

]
· T, Rot(x) =

[
cosx − sinx

sinx cosx

]
. (6.7)
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In other words, each image feature (b, T ) de�nes the set of lines in 4D parameter
space passing through point B parallel to their directional vectorsD speci�ed by the pre-
calculated α-table. Each line de�nes a set of 2D point pairs (4D points), that reconstruct
all scaled and rotated versions of the corresponding template segments CP1 and CP2

relatively to the current tangent T and the point b (Figure 6.5). The proportion of these
segment lengths ‖CP2‖/‖CP1‖ = sinα/ sin β (according to the law of sines) is constant
and equals to the proportion from the template model.

Figure 6.5.: Geometry used in the line-based DPGHT feature-to-vote conversion
function.

Note, that each point that belongs to a 4D line votes for the scaling level (scaling
on which the objects are detected) that is de�ned by the distance of this point to B.
Namely, the point de�ned by some t ∈ R from (6.6) corresponds to the scaling level:

s(t) =
‖(v1x − v2x, v1y − v2y)‖

‖P1 − P2‖
|t|, (6.8)

where P1 and P2 are the initial reference points, and (v1x, v1y, v2x, v2y)
T = D.

In order to avoid singular solutions of the object recognition problem that occur at
the scaling level s = 0 (in this case each image point b produces a peak in the parameter
space in itself, i.e. the detected P1 = b and P2 = b), we have to determine positive
constrains for the scaling range: 0 < s1 ≤ s(t) ≤ s2. This gives us the corresponding
constraints t1 and t2 for the line parameter t that are de�ned by the relation (6.8).
Summarizing the above, each image feature (b, T ) generates a set of line segments in the
parameter space de�ned by equations (6.6)-(6.7) with the constrains t1 ≤ t ≤ t2 de�ned
by (6.8) for the given scaling interval [s1, s2]. The described algorithm represents the
line based feature-to-vote conversion function HC : {(b, T )} → P∗.

It should be mentioned that at the template model encoding step and during the
feature-to-vote construction we did not consider the case when sin β = 0 (that is also
equivalent to β = α). This corresponds to the boundary points that are located on the
line passing through the both reference points P1 and P2, or to in�nitely far points (that
are not relevant in practical applications and therefore are not considered here). Thus,
in this case, at the object encoding step we set α = 0 and β = P1C ·P1P2 / ‖P1P2‖2, and
if during the feature-to-vote mapping we obtain a pair (α, β) with α = 0, we calculate
D using the following formula instead of (6.7):
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D =

[
Rot(γ) · β

Rot(γ) · (β − 1)

]
· T.

It should be also noted that due to inaccuracies that can occur in the tangent
vector T calculation, the angle γ in (6.7) may be replaced by a set of angles from some
intervals [γ−ε; γ+ε], ε > 0, that will give us a set of segments instead of one. It provides
additional stability and improves the accuracy but, in turn, increases the complexity of
the algorithm.

The described feature-to-vote conversion function belongs to the class of constrained
functions as it maps each image feature into a bunch of four-dimensional segments
calculated relatively to this feature. The function uses boundary tangent information
of the analysed objects that, on the one side, provides the low level of false evidences
generated by each object feature. But on the other side, it is highly dependable on the
accuracy of the tangent vector calculation and in the case of noisy data and deformed
object boundary it can miss true evidences. In order to mitigate this drawback and to
increase the number of true evidences in the voting procedure, we will expand the bundle
of four-dimensional lines into a hyperplane. After this we will introduce a number of
constrains on the created hyperplane that will �lter out possible false evidences.

Hyperplane based feature-to-vote conversion function

This function realizes a more stable paradigm by operating with hyperplanes instead of
bundles of lines in 4D [14]. Accordingly to the linear feature-to-vote conversion, for each
image feature (b, T ) and every pair (α, β) with the corresponding γ from the α-table the
parameters that receive votes belong to a line in the 4D parameter space, de�ned by
the point B = [b, b]T it is passing through and the four-dimensional directional vector
D = (v1x, v1y, v2x, v2y)

T (6.6, 6.7). The directional vector in the ordinary case consists of
the elements of two 2D vectors v1 = Rot(γ) T and v2 = Rot(γ + β − α) T · sinα/ sin β,
such that the angle between them is (β−α), and the angle between v1 and the tangential
vector T is γ (Figure 6.7). Due to inaccuracies in the tangential vector calculation, image
noise or minor deformations of the analysed objects, the consideration of only one line
in the parameter space may be insu�cient and can result in loss of true evidence and
therefore suboptimal voting process. As it has been already mentioned, in order to
overcome this problem a bundle of boundary tangential vectors T has to be considered
for each feature point b. In the most common case this bundle consists of all rotated
versions of the original tangential vector T , that in turn produces a one-parametric
family of directional vectors:

D(θ) =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 ·


1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 ·

v1x

v1y

v2x

v2y

 ,
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D(θ) =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 ·D.
Notice, that the point set L(θ, t) = B + D(θ) · t, θ ∈ [0;π], t ∈ R, that de�ne a

bundle of lines passing through B, belongs to a hyperplane in 4D with the normal vector
n = (v2y, v2x,−v1y,−v1x)

T . Indeed, it is easy to show that the dot product D(θ) ·n = 0,
∀θ ∈ R:

D(θ) · n =


−n4 cos θ + n3 sin θ

−n4 sin θ − n3 cos θ

n2 cos θ − n1 sin θ

n2 sin θ + n1 cos θ

 ·

n1

n2

n3

n4

 =

= −n1n4 cos θ + n1n3 sin θ − n2n4 sin θ − n2n3 cos θ+

+n3n2 cos θ − n3n1 sin θ + n4n2 sin θ + n4n1 cos θ = 0.

For convenience we will denote a hyperplane as a pair of its normal vector and a
point on this plane. Thus, we showed that for a �xed image boundary point b, each entry
from the α-table corresponds to a subset on a hyperplane Hb = (B, n) in the parameter
space passing through the point B with the normal vector:

n =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ·D. (6.9)

Utilization of these hyperplanes in the vote generation process guarantees high pres-
ence of true evidences, but on the other hand, absence of additional restrictive conditions
makes the feature-to-vote conversion function redundant. In order to avoid this and ex-
clude false votes we introduce a number of constraints in the parameter space. The
constrains are divided into two classes: the tangential (de�ned by the image tangent
vectors) and the scaling ones (de�ned by the scaling range used within the current
object detection task).

For each image feature (b, T ) and each α-table entry we consider a class of two-
dimensional half-planes U(b, w) = {x ∈ R2 | (x − b) · w ≥ 0} of the following view
(Figure 6.6):

Uθ,v = U(b, Rot(θ + π/2) · v), Uq,v = U(b+ q · v, v),

and the function that describes the position of a 2D point x relatively to a given half-
plane U(b, w):

z(x, U) = (x− b) · w.
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Figure 6.6.: 2D projection of the hyperplane produced by a local feature (b, T ) with the
tangential- (left) and the both tangential and scaling constraints (right).

Using this we de�ne the feature-to-vote mapping as follows. The image feature (b, T )
and the α-table entry vote for the parameters p = (p1x, p1y, p2x, p2y) ∈ P that belong to
the base hyperplane Hb = (B, n) and the following constraints are satis�ed:

1) Tangential constraints:

z(p1, Uθ,v1) · z(p1, U−θ,v1) ≤ 0,
z(p2, Uθ,v2) · z(p2, U−θ,v2) ≤ 0,

2) Scaling constraints:

z(p1, U±q1,v1) · z(p1, U±q2,v1) ≤ 0,
z(p2, U±q1,v2) · z(p2, U±q2,v2) ≤ 0.

Where p1 = (p1x, p1y)
T and p2 = (p2x, p2y)

T . The value θ de�nes the maximal allowed
tangential angle inaccuracy. The bigger is θ, the more robust is the method to tangential
errors, noisy and irregularly deformed objects, but on the other hand, the more false
evidences are considered. The values q1 and q2 represent the scaling range in which the
objects are detected, that is calculated similarly to t1 and t2 from (6.8).

So, we de�ned the function that maps features of arbitrary 2D objects into con-
strained hyperplanes in 4D. Further will discuss the problem of vote peaks estimation
in the four-dimensional parameter space.

6.3.2. Vote analysis

In this section we consider two vote analysis approaches that can be used in the Dual-
Point GHT. The �rst one falls into the approximate class and operates in 2D projections
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of the 4D parameter space with the following re�nement of the results in 4D. It per-
forms estimation of the vote peaks in the parameter space using quadratically reduced
memory arrays comparing to the standard grid approach used in the GHT and the HT.
The second approach can be classi�ed as a hierarchical one. It utilizes an optimized
parameter space subdivision strategy that minimizes the probability of the vote peaks
omission.

