750 research outputs found

    Advanced index modulation techniques for future wireless networks

    Get PDF
    In the research study proposed in this Ph.D Thesis, we consider Index Modulation as a novel tool to enhance energy and spectral efficiencies for upcoming 5G networks, including wireless sensor networks and internet of things. In this vein, spatial modulation was proposed to enhance the capacity of wireless systems to partially achieve the capacity of MIMO systems but at lower cost, making it a technique that has attracted significant attention over the past few years. As such, SM schemes have been regarded as possible candidates for spectrum- and energy-efficient next generation MIMO systems. However, the implementation of the SM is also challenging because of its heavy dependence on channel characteristics, channel correlation, corrupted CSI and the need to have adequate spacing between antennas. Moreover, the SM requires multiple antennas at the transmitter which adds cost to the hardware implementation. In addition, the number of mapped bits in SM is limited by the physical size of the wireless device where only small number of antennas can be used. The switching time wasted by RF antenna switches adds to the complexity of the issue. In this Thesis, we study the drawbacks of SM in the articles indicated, namely Performance Comparison of Spatial Modulation Detectors Under Channel Impairments that is placed in the Appendix at the end of Thesis as it is a conference paper, and The Impact of Antenna Switching Time on Spatial Modulation that is put in Chapter 1. In the first article, we have shown that channel impairments have serious impacts on the BER performance and on the capacity of the SM system and that the SM is too sensitive to both imperfect and correlated channels. In the second article, we have demonstrated that the switching time defined as the time needed by the system to turn off an antenna and turn on another one, which is an inherent property of RF industrial switches used in SM systems, is in the order of nanoseconds and naturally influences the transmission rate of SM systems because of introducing systematic transmission gaps or pauses. Given the speed limitation of practical RF switches in performing transitions, antenna transition-based technologies like SM schemes are capped in terms of data rate performance. In fact, the effective data rate of SM will remain hostage to developments in industrial RF switches. This brings restrictions to the implementation and operation issues when extremely high data rates become a necessity. It is shown by the assemblage of our results that the switching time Tsw which is a requirement for transitions between antennas to happen, dictates restrictions on data rate, capacity and spectral efficiency of SM systems. Furthermore, we propose baseband non-hardware-based indexing modulation schemes based on frequency-index modulation, coherent chaotic modulation and non-coherent differential chaotic modulation schemes as potential alternatives to SM, that would also fit wireless sensor networks and internet of things applications. In this regard, we have proposed three articles. The first article which represents frequency index modulation is called Frequency Index Modulation for Low Complexity Low Energy Communication Networks and is placed in Chapter 2 of this Thesis. In this article, we explore a low complexity multi-user communication system based on frequency index modulation that suits Internet of Things (IoT) applications and we show that such a system would constitute an excellent candidate for wireless sensor applications, where it represents a simpler substitution for frequency-hopping (FH) based architectures, in which the hops carry extra bits. The third article which concerns coherent chaotic modulation is called Design of an Initial-Condition Index Chaos Shift Keying Modulation and is located in Chapter 3. In this article, an initial condition index chaos shift keying modulation is proposed. This design aims to increase the spectral and energy efficiencies to unprecedented levels. The proposed scheme exploits the initial conditions to generate different chaotic sequences to convey extra bits per transmission. In comparison to rival modulation schemes, the results obtained in the proposed work show a promising data rate boost and a competitive performance. The last article employs a non-coherent differential chaotic shift-key system named Permutation Index DCSK Modulation Technique for Secure Multi-User High-Data-Rate Communication Systems that is found in the Appendix. In this original design, where each data frame is divided into two time slots in which the reference chaotic signal is sent in the first time slot and a permuted replica of the reference signal multiplied by the modulating bit is sent in the second time slot, we target enhancing data security, energy and spectral efficiencies. Overall, in light of the high demands for bandwidth and energy efficiencies of futuristic systems, the suggested soft indexing mechanisms are successful candidates with promising results

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Modulation and detection schemes based on chaotic attractors properties : application to wideband transmissions

    Get PDF
    Au cours des vingt dernières années, les systèmes de communications basés sur le chaos ont été étudiés, avec pour objectif la possibilité de générer les signaux large-bande par des circuits électroniques simples, permettant une faible complexité des circuits émetteurs-récepteurs. Cette thèse concerne l’étude de systèmes de transmissions large-bande basés sur le chaos, en utilisant certaines propriétés des attracteurs chaotiques. Tout d’abord, un système dynamique a été choisi et étudié, permettant de générer des signaux chaotiques qui possèdent des composantes périodiques. L’analyse de ces attracteurs chaotiques cycliques (CCA) met en évidence des propriétés spécifiques en lien avec leur période. Ensuite, deux schémas de modulation basés sur les CCAs sont proposés. Les détections non-cohérentes associées sont réalisées par l’observation des propriétés spécifiques des signaux rec¸us. L’évaluation des performances des systèmes basés sur les CCAs dans le cas d’un canal de bruit additif Gaussien montre des performances meilleures que celles des systèmes dits ”differential chaos shift keying (DCSK)”, en bas débit de symboles. En outre, les performances dans le cas multi-trajet sont comparables dans la bande de 2,4 GHz. ------------------------------------------------------------------------------------------------------------------------------------------- In the past twenty years, chaos-based communication systems have been studied, considering the possibility of generating wideband signals by simple electronic circuits, hence low complexity in transceiver. The aim of this thesis is to study the chaos-based wideband transmission systems relying on the properties of chaotic attractors. Firstly, a dynamical system is selected and studied, allowing to generate the chaotic signals with a periodic component. The analysis of such chaotic cyclic attractors (CCA) shows the specific properties. Then, two CCA-based modulation schemes are proposed, with the simple noncoherent detections realized by observing the specific properties of the received signals. The performance evaluation of CCA-based systems in the additive white Gaussian noise (AWGN) channel shows a better noise performance with long symbol duration, compared to the one of differentially chaos shift keying (DCSK). In addition, they have a comparable multipath performance in the 2.4 GHz ISM environmen