Approximate DPGHT vote analysis

This approach is based on the speci�cities of the both GHT and the Radon Transform
(RT) [161], but avoid extreme memory consumption of the standard GHT vote analysis,
that is especially signi�cant in 4D. We estimate the vote peaks in the four-dimensional
parameter space by analysing its two-dimensional orthogonal projections and therefore
using two-dimensional accumulators instead of four-dimensional ones. First, we �nd the
areas of the most probable parameter location using 2D projection analysis of the full
4D parameter space and the standard HT formalism for votes accumulation. Second,
in a similar manner like the brute force searching pose space (mentioned by Amit [8],
Chapter 8), we calculate the precise position of the high-voted reference points within the
found areas considering the RT-like form of the Dual-Point GHT that corresponds to the
general form (6.4) with the line-based feature-to-vote conversion function HC(b, T ):

FC(I, P ) =
∑

(b,T )∈I

1P∈HC(b,T ), (6.10)

where FC(I, P ) : P→ N, P = (P1x, P1y, P2x, P2y) ∈ P. In other words this function de-
�nes how many votes were given to the parameter P by all the features from the image I.

At the �rst step, similarly to the approximate vote analysis principles, we calculate
the orthogonal cumulative projections of FC(I, P ) onto two-dimensional subspaces P1 =
{(P1x, P1y)} and P2 = {(P2x, P2y)}:

F1,C(I, P1) =
∑

(P2x,P2y)∈P2

FC(I, P ),

F2,C(I, P2) =
∑

(P1x,P1y)∈P1

FC(I, P ).

These projections indicate the total number of the votes given to one reference point
(either P1 or P2) independently from the second one. They can be calculated using 2D
arrays and the standard grid vote analysis approach. Indeed, applying the function HC

to each image feature (b, T ) we accumulate the values of HC(b, T ) for only two of its
dimensions ignoring the other ones. Practically, we project the four-dimensional lines
L (6.6) onto 2D arrays, performing the grid accumulation procedure similarly to the
GHT. Each line L produces two lines l1 and l2 in the spaces P1 and P2 correspondingly.
These lines specify the sets of potential positions of reference points in 2D invariantly
to rotation and uniform scaling of the initial template model (Figure 6.7). Once the
vote accumulation process is performed for all image features, the areas of the 2D arrays
with the high amount of votes (more than a prede�ned threshold τ) can be used as an
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initial estimation of the regions in 4D with the high probability of the vote peaks. We
assign the corresponding sets in 2D as Q1(τ) ∈ P1 and Q2(τ) ∈ P2.

Figure 6.7.: Scheme of 2D projections reconstruction used in the approximate DPGHT
vote analysis.

At the second step we analyse the parameters P ∈ P such that (P1x, P1y) ∈ Q1(τ)
and (P2x, P2y) ∈ Q2(τ) in order to �nd the precise vote peak in four dimensions. This
procedure is based on the RT-like (6.10) direct calculation of the function FC(I, P ) for
all parameters from the cartesian product Q1(τ)×Q2(τ). Such an approach is e�ective
for high values τ due to its low memory consumption and the relatively small cardinality
of the mentioned cartesian product.

Practically, we can even further accelerate the direct calculation of FC by considering
it as a two-dimensional transform for every �xed (P1x, P1y) ∈ Q1(τ) and performing the
grid vote analysis for the remaining free parameters (P2x, P2y) ∈ Q2(τ) as follows. For
every �xed reference point P1 ∈ Q1(τ) we accumulate votes for P2 ∈ Q2(τ) using a
2D array. Namely, for every image feature (b, T ) we calculate the angle γ between the
vectors bP1 and T . For every pair (α, β) that corresponds to γ from the α-table, the
reference point P2 that should receive a vote is de�ned as the intersection of two lines
passing through the points P1 and b with the angles α and (β-α) to the vector bP1

correspondingly as it shown on the Figure (6.8).

Figure 6.8.: Second step of the DPGHT vote analysis. Reconstruction of the reference
point P2 for a �xed P1.

The parameters with the high vote number in the resulting array de�ne the candidate
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reference points. Once the procedure is performed for all P1 ∈ Q1(τ), the best candidates
(with the highest number of votes) {(P ∗1 , P ∗2 )} de�ne the desired reference points. Using
these points P ∗1 = (P1x, P1y), P ∗2 = (P2x, P2y) and the α-table we reconstruct all detected
positions and scales of the template model. For each pair (P ∗1 , P

∗
2 ) we decode the model

points R(α, β) as the intersections of the lines passing through P ∗1 and P ∗2 and having the
angles α and β with the vector P ∗1P

∗
2 correspondingly (Figure 6.4). The coordinates of

these points are calculated accordingly to the formula that follows from the sine law:

R(α, β) = P ∗1 +
sin β

sin(β − α)
Rot(α) · (P ∗2 − P ∗1 ). (6.11)

If a model point belongs to the line passing through P1 and P2, i.e. the corresponding
α = 0, its coordinates are calculated as:

R(α, β) = P ∗1 + β · (P ∗2 − P ∗1 ). (6.12)

Computational complexity. The computational complexity of the �rst step of the
approximate vote analysis is O(N1N2), where N1 is the number of the features in the
template model and N2 is the number of the image features. The second step has the
computational complexity O(|Q1(τ)|N1N2).

Memory consumption. Assuming that the parameter space has the same discretion
as the analysed image I and the reference points of the detected objects belong to I,
the total memory needed for the approximate vote analysis is O(K), where K is the
number of pixels in I.

Relatively low memory consumption and low computational complexity together
with a highly-parallelizable paradigm make the DPGHT approximate vote analysis with
the line-based feature-to-vote conversion function an e�ective combination for real-time
object recognition applications (experiments and practical implementation are discussed
in Section 6.4). However, the approach does not guarantee the global optimal solution,
and because of its projection nature it may miss local vote peaks, that results in a
sub-optimal object detection. This is the main drawback of this approach. In the next
sections we will consider an alternative vote analysis principle and solve the problem of
minimisation of vote peaks omission.

Hierarchical DPGHT vote analysis

The exact solution of the peak search problem in the Hough space can be obtained
using the standard grid vote analysis. However it is often awkward on practice due to
extreme memory consumption of the grid arrays. To avoid this problem, that makes
it di�cult or even impossible to process high-resolution images and to operate in the
multidimensional parameter space, we have modi�ed the hierarchical principle used in
the Fast Hough Transform (Section 6.1.4) and integrated it with the line-based and the
hyperplane-based feature-to-vote functions discussed in Section 6.3.1.
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De�nition 6.1. Let T = (S,E) be an oriented perfect K-ary tree of height M , where S
is the set of nodes and E is the set of edges directed by the increase of the node depths.

De�nition 6.2. Let c(s) = {s′ ∈ S | e(s, s′) ∈ E} be the set of all child nodes of node
s ∈ S in tree T .

De�nition 6.3. Let d(s) be the depth of node s ∈ S, and cq(s) = cq−d(s)(s), q > d(s),
be the set of all its descendants of depth q.

From De�nition 6.1 follows that each node s ∈ S (except the leaf ones) has exactly
K children, and all the leaf nodes are at the same depthM . We assume that each s ∈ S
bijectively corresponds to some hyperrectangle h(s) ⊂ P in the parameter space P ⊂ R4,
such that the following condition is performed:⋃

s′∈c(s)
h(s′) = h(s).

We also demand that all hyperrectangles corresponding to the same node depth have
the equal volumes and do not intersect each other: h(s1)

⋂
h(s2) = ∅, ∀s1, s2 ∈ S,

d(s1) = d(s2), s1 6= s2.

Thus, each s ∈ S with its child nodes c(s) de�ne a subdivision of hyperrectangle h(s)
into K non-intersecting hyperrectangles. The hyperrectangle h(s0), that corresponds to
the tree root s0, envelops the whole region of interest within the parameter space P,
where the search for the vote peaks is performed. Therefore, T represents a complete
recursive subdivision of the region of interest into smaller hyperrectangles. The size of
these hyperrectangles, their number and, therefore, the maximal possible accuracy of
the vote analysis is de�ned by the tree height M .

The objective of the hierarchical vote analysis is to construct an oriented full K-ary
tree T1 = (S1, E1) of height M (see Figures 6.9 and 6.10), such that T1 is a subtree of
T and its nodes S1 satisfy some subdivision condition. This condition is based on the
number of votes v(s), that the hyperrectangles h(s) receive in respect to the feature-
to-vote conversion function. Analogously to T , T1 represents a speci�c hierarchical
subdivision of the region of interest, de�ned by the node votes v(s) and the subdivision
condition. The number of nodes in S1 de�nes the complexity of the hierarchical vote
analysis.

As an example, accordingly to the FHT hyperrectangle h(s), s ∈ S, will be subdi-
vided (i.e. nodes c(s) and the corresponding edges will be included into T1), if v(s) is
more than some threshold value.

Thus, there are two main issues that have to be de�ned before the construction of
T1 (or, equally, the subdivision of the parameter space): a) vote calculation procedure
and b) subdivision condition.

Vote calculation procedure. The number of votes v(s) received by hyperrectangle
h(s), s ∈ S, is calculated accordingly to the selected feature-to-vote function. In the case
of the line-based feature-to-vote function, v(s) is proportional to the total length of all
intersections of h(s) with the four-dimensional segments produced by the analysed image
features. If the hyperplane-based feature-to-vote function is used, v(s) is proportional
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Figure 6.9.: An example of tree T1 for P ⊂ R2, K = 4, M = 4, subdivision rule B.

to the total volume of all intersections of h(s) with the four-dimensional constrained
hyperplanes (Figure 6.6) produced by the analysed image features (see Appendix B for
a detailed discussion of the volume of a hyperplane-hyperrectangle intersection).

Subdivision condition. T1 construction is preformed iteratively starting from the
tree root s0. Let L1 ⊆ S1 be the set of all leaf nodes of T1 at the current iteration, and
c(L1) = {s′ ∈ S | (s, s′) ∈ E, s ∈ L1} be the corresponding child nodes from T . For
each child node s ∈ c(L1) the number of votes v(s) is calculated. Then the best nodes
from c(L1) are added into tree T1, and a new iteration begins. The selection of the best
nodes from c(L1) can be done using one of two rules :

A) only one node s ∈ c(L1) with the maximal in c(L1) number of voices is added:

s = arg max
s∈c(L1)

v(s);

B) all nodes from c(L1) that in aggregate satisfy some condition are added.

As an implementation of such a condition we propose to use a probabilistic function
that for a given integer q ≤ M and the set of nodes C = c(L1) de�nes its minimal
subset C̃ ⊂ C, such that the probability of the event that the q-depth descendants of C̃
will produce a higher vote peak than the q-depth descendants of C\C̃, is more than the
pre-de�ned threshold Ω ∈ [0, 1]:

P

(
max
s∈cq(C̃)

v(s) > max
s∈cq(C\C̃)

v(s)

)
≥ Ω (6.13)

Having such a probabilistic function we will be able to de�ne the optimal nodes for
further subdivision considering their number of votes, depth and the depth q at which
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Figure 6.10.: The corresponding to Figure 6.9 example of parameter space P ⊂ R2 sub-
division. Intensity of colors in the rectangles depicts the density of votes
v(s).

the vote peaks are needed to be estimated. Section 6.3.3 is dedicated to the problem
of constructing this function and investigation of the probabilistic properties of the
hierarchical vote analysis. It also contains a more detailed description of the algorithm
that realizes the subdivision rule B (Section 6.3.6). The hierarchical search de�ned by
this rule can be considered as a probabilistic analogue of the branch and bound method
[118, 206].

Computational complexity. The subdivision strategy in�uences directly the number
of branches in the constructed tree and together with the tree height M de�nes the
computational complexity of the vote analysis. Notice, that the rule A causes the
minimal computational complexity but the lowest accuracy. With the growth of the
number of nodes selected for subdivision the accuracy and the computational complexity
of the algorithm increase respectively (that corresponds to the rule B). Namely, the
computational complexity is proportional to the number Q of calls of the feature-to-
vote conversion procedure performed in total at all iterations. That is equal to the total
number of nodes in T1 excluding the leafs and the root node.

Considering the minimal (rule A) and the maximal (rule B with subdivisions of all
nodes) complexity cases, we can estimate the lower and the upper boundaries for the
number of the feature-to-vote procedure calls Q:

K(M − 1) ≤ Q ≤ KM−1
K−1

− 1.

The upper boundary of Q is calculated for a perfect K-ary tree (i.e. in the case
T1 = T ), while the lower one is for a minimal full K-ary tree of height M (rule A).
The value Q also de�nes the ratio of the computational complexity of the hierarchical
vote analysis to the complexity of the grid one. Summarizing the above, the complexity
of the hierarchical vote analysis is O(QN1N2), where N1 is the number of the features
in the template model and N2 is the number of the image features. In spite of the
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fact that, in general, the proposed hierarchical algorithm is computationally much more
complex that the grid one, it is well intended for parallelization and needs signi�cantly
less memory.

Memory consumption. Utilization of the grid vote analysis for object detection in-
variantly to the similarity transformation on a 2D image of sizeN×N needs O(N4) bytes
of memory. The considered hierarchical algorithm optimizes the memory consumption
by operating at each level with a "low-resolution" accumulator arrays of L elements in
each dimension, that needs O(L4), L ≤ N bytes of memory. Using such accumulators
the vote analysis procedure performs the peak search by construction a tree structure
withM ≤ dlogNL e resolution levels. For comparison, processing an image of size 512×512
in the case of the grid vote analysis needs an array of 5124 ' 7 · 1010 elements, that
is 256GB of memory. The hierarchical DPGHT vote analysis with L = 64 reduces the
accumulator array to 644 ' 2 · 107 elements (64MB of memory) and needs a tree struc-
ture with only two depth levels. So, at the expense of computational complexity we
signi�cantly reduced memory consumption of the method.

6.3.3. Probabilistic model of the hierarchical vote analysis

In this section we will analyse the probabilistic properties of the hierarchical vote anal-
ysis model in order to �nd out the optimal Hough space subdivision strategy. One of
the important questions here concerns the accuracy of the hierarchical subdivision al-
gorithm and the possible peak omission errors that are directly caused by the chosen
subdivision strategy. The subdivision rule A (see Section 6.3.2) de�nes the most trivial
subdivision strategy that results in a crude approximation of the peak search process.
In this section we will consider the rule B with a probabilistic condition and answer
the following question: how should one select the tree nodes for subdivision in order to
avoid vote peak omission with the prede�ned probability. First we introduce a number of
mathematical statements that will help us to elaborate the optimal subdivision strategy.

We will assign the set of all non-negative integers as N0, the set of all positive integers
as N and consider the following problem. Let V = {v1, v2, ..., vK}, vi ∈ N0, be a set of
natural numbers, and S = {S1, S2, ..., SK}, Si = (si1, si2, ..., sini), be the corresponding
set of series of non-negative integer elements sij uniformly distributed on intervals [0, vi],

such that
ni∑
j=1

sij = vi, 1 ≤ i ≤ K. One has to �nd a minimal subset S̃ ⊆ S, such that

for a prede�ned value Ω ∈ [0, 1] the following relation was true:

P

(
max
S̃

sij > max
S\S̃

sij

)
≥ Ω. (6.14)

In order to solve this problem we provide the following statements.

De�nition 6.4. Denote fkn the number of all n-permutations (a1, a2, ..., an), ai ∈ N0,

n ∈ N, with
n∑
i=1

ai = k, k ∈ N0.
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Lemma 6.1. For all k ∈ N0, n ∈ N, the value fkn can be calculated using the formula:

fkn = Cn−1
k+n−1 =

(k + n− 1)!

k!(n− 1)!
. (6.15)

Proof. Notice, that fkn calculation is equivalent to the problem of calculating the number
of all subdivisions of the segment [0; k] into n parts of arbitrary non-negative integer
lengths. The length of each part li ∈ N0 in such an interpretation de�nes the value
of the element ai in the corresponding permutation, i ∈ {1, 2, ...n}. The sum of the
lengths is obviously equal to k. The last problem, in turn, is equivalent to calculation
of all combinations with repetitions of collocation of n − 1 points within the segment
[0; k]. Each of these points de�nes a delimiter between the corresponding parts of the
segment [0; k]. The number of such combinations with repetition is calculated using the

standard formula: C̃n−1
k+1 = Cn−1

(k+1)+(n−1)−1 = Cn−1
k+n−1. The lemma is proven.

Further, we will consider fkn as a function f(k, n) and expand its domain over all
k, n ∈ Z, by assigning f(0, 0) = 1, and f(k, n) = 0, for any other negative k and
non-positive n.

De�nition 6.5. f(k, n) =


fkn , k ≥ 0, n ≥ 1,

1, k = 0, n = 0,

0, otherwise,

k, n ∈ Z.

Using this de�nition we introduce the following property of the number of n-
permutations with the constant sum of elements.

Lemma 6.2. For all k ∈ N0, n ∈ N, function f(k, n) satis�es the following recurrent
relation:

f(k, n) = f(k, n− 1) + f(k − 1, n). (6.16)

Proof. This relation follows from the Pascal's rule for the binomial coe�cients: Ck
n =

Ck
n−1 + Ck−1

n−1. In accordance with it fkn = Cn−1
k+n−1 = Cn−2

k+n−2 + Cn−1
k+n−2 = fkn−1 + fk−1

n .
It should be noticed that this relation is valid only for those k and n, where the

both terms fkn−1 and f
k−1
n in its right side are de�ned, i.e. (k− 1) ∈ N0 and (n− 1) ∈ N,

that is equivalent to k ≥ 1, n ≥ 2. For these parameter values function f(k, n) by its
de�nition coincides with fkn , so the relation (6.16) is true for k ≥ 1, n ≥ 2.

In order to prove (6.16) for all k ∈ N0, n ∈ N, we will show that this relation is
additionally performed for a) k = 0, n ≥ 1 and b) k ≥ 1, n = 1. Indeed, in the case (a)
expression (6.16) has the view:

f(0, n) = f(0, n− 1) + f(−1, n) = f(0, n− 1),
f(0, n) = f(0, n− 1), n ≥ 1.

Considering that f(0, 0) = 1, we obtain f(0, n) = 1, ∀n ≥ 1, that satis�es (6.15) by the
de�nition of function f : f(0, n) = f 0

n = 1. In the case (b) expression (6.16) has the
view:
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f(k, 1) = f(k, 0) + f(k − 1, 1) = f(k − 1, 1),
f(k, 1) = f(k − 1, 1), k ≥ 1.

Taking into account that f(0, 1) = f 0
1 = 1, we obtain f(k, 1) = 1, ∀k ≥ 0, that also

satis�es (6.15). The mentioned above means that the relation (6.16) is correct for all
k ∈ N0, n ∈ N.

Corollary 6.3. For all k ∈ N0, n ∈ N, function f(k, n) satis�es the following recurrent
relation:

f(k, n) =
k∑
t=0

f(k − t, n− 1). (6.17)

Proof. This expression is obtained by recurrent application of the formula (6.16) to
itself, namely to the second summand of its right side.

De�nition 6.6. Denote fkn(x) the number of all n-permutations (a1, a2, ..., an), n ∈ N,
with ai ∈ {0, 1, 2, ...x}, x ∈ N0, and

n∑
i=1

ai = k, k ∈ N0.

Similarly to De�nition (6.5) we introduce function f(x, k, n) that expands the do-
main of fkn(x) over all k, n ∈ Z.

De�nition 6.7. f(x, k, n) =


fkn(x), k ≥ 0, n ≥ 1,

1, k = 0, n = 0,

0, otherwise,

k, n ∈ Z, x ≥ 0.

Lemma 6.4. For all k, n ∈ Z and x ∈ N0, such that x ≥ k, the following relation is
true:

f(x, k, n) = f(k, n).

Proof. It follows from the fact that for all x ≥ k, there is no more limitation above
on the values of the non-negative elements of n-permutations with the constant sum k,
therefore fkn(x) = fkn , and accordingly to De�nitions (6.5 - 6.7), f(x, k, n) = f(k, n).

Lemma 6.5. For all x, k ∈ N0, n ∈ N, function f(x, k, n) satis�es the following recur-
rent relation:

f(x, k, n) =
x∑
t=0

f(x, k − t, n− 1). (6.18)

Proof. Let us show that the function f(x, k, n) satis�es the recurrent relation (6.18) for
k ≥ 0, n ≥ 1. Notice, that for this parameter range the values of f(x, k, n) equal by the
de�nition to the number of all n-permutations with the constant sum of non-negative
elements bounded above by value x. Suppose that the values of this function are known
for (n − 1)-permutations, i.e. all f(x, i, n − 1), i ≤ k, are de�ned. In order to express
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f(x, k, n) recursively using the known {f(x, i, n − 1)}i≤k we add one extra position
an to (n − 1)-permutations, and �ll it consequently with the values t ∈ {0, 1, ..., x}.
Obviously, at each step t the number of permutations (a1, a2, ..., an−1, t) is de�ned by
the number of (n − 1)-permutations with the bounded by x elements and the sum
decreased by t respectively, i.e f(x, k − t, n − 1). Taking sum of this expression for all

values t ∈ {0, 1, ..., x} we obtain f(x, k, n) =
x∑
t=0

f(x, k − t, n− 1).

It should be noticed that this formula is valid only if the values of all summands
f(x, k − t, n − 1) in its right side have sense of fk−tn−1(x), t ∈ {0, 1, ..., x}, i.e. k ≥ x,
n ≥ 2. In order to prove (6.18) for all k ∈ N0, n ∈ N, we will show that this relation is
additionally performed for a) k < x, n ≥ 1 and b) k ≥ x, n = 1.

Notice, that in the case (a) accordingly to Lemma 6.4 function f(x, k, n) equals to
f(k, n). Let us show that in this case the expression (6.18) has the same view as the
recurrent formula (6.17). Indeed, performing decomposition and considering that by
De�nition (6.7) all f(x, i, n− 1) with negative i are zeros, we obtain:

f(x, k, n) =
x∑
t=0

f(x, k − t, n− 1) =
k∑
t=0

f(x, k − t, n− 1) +
x∑

t=k+1

f(x, k − t, n− 1),

f(x, k, n) =
x∑
t=0

f(x, k − t, n− 1) =
k∑
t=0

f(x, k − t, n− 1) + 0,

f(x, k, n) =
k∑
t=0

f(x, k − t, n− 1),

f(k, n) =
k∑
t=0

f(k − t, n− 1),

that considering Corollary (6.3) means that (6.18) in this case is true.
In the case (b) from the De�nition (6.7) follows that for x ∈ N0, k ≥ x, n = 1,

f(x, k, 1) = fk1 (x), that is the number of all 1-permutations (placements) of element

0 ≤ a1 ≤ x, such that
1∑
i=1

ai = k, i.e. 0 ≤ a1 = k ≤ x. Obviously, from this follows that

fk1 (x) is zero for x < k and one for x = k. Show that expression (6.18) de�nes the same
values. Indeed, in this case it has the view:

f(x, k, 1) =
x∑
t=0

f(x, k − t, 0),

that is in accordance with De�nition (6.7) equivalent to:

f(x, k, 1) =

{
1, x = k

0, x < k
,

that shows validity of (6.18) in this case as well.
All mentioned above means that the relation (6.18) is correct for all x, k ∈ N0,

n ∈ N. The lemma is proven.

Thus, the recurrent formula (6.18) de�nes a practical method of calculating the
number of all permutations with the constant sum of non-negative elements bounded
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above by some non-negative value. It should be also mentioned that the following
statement is performed:

f(x, k, n) =

{
0, x < k/n,

1, x = k/n,

as the sum k of n elements strictly bounded above by value k/n is never reached, and
there is exactly one n-permutation with elements k/n and sum k.

De�nition 6.8. Denote pkn(x) the number of all n-permutations (a1, a2, ..., an), ai ∈ N0,

n ∈ N, with
n∑
i=1

ai = k, k ∈ N0, and max{ai}ni=1 = x, x ∈ N0.

Lemma 6.6. For all x, k, n ∈ N, value pkn(x) can be calculated using the following
formula:

pkn(x) =
λ∑
t=1

Ct
nf(x− 1, k − tx, n− t), λ = max(bk/xc, n). (6.19)

Proof. The number of all n-permutations with sum of the elements k and the maximal
element x can be calculated as the number of all combinations with presence of at least
one element x, multiplied by the corresponding number of all permutations with the
values less than x and the respectively decreased sum of the remaining elements. The
maximal length of such combinations consisted of all elements x is restricted by k and n,
and equals to λ = max(bk/xc, n), where b·c means the �oor operator. The number of n-
permutations that includes exactly t (1 ≤ t ≤ λ) elements x is de�ned by the number of
all t-combinations from n elements, multiplied by the number of all (n−t)-permutations
with the elements less than x and the constant sum k − tx, that can be calculated as
f(x − 1, k − tx, n − t). Therefore, the number of n-permutations that includes exactly
t elements x is equal to Ct

nf(x− 1, k − tx, n− t). Taking sum of all such combinations
from 1 to λ we obtain the desired formula.

Notice, that (6.19) does not de�ne the values of pkn(x) for x = 0 and k = 0, but it
can be done straightforward in the following way:

pkn(x) =

{
1, x = 0, k = 0,

0, x = 0, k 6= 0 or x 6= 0, k = 0.

Corollary 6.7. For all x, k, n ∈ N, the following recurrent relation is true:

f(x, k, n) =
λ∑
t=0

Ct
nf(x− 1, k − tx, n− t), λ = max(bk/xc, n). (6.20)

Proof. Notice, that pkn(x) = f(x, k, n)− f(x− 1, k, n), therefore using relation (6.19) we
obtain:

f(x, k, n)− f(x− 1, k, n) =
λ∑
t=1

Ct
nf(x− 1, k − tx, n− t),

f(x, k, n) =
λ∑
t=1

Ct
nf(x− 1, k − tx, n− t) + f(x− 1, k, n),
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that is equivalent to the desired formula.

The relation (6.20) de�nes an alternative method of calculating the number of all
permutations with the constant sum of non-negative elements bounded above by some
non-negative value. This method is computationally more e�ective than the one de�ned
by formula (6.18) as it involves deeper recursive steps.

Using the proposed statements, we will consider the problem of calculating the
probability of the maximal element value in a random series with the known total
number of votes.

Theorem 6.8. Let (ξ1, ξ2, ..., ξn) be a series of n ∈ N independent random variables
uniformly distributed over the set D = {0, 1, 2, ...,m}, m ∈ N0. Then the following
statements are true:

a) the probability of the event that max{ξi}ni=1 = x, x ∈ D, on conditions that
n∑
i=1

ξi = k, k ∈ N0, is de�ned by the formula:

P k,m
n (x) =

pkn(x)

fkn(m)
; (6.21)

b) the probability of the event that max{ξi}ni=1 ≤ x, x ∈ D, on conditions that
n∑
i=1

ξi = k, k ∈ N0, is de�ned as:

F k,m
n (x) =

fkn(x)

fkn(m)
. (6.22)

Proof. Notice, that the probability mentioned in (a) equals to the ratio of the number of
all n-permutations with the constant sum k of non-negative elements and the maximal
element x to the total number of n-permutations with the constant sum k of non-negative
elements from the set D. Taking into account De�nitions (6.8) and (6.4) we obtain the
desired expression. In the same manner using De�nitions (6.6) and (6.4) we prove the
statement (b).

In this context F k,m
n (x) has sense of the cumulative distribution function that cor-

responds to the probability mass function P k,m
n (x).

Corollary 6.9. If in Theorem 6.8 the set D = N0, the relations (6.21) and (6.22) has
the following (unrestricted) view correspondingly:

P k,∞
n (x) = P k

n (x) =
pkn(x)

fkn
; (6.23)

F k,∞
n (x) = F k

n (x) =
fkn(x)

fkn
. (6.24)
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And the cumulative distribution function F k,m
n (x) can be expressed using the unre-

stricted cumulative distribution function F k
n (x) as:

F k,m
n (x) =

F k
n (x)

F k
n (m)

. (6.25)

Figure 6.11.: Plots of the probability mass functions P k
n (x), k = 64, n = 4, 8, 16, 32 (top);

and the corresponding cumulative distribution functions F k
n (x) (bottom).

Corollary 6.10. For all x, k, n ∈ N, such that k/2 < x ≤ k, the relations (6.23) and
(6.24) has the following non-recurrent forms respectively:

P k
n (x) = n

f(k − x, n− 1)

f(k, n)
, (6.26)

F k
n (x) = 1− n

k∑
t=x+1

f(k − t, n− 1)

f(k, n)
. (6.27)

Proof. The �rst equation ensues from (6.23), Lemma 6.4 and Lemma 6.6. From the
condition k/2 < x ≤ k, follows that λ = bk/xc = 1, and accordingly to Lemma 6.6,

pkn(x) =
λ∑
t=1

Ct
nf(x− 1, k− tx, n− t) = C1

nf(x− 1, k−x, n− 1) = nf(x− 1, k−x, n− 1).
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Notice, that expression x > k/2 is equivalent to x > k − x, or x− 1 ≥ k − x. So, using
Lemma 6.4 we obtain f(x − 1, k − x, n − 1) = f(k − x, n − 1). Therefore, the fraction
(6.23) has the desired form P k

n (x) = pkn(x)/fkn = nf(k − x, n− 1)/f(k, n).
The second equation follows from the common formula for the cumulative distri-

bution function, F k
n (x) = (f(k, n) − p(k, n) − p(k − 1, n) − ... − p(x + 1, n))/f(k, n) =

1−
x+1∑
t=k

P k
n (t).

6.3.4. Probability of the vote peak in a subset

Considering the proposed afore statements, we will return back to the problem (6.14)
of �nding the probability of the vote peak in a given subset of tree nodes. Here we
will consider this problem in the context of tree T1 construction. Each tree node s ∈ S
with the corresponding number of votes v(s) can be considered as a series of its q-depth
descendants cq(s) with the unknown numbers of votes. So, given at some iteration of
T1 construction procedure a set of leaf nodes C = {s1, s2, ..., sK}, we can calculate the
probability of the event that the number of votes of all q-depth descendants of si is not
greater than x ∈ N0 as F k

n (x), with k = v(si), n = |cq(si)|, using formula (6.24). It
should be noted, that this statement is only true under the assumption of the uniform
distribution of the votes.

De�nition 6.9. Let us denote PC̃,C = P

(
max
s∈cq(C̃)

v(s) > max
s∈cq(C\C̃)

v(s)

)
, C̃ ⊆ C.

Theorem 6.11. The probability PC̃,C can be calculated using the following formula:

PC̃,C =
V∑
t=1

(FC̃(t)− FC̃(t− 1))FC\C̃(t− 1), (6.28)

where for some set of nodes A, FA(t) =
∏
s∈A

F
v(s)
|cq(s)|(t), and V = max

s∈C̃
v(s).

Proof. Notice that the event

{
max
s∈cq(C̃)

v(s) > max
s∈cq(C\C̃)

v(s)

}
in the current terminology

is equivalent to the event{⋃
t∈N

(
max
s∈cq(C̃)

v(s) = t, max
s∈cq(C\C̃)

v(s) ≤ t− 1

)}
.

Considering that the maximal values of the elements from cq(C̃) are limited above by
the corresponding total number of votes V , the last expression is equivalent to{ ⋃

1≤t≤V

(
max
s∈cq(C̃)

v(s) = t, max
s∈cq(C\C̃)

v(s) ≤ t− 1

)}
.

Therefore, the probability PC̃,C can be rewritten as

102



6. Rotation-scale invariant object detection based on the Dual-Point GHT

PC̃,C = P

( ⋃
1≤t≤V

(
max
s∈cq(C̃)

v(s) = t, max
s∈cq(C\C̃)

v(s) ≤ t− 1

))
=

=
V∑
t=1

P

(
max
s∈cq(C̃)

v(s) = t, max
s∈cq(C\C̃)

v(s) ≤ t− 1

)
=

=
V∑
t=1

P

(
max
s∈cq(C̃)

v(s) = t

)
· P

(
max

s∈cq(C\C̃)
v(s) ≤ t− 1

)
.

The above decomposition is valid as all the considered events are independent. From
the independence of the events it also follows the next relation for the right-hand mul-
tiplier is performed:

P

(
max

s∈cq(C\C̃)
v(s) ≤ t− 1

)
=

∏
si∈C\C̃

P

(
max
s∈cq(si)

v(s) ≤ t− 1

)
=

∏
si∈C\C̃

F
v(si)
|cq(si)|(t− 1) =

= FC\C̃(t− 1).

Similarly to this, we decompose the left-hand multiplier:

P

(
max
s∈cq(C̃)

v(s) = t

)
= P

(
max
s∈cq(C̃)

v(s) ≤ t

)
− P

(
max
s∈cq(C̃)

v(s) ≤ t− 1

)
=

= FC̃(t) − FC̃(t− 1).

Substitution of these two decompositions into the equation for PC̃,C gives us the
desired formula.

6.3.5. Approximation of the probabilistic model

In spite of the fact that the equations (6.19) and (6.20) together with Theorem 6.8 de�ne
a theoretical approach for calculating F k

n (x) and P k
n (x), their utilization for large n and

k in real-time applications is hardly possible. This results from the big depth of the
recursion that is involved into the calculation process, and therefore leads to the large
stack sizes and long computational time. The values of the numerators and denominators
in (6.24) can exceed the capacity of the integer types and require utilization of the
�oating-point or arbitrary-precision arithmetic.

These problems can be solved in two ways. The �rst one is to �nd a closed form
solution of the partial recurrence equations of the variable order (6.19 - 6.20), and calcu-
late F k

n (x) and P k
n (x) directly using the �oating-point or arbitrary-precision arithmetic.

The mentioned problem is non-trivial and it does not have a general solution scheme
(with an exception of a number of special cases). The second way is to approximate
P k
n (x) and F k

n (x) by some functions that can be calculated directly and fast. Such a
solution is considered in the this section.

Using formulas (6.23 - 6.24), we analysed the probability mass function P k
n (x), and

found that it can be interpolated with a high degree of accuracy (Table 6.4) by the
probability density function (PDF) of the Gumbel distribution [82]:

g(x;µ, β) =
1

β
e
µ−x
β
−e

µ−x
β

, (6.29)
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with some parameters (µ, β), where µ ∈ R is the location and β ∈ R > 0 is the scale.

The Gumbel distribution (proposed by Emil Julius Gumbel in 1958 [82]) is used in
probability theory and mathematical statistics to model the distribution of the maximal
or minimal value of samples of normal or exponential distributions. It is one of the
principle distributions applied in extreme value theory for modelling and predicting
the probability of extreme natural disasters (e.g. earthquakes, �oods and wild�res),
and extreme values in several probabilistic models such as market risks and biological
mutations.

P k
n (x) g(x;µ, β) Residuals

k n µ β (RMS)

16 64 2.15 0.61 0.00367

32 64 3.36 0.83 0.00122

48 64 4.50 1.05 0.00015

64 64 5.60 1.26 0.00044

64 48 6.57 1.51 0.00066

64 32 8.31 1.96 0.00090

64 16 12.71 3.13 0.00103

... ... ... ... <0.01

Table 6.4.: Root mean square of the residuals after �tting P k
n (x) with the Gumbel prob-

ability density function g(x;µ, β). Sampled for several (k, n) and the corre-
sponding best �t parameters (µ, β).

Having the experimental results (Figure 6.12 - 6.13), we estimated the best �t pa-
rameters (µ, β) for the test range of pairs (k, n), k ≤ 128, n ≤ 1024, by solving the
optimization problem:

[µ(k, n), β(k, n)] = argmin
µ,β
||P k

n (x)− g(x, µ, β)||,

and obtained two sets of samples for the functions µ(k, n) and β(k, n) (Figure 6.14 -
6.15). After analysing these sets, it was proposed to approximate µ(k, n) and β(k, n)
using the following class of functions:

c(k, n) = a · knq + b, (6.30)

with a, b ∈ R, and q ∈ R < 0.

In order to �nd the optimal approximation parameters, the following minimization
problem over the mentioned above range of pairs (k, n) was solved:∑

k,n

||g(x; a1kn
q1 + b1, a2kn

q2 + b2)− P k
n (x)|| −−−−→

a1,b1,q1
a2,b2,q2

min.
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Figure 6.12.: An example of the residuals distribution after �tting P k
n (x), k = 53, n = 17

(marked by asterisks) with g(x;µ, β), µ = 10.29, β = 2.55.

Figure 6.13.: A series of P k
n (x), k = 64, n = 4, 8, 32, 64, 128, 256 (marked by asterisks)

and their corresponded Gumbel probability density functions.

So, the obtained optimal approximation parameters for the Gumbel PDF have the
next view:

µ(k, n) =1.16 kn−2/3 + 1.00,

β(k, n) =0.40 kn−4/5 + 0.32,
(6.31)

that results in the average approximation error E = 1
KN

∑
k,n

‖P k
n (x) − P̃ k

n (x)‖ =

1
KN

∑
k,n

k∑
x=0

|P k
n (x)− P̃ k

n (x)| = 0.055.
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Figure 6.14.: The samples of the best �t Gumbel PDF parameter µ and the correspond-
ing approximating surface µ(k, n) = 1.16 kn−2/3 + 1.00.

Figure 6.15.: The samples of the best �t Gumbel PDF parameter β and the correspond-
ing approximating surface β(k, n) = 0.40 kn−4/5 + 0.32.
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The distribution of the approximation error in terms of (k, n) is shown on Figure
(6.16). The experiments shown that the error decreases with growth of the parameters
k, n and the relation k/n.

Figure 6.16.: Dependence of the P k
n (x) approximation error E = ‖P k

n (x)− P̃ k
n (x)‖ from

the parameters k, n ≤ 80.

Figure 6.17.: Dependence of the time (in seconds) needed for F k
n (x) calculation (on an

Intel Core i7 2.8GHz workstation) from the parameters k and n. Left:
using the exact recursive formula (6.24), k ≤ 96, n ≤ 128. Right: using
the approximate formula (6.32), k, n ≤ 104.
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Summarizing the above, we propose to use the following approximation of the
probability mass and the cumulative distribution functions and extrapolate it over all
k, n > 0:

P k
n (x) ' P̃ k

n (x) =
1

β(k, n)
e
µ(k,n)−x
β(k,n)

−e
µ(k,n)−x
β(k,n)

,

F k
n (x) ' F̃ k

n (x) = e−e
µ(k,n)−x
β(k,n)

,

(6.32)

with µ(k, n) and β(k, n) de�ned by (6.31).

Usage of the approximations (6.32) instead of the recurrent relations provided by
Theorem 6.8 exponentially decreases the computational time of P k

n (x) and F k
n (x) and

provide reasonable accuracy for large values of k and n (Figure 6.16 - 6.17).

6.3.6. Optimal subdivision strategy for the hierarchical vote

analysis

Now, using Theorem 6.11 and the direct formulas (6.32), we can e�ectively solve
the problem (6.13) of selecting a minimal subset C̃ from a given set of tree nodes
C = {s1, s2, ..., sN}, si ∈ S, such that for a prede�ned value Ω ∈ [0; 1], condition
PC̃,C ≥ Ω is performed.

First, let us introduce the comparison operator for any two tree nodes si and sj. We
will say that si < sj, if the average vote peak in cq(si) is less than in cq(sj). Considering
the probability mass function (6.23) the average vote peak can be expressed as:

Ek
n =

∞∑
x=0

P k
n (x)x.

This sum cannot be easily calculated analytically as the closed form solution of the
partial recurrence equation (6.19) for pkn(x) is unknown. But, similarly to formulas
(6.32), it can be approximated with the mathematical expectation of the corresponding
Gumbel distribution:

Ek
n ' Ẽk

n = µ(k, n) + λβ(k, n), (6.33)

where λ ≈ 0.5772 is the Euler�Mascheroni constant.

De�nition 6.10. We will say that si < sj, si, sj ∈ S, if an only if E
v(si)
|cq(si)| < E

v(sj)

|cq(sj)|.

This gives us a convenient tool for comparing tree nodes with the di�erent number of
votes and descendants (i.e. the nodes with the di�erent node depth). It also should be
noted, that for any s1, s2 ∈ S, such that d(s1) = d(s2), relation si < sj is equivalent
to v(s1) < v(s2). This quite an intuitive result follows from the linearity of functions
µ(k, n) and β(k, n) relatively to k.
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Using the introduced comparison operator and the formula for the probability of the
vote peak in a subset (6.28), the optimal hierarchical subdivision strategy (rule B) can
be implemented by the following algorithm:

Algorithm 1

a) Sort the nodes in the initial set C in descending order accordingly to the com-
parison operator.

b) In the sorted set C �nd the limiting element sn, that divides C into two subsets:
C̃ (starting from the beginning) and C\C̃, such that PC̃,C ≥ Ω.

End.

Step (a) needs in average O(N logN) comparison operations, while step (b) can be per-
formed using the binary search that requires in average O(logN) evaluations of function
PC̃,C .

After T1 construction is �nished, we can assign to each edge e = e(s, s′) ∈ E1 the
following weight:

ω(e) = P{s′},c(s).

It de�nes the probability that the vote peak occurs in the q-depth descendants of s′ and
is not in the descendants of the other nodes from c(s) (Figure 6.9).

In order to estimate the probability of the global vote peak occurrence in the q-
depth descendants of a particular node s ∈ S, one has to calculate the product of all
edge weights from the path from s to the tree root s0:

Ω(s) =
∏

e∈[s0;s]

ω(e).

For estimation of the quality of the �nal solution provided by the method, we cal-
culate the sum of the global peak occurrence probabilities for all leaf nodes s ∈ S1 from
the last tree T1 level d(s) = M :

Ω∗ =
∑

s∈S1,d(s)=M

Ω(s).

The value Ω∗ acts as the algorithm's accuracy measure and de�nes the lower estimate
of the probability that the unknown global vote peak is presented in the solution.
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6.4. Results and discussion

We evaluated the version of the method based on the approximate vote analysis on
cardiac MR images. First, a template model was built and encoded using two reference
points that were chosen manually inside the model (Figure 6.18). Before the object
detection, the boundary points were extracted using the Canny edge detector [29].

Y

XP1

P2

Left Ventricle

Right Ventricle

Figure 6.18.: Template model of the human heart (short axis).

The method makes use of the boundary tangent information that reduces the number
of false evidences and increases the speed of the voting process. However, the accuracy
of the tangent vector calculation must be provided on a high level in order to avoid
voting errors and false object detection. In our experiments the tangent vectors for the
extracted boundaries were calculated using the 2D principal component analysis (PCA)
[151, 78].

The accuracy and the computational complexity of the algorithm based on the
approximate vote analysis depend on the threshold value τ that de�nes the sizes of
projection sets Q1(τ) and Q2(τ) (see Section 6.3.2). Using the high values of τ we
reduce the projection sets and, therefore, decrease the computational time, but on the
other hand the probability of the vote peak omission is increased. In our experiments
we took the threshold value from the interval 75% - 95% of the corresponding maximal
projection value (Figure 6.22).

A combination of both the Hough paradigm and the direct RT-like vote calculation
makes the method low memory consumptive and convenient for implementation on a
GPU. Low memory usage is partially reached at the expense of the increase of the
computational time. Of course, the standard grid vote analysis may provide a better
speed, but it is hardly suitable for implementation on GPUs (and even on conventional
workstations) because of its extremely high memory usage.
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Figure 6.19.: Example of the DPGHT-based heart walls detection on cardiac MRI (a
short axis view of the human heart, 256× 256).

Figure 6.20.: The orthogonal cumulative projections F1,C(I, P1) (left) and F2,C(I, P2)
(right) of the DPGHT applied to the MRI data from the Figure 6.19.

We parallelized the method on a GPU (GeForce 8800GTX) using nVidia CUDA,
that increased its speed in a factor of more than 50 comparing to a CPU version (on a
Pentium 4 3.0GHz workstation).
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Figure 6.21.: Surface plots of the projections F1,C(I, P1) (left) and F2,C(I, P2) (right) of
the DPGHT applied to the MRI data from the Figure 6.19.

Figure 6.22.: The areas of the projections F1,C(I, P1) (left) and F2,C(I, P2) (right) with
the most probable reference point location.

The hierarchical vote analysis model, in turn, was evaluated on synthetic data. We
generated a set S of random series with the di�erent number of uniformly distributed
elements, S = {S1, S2, ..., SK}, Si = (si1, si2, ..., sini) (see Section 6.3.3). Using this, the
accuracy of Algorithm 1 and formula (6.28) for PS̃,S were tested in the following way.

For each value Popt sampled on [0; 1] with a small step, we run Algorithm 1 and
found the minimal subset S̃ ⊆ S, such that PS̃,S ≥ Popt. We stored the size n of this S̃

and checked if the actual global maximum was in S̃. After repetition of this procedure
N times for random data we estimated: a) the dependence of the average size of S̃ from
Popt (Figure 6.23b); b) the actual PS̃,S for each value Popt (Figure 6.23a, curves Popt1 and
Popt2 for di�erent random generators). The experiments showed that the estimations
of PS̃,S are close to Popt (comparing curves Popt1, Popt2 and Popt on Figure 6.23a) and,
therefore, we ascertained that Algorithm 1 is valid.
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Figure 6.23.: a) Left: comparing the estimated PS̃,S (curves Popt1 and Popt2 for di�erent
random generators) with threshold Popt, such that PS̃,S ≥ Popt. b) Right:

the dependence of the average size of S̃ from Popt (PS̃,S ≥ Popt). K = 64,
|Si| = 32, sij ≤ 1024, N = 1000.
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Figure 6.24.: Comparing the optimal strategy (Algorithm 1, Popt and Popt1) and the
standard strategy (taking n series with the biggest sum of elements, Pk).
Optimized standard strategy (taking n "biggest" series from S accordingly
to the introduced comparison operator, PkE).

In spite of these promising results, the further investigation is needed for the pro-
posed hierarchical vote analysis model as well as for the object detection based on it.
That is the priority direction for the future work.
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7. Summary and outlook

In this work we presented two prototypes of the scanning systems based on tracked 3D
ultrasound, developed a method for 3D surface reconstruction from noisy and sparse
data, and considered the problem of the GHT-based 2D object detection.

The both developed scanning systems showed promising results. Although the �rst
one based on the freehand ultrasound had lower accuracy and precision, it re�ected the
general feature of the freehand approach (more mobility and scanning freedom at the
expense of accuracy). It should be noted, that the validation results were obtained in
the close to ideal conditions using a specially designed scanning box and may di�er from
the results acquired from patients. Therefore, further validation in clinical conditions is
obviously needed.

The scanning system based on the sequential triggered scanning approach, in turn,
showed high accuracy and precision that is comparable to the state of the art medical
imaging modalities. This system has a high potential to be used in clinical practice
for X-ray-free diagnostics of fractures of the human extremities, providing numerical
data and 2D/3D visualization of bone surfaces for optimal decision making. However,
some problems such as automation of the scanning process (the tested prototype was
motor-free) and proper extremity �xation during scanning are still actual.

The developed mesh-growing surface reconstruction method was tested within the
mentioned scanning systems. It showed appropriate reconstruction quality and good
performance, so it can be successfully applied to noisy and sparse data produced by
tracked 3D ultrasound scanners. However, the method is relatively sensitive to varia-
tions of the input parameters that are, in turn, de�ned by the properties of input data
(e.g. sparseness, surface thickness, noise, etc.). Therefore, the appropriate values of
the parameters must be carefully selected before reconstruction. Otherwise, the method
can produce artefacts such as holes and mesh overlaps. It should be also noted that in
spite of the specialization of the method to noisy and sparse data, it can be applied to
arbitrary point clouds. A detailed comparison study with the existing general-purpose
surface reconstruction methods is therefore needed. A variation of the mesh-growing
method that is better intended for parallelization and application to sliced data is an
objective for the future work.

The second part of the work concerns 2D object detection and has a more apparent
theoretical orientation. However, several practical modi�cations of the standard GHT-
based approach were proposed. Utilization of the two-point parametrization instead
of the single-point one is a convenient tool for introduction of rotation-scale invariance
into object detection. Together with an optimal vote analysis principle it can increase
e�ectiveness and �exibility of the method. During the study of the hierarchical vote
analysis several interesting problems were solved, including elaboration of the optimal
space subdivision strategy based on the Gumbel probability distribution and calculation
of volumetric measure of four-dimensional hyperplane - hyperrectangle intersections.
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7. Summary and outlook

Although medical object detection was not integrated into the developed scanning
systems, it can be potentially used in future extensions of the systems for automatic de-
tection of speci�c anatomical structures. For example, detection of the left ventricle of
the heart in the freehand tracked system in pseudo-3D or model-based modes. Anyway,
before its practical application a more detailed evaluation study of the proposed method
as well as the hierarchical space subdivision strategy is needed. Moreover, the proba-
bilistic properties of the hierarchical space subdivision were investigated on assumption
that the votes distribution is uniform, however the case of non-uniform distributions is
of great interest. It also should be noted that the GHT-based object recognition may be
a suboptimal choice for some medical applications due to high geometric variations of
anatomical structures. The deformable-template models therefore appear to be a more
suitable approach in this case. Nevertheless, the method can be used in the tasks where
the shape of target objects is more rigid (e.g. industry, some computer vision tasks).
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A. Kd-tree based distance

computation between meshes

and point clouds in 3D

The proposed algorithm is based on a kd-tree search and a prior information from a
static mesh. The problem of calculating the closest face of a mesh for an arbitrary point
in 3D is well investigated. Besides the brute force methods, the popular approaches are
based on Voronoi diagrams [13], decompositions into convex shapes [76], octrees and kd-
trees [169], and multiresolution hierarchy of bounding volumes (e.g. the Meshsweeper
algorithm [81]).

For an object containing many polygons computing a Voronoi diagram or a decom-
position into convex shapes can be quite a complex problem. The methods based on
the spatial data structures (octrees, kd-trees and bounding volumes) are considered to
be more e�ective and in many cases can provide better performance [81]. In a general
case, the spatial data structures like kd-trees and octrees have such a drawback that
the closest vertex in the structure and the closest point on a polygonal mesh may be
very distant from one another, therefore an extended search is needed. However, if some
additional information is known for the mesh (such as constrains on the polygon size
in our case) a convenient kd-tree can become a very e�ective toolkit for point-to-mesh
distance computation. Therefore, for our purposes we use an algorithm based on kd-
trees. In order to simplify the point-to-mesh distance calculation procedure we used an
intuitive approach that is described below.

Let us de�ne the shape radius for a set of points X = {xi} in 3D as the maximal
distance from the points to their mass center x̄:

S(X) = max
xi∈X
‖xi − x̄‖ ,

x̄ =
1

|X|
∑
xi∈X

xi .

For a given triangular mesh M we calculate the maximal shape radius S of its faces
and construct a kd-tree T in 3D �lling it with the mass centers of the mesh faces. The
following intuitive Lemma is utilized for the point-to-mesh distance calculation:

Lemma A.1. Let M be a mesh consisted of convex polygonal faces F = {Fi} with the
maximal shape radius S = max

Fi∈F
S(Fi) and Z = {zi} be the set of the corresponding mass

centers of F . For a given point p ∈ R3 let d be the minimal distance from p to Z i.e.
d = min

zi∈Z
‖p− zi‖. If F * ∈ F is the closest face for p then the following relation is
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performed for its mass center z* ∈ Z:∥∥p− z*∥∥ ≤ d+ S (A.1)

Proof. Let us suppose the opposite and
∥∥p− z*∥∥ > d + S , then for all points on the

closest face x ∈ F * the following relation is true: d+S <
∥∥p− z*∥∥ =

∥∥p− x+ x− z*
∥∥ ≤

‖p− x‖+
∥∥x− z*∥∥ ≤ ‖p− x‖+S. That is equivalent to ‖p− x‖ > d, ∀x ∈ F *. Taking

into account that min
zi∈Z
‖p− zi‖ = d and that the faces F are convex (i.e. all zi ∈ Fi),

there exist Fk ∈ F with x̃ = zk ∈ Fk such that ‖p− x̃‖ = d. From this follows that F *

is not the closest face that is a contradiction. The Lemma is proven.

Considering the relation (A.1) the point-to-mesh distance calculation can be done
in three steps using two queries to the built kd-tree T .

Algorithm 2

For any point p ∈ R3:

1) Find the closest element from T and calculate distance d to it;

2) Find all elements {zj} from T within the range [d, d + S] and de�ne the corre-
sponding candidate faces {Fj};

3) Calculate the closest face from the set of candidates {Fj}.

End.

In the case of high amount of regular faces in the mesh and large point clouds,
such a technique provides a signi�cant speed gain comparing to the brute force methods
(exhaustive search) and application of general data structures. Regularity of a mesh is
de�ned here as the relation r = A

S
, where A is the average shape radius and S is the

maximal shape radius of the mesh faces. It should be noticed that the complexity of
the algorithm is minimal for absolutely regular meshes with r = 1 and it grows up with
decrease of r approaching the complexity order of the brute force method.

The maximal shape radius S of the processed mesh can be either calculated di-
rectly or can be known from the external sources such as speci�c restrictions for a mesh
construction procedure. In our case the maximal shape radius of the reconstructed
meshes is inherently de�ned by the parameters of the mesh reconstruction algorithm
(S = ∆max + ∆p). Direct computation of S is worth in the case of large point clouds
and ine�cient in the case of mesh-to-single-point distance calculation, when the brute
force method is even more preferable.
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hyperrectangle intersection

The proposed algorithm for computing the volume of a hyperplane - hyperrectangle
intersection consists of two steps: 1) calculate the boundaries of the intersection; 2)
calculate the volume of the geometric body constrained by the found boundaries.

As any intersection of a convex set in the n-dimensional space with a hyperplane in
this space (a �at subset with dimension n - 1) is a convex set, all intersections of the four-
dimensional hyperrectangles Sji with the corresponding hyperplanes (Figure B.1) de�ne
convex three-dimensional polyhedrons orthogonal to the normals of these hyperplanes.
The boundaries of these polyhedrons form the convex hull of the intersection points of
the hyperrectangles edges with the hyperplane. So, �rst we calculate these points using
a naive method [120] as follows. Let H = (P,~n) be a hyperplane, Q1 and Q2 de�ne the
adjacent vertices of a hyperrectangle S in 4D such that ~e = ~Q1Q2 form one of 32 edges
of S. The intersection point of H and the line containing ~e is de�ned by the formula:

x = Q1 + t ~e, (B.1)

where t = (~n · ~Q1P ) / (~n · ~e). If t ∈ [0, 1] then the edge e intersects with the hyperplane
H in the point x. After testing all the edges of S for intersections with H we obtain the
set of points X = {Xi}mi=0, m < 32, that satisfy equation (B.1) with t ∈ [0, 1] and de�ne
the boundaries of the desired intersection.

Having the set X we compute the volume of its convex hull. The most straight-
forward way to do this is to project X into 3D (as the intersection belongs to some
three-dimensional subspace of the parameter space), and to calculate the volume using
one of the common methods. For example, using Delaunay triangulation (tetrahedral-
ization) [50] of X with further summation of the resulting tetrahedra volumes [18], or
calculating the faces of the convex hull for X in 3D and applying the volume formula
based on the Gauss-Ostrogradsky's divergence theorem [70].

The 3D projection of the intersection points is calculated using the following idea.
Having the hyperplane H = (P,~n), ~n = (n1, n2, n3, n4)T , |~n| = 1, and the set X in 4D
we need to calculate its decomposition in the coordinate system of H. One of the axes
of this coordinate system must be parallel to ~n and the coordinate center must coincide
with P . We can de�ne such a decomposition by the transformation consisted of the
translation vector P and the following skew-symmetric rotation matrix:

T (~n) =


n4 −n3 n2 n1

n3 n4 −n1 n2

−n2 n1 n4 n3

−n1 −n2 −n3 n4

 .
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Indeed, it is easy to check that T (~n) transforms the canonical orthonormal basis into
the orthogonal basis the fourth vector of which is equal to ~n.

Let Yi be the decomposition of Xi in the considered coordinate system de�ned by
T (~n) and P . Then the following relation is performed:

Yi = T−1(~n)(Xi − P ), (B.2)

where the inverse matrix T−1(~n) is explicitly represented as:

T−1(~n) =
1

|~n|2
(2 diag(n4)− T (~n)) = 2 diag(n4)− T (~n).

So, for each Xi, i ∈ [0,m], we calculate its decomposition Yi = (y1, y2, y3, y4)T de�ned
by (B.2) and obtain the corresponding 3D projection as Y ′i = (y1, y2, y3)T .

Figure B.1.: Examples of possible polyhedrons generated during intersection of a unit
four-dimensional hypercubecube (tesseract) with a random hyperplane.
The resulted polyhedrons consist of 4, 6, 8, 10 or 12 vertices (from left
to right).

In order to compute the volume of the convex polyhedron de�ned by the vertices
{Y ′i }mi=0 we propose to compute the faces of its convex hull Ω (e.g. using the incremental
algorithm [106]) and apply the divergence theorem with the special form of the vector
�eld ~F (x) = 1

3
(x1, x2, x3)T , whose divergence is equal to 1:∫

Ω

∇~F (x) dΩ =

∮
S

~F (x) · ~n dS,∫
Ω

dΩ =
1

3

∮
S

~x · ~n dS,

V olume(Ω) =
1

3

∑
Fi

~bi · ~ni Ai, (B.3)

where Fi is i-th face of the convex hull, bi and ni are its barycentre and the outer-
pointing normal vector correspondingly, and Ai is the area of face Fi. The complexity
of the proposed volume computation algorithm is O(n2), where n is the number of the
edges in the initial four-dimensional polytope (in our case n = 32).
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processing and reconstruction

All presented in this work algorithms have been implemented as a part of a program
library, called Bö, developed by our research group. Bö is a collection of basic and
specialized methods and data structures for geometrical processing and 2D/3D image
analysis including image segmentation, surface reconstruction, mesh processing, object
detection as well as basic linear algebra and I/O functionality. Written entirely in C++,
the library provides loosely-coupled but mutually compatible modules for a number of
problems in computer vision.

The main features of the library:

- Generic representation of 2D images.

- Linear �ltering for 2D images.

- Triangular mesh with support of export/import to PLY �le format (Stanford Tri-
angle Format).

- Mesh-growing surface reconstruction method.

- Modi�ed Butter�y subdivision surface method.

- Iterative closest point (ICP) registration method.

- Object detection based on the Hough Transform (HT) and the Generalized HT.

- Highly customizable Markov random �eld (MRF) representation for regular 2D
lattices, as well as several prede�ned prior and likelihood energy functionals ready
to use in MRF models.

- Optimization algorithms for MRF: Metropolis�Hastings, Modi�ed Metropolis Dy-
namics (MMD) and Iterated conditional modes (ICM).

- Various point-to-point, point-to-plane and point-to-mesh metrics in 3D.

- Generic representation of multidimensional vectors and points.

- Matrix operations (e.g. matrix inversion, eigenvectors and eigenvalues of real
matrices).

- Transformations in 3D space based on quaternions or transformation matrices.

- Basic multidimensional geometry and topology.

- Convex hull construction for point clouds.
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bo::

blas::

io::

topology::

detail::

KDTree

Mesh

RawImage2D

Transformation3D

Triangle

Vector

Matrix

FalsePredicate

Predicate

methods::

PCA

config_parser::

IniReaderSettings

IniReader

BasicConfiguration

UonBasicConfiguration

OrthotopeTopology

invert_brightness

threshold_value

ContourDescriptor

recognition::

detail::

surfaces::

ICP3D

IncrementalConvexHull3D

mrf::

detail::

HoughTransform

DualPointGHT

Hyperplane4D

Space

Line4D

SubdivisionPolicy

FaceTreeElement

D3Tree

detail::

ComplexPropagation

D25ActiveContours

Triangulation

PointElement

TriangleElement

EdgeElement

TriangularDipyramid

PointContainerItem

PointContainer

PredicateClosestPointBeyondMinDistance

PredicateClosestPointNonCollinear

ArchedStrip

ChristiansenTiling

TraverseRule

FwdOnePassTraverseRule

BwdOnePassTraverseRule

FwdCircuitTraverseRule

BwdCircuitTraverseRule

ContainerConstTraverser

TraverseRuleFactory

IndexedTStrip

PointsDisk3D

GenericLikelihood

GaussianLikelihood

GammaLikelihood

MRF2D

ParametricNodeType

GammaDistrClasses

MRF2DOptimizer

ICM2D

MD2D

GenericPrior

SmoothnessPrior

SmoothingWithEdgesPrior

MeanSmoothnessPrior

TypeValues

FiniteSetValues

RealFiniteSetValues

GammaDistrClassesValues

Figure C.1.: Class structure of the Bö library.

121



C. Bö: C++ library for image processing and reconstruction

The library depends on Boost (minimal required version of Boost is 1.43, although
version 1.44 is needed if the unit tests are built). Google Test is used for optional code
testing. There is some header-only utility code for OpenCV library, however, it is dis-
abled by default and may be ignored. The library also uses a third party implementation
of the k-d tree structure and PLY I/O.
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