    A comprehensive survey of recent advancements in molecular communication

    Get PDF
    With much advancement in the field of nanotechnology, bioengineering and synthetic biology over the past decade, microscales and nanoscales devices are becoming a reality. Yet the problem of engineering a reliable communication system between tiny devices is still an open problem. At the same time, despite the prevalence of radio communication, there are still areas where traditional electromagnetic waves find it difficult or expensive to reach. Points of interest in industry, cities, and medical applications often lie in embedded and entrenched areas, accessible only by ventricles at scales too small for conventional radio waves and microwaves, or they are located in such a way that directional high frequency systems are ineffective. Inspired by nature, one solution to these problems is molecular communication (MC), where chemical signals are used to transfer information. Although biologists have studied MC for decades, it has only been researched for roughly 10 year from a communication engineering lens. Significant number of papers have been published to date, but owing to the need for interdisciplinary work, much of the results are preliminary. In this paper, the recent advancements in the field of MC engineering are highlighted. First, the biological, chemical, and physical processes used by an MC system are discussed. This includes different components of the MC transmitter and receiver, as well as the propagation and transport mechanisms. Then, a comprehensive survey of some of the recent works on MC through a communication engineering lens is provided. The paper ends with a technology readiness analysis of MC and future research directions

    Applications of Power Electronics:Volume 2

    Get PDF

    Noise-based Transmit Reference Modulation:A Feasibility Analysis

    Get PDF
    Wireless sensor networks (WSNs) receive huge research interest for a multitude of applications, ranging from remote monitoring applications, such as monitoring of potential forest fires, floods and air pollution, to domestic and industrial monitoring of temperature, humidity, vibration, stress, etc. In the former set of applications, a large number of nodes can be involved which are usually deployed in remote or inaccessible environments. Due to logistic and cost reasons, battery replacement is undesired. Energy-efficient radios are needed, with a power-demand so little that batteries can last the lifetime of the node or that the energy can be harvested from the environment. Coherent direct-sequence spread spectrum (DSSS) based radios are widely employed in monitoring applications, due to their overall resilience to channel impairments and robustness against interference. However, a DSSS rake receiver has stringent requirements on precise synchronization and accurate channel knowledge. To obviate the complexity of a coherent DSSS receiver, particularly for low data rate sensor networks, a DSSS scheme that has fast synchronization and possibly low power consumption, is much desired. In this regard, this thesis studies a noncoherent DSSS scheme called transmit reference (TR), which promises a simple receiver architecture and fast synchronization. In traditional TR, the modulated information signal is sent along an unmodulated reference signal, with a small time offset between them. In this thesis, we present and investigate a variant of TR, called noise-based frequency offset modulation (N-FOM), which uses pure noise as the spreading signal and a small frequency offset (instead of a time offset) to separate the information and reference signals. The detection is based on correlation of the received signal with a frequency-shifted version of itself, which collects the transmitted energy without compromising the receiver simplicity. Analytical expressions on performance metrics, supplemented by simulation results, improve understanding of the underlying mechanisms and provide insights into utility of N-FOM in low-power WSNs. In point-to-point line-of-sight (LOS) communication, it was observed that the communication scheme has a minimal utility. The energy-detector type of receiver mixes all in-band signals, which magnifies the overall noise. Particularly, the self-mixing of the transmitted signal also elevates the noise level, which increases with a further increase in the received signal energy. Therefore, for a fixed set of system parameters, the performance attains an asymptote with increasing transmission power. The phenomenon also establishes a non-monotonic relation between performance and the spreading factor. It was observed that a higher spreading factor in N-FOM is beneficial only in a high-SNR regime. After developing an understanding of the performance degrading mechanisms, few design considerations are listed. It is found that a suitable choice of the receiver front-end filter can maximize the SNR. However, the optimal filter depends on received signal and noise levels. A practically feasible – albeit suboptimal – filter is presented which gives close to the optimal performance. Next, timing synchronization is considered. The implications of synchronization errors are analyzed, and a synchronization strategy is devised. The proposed synchronization strategy has little overhead and can be easily implemented for symbol-level synchronization. The N-FOM LOS link model is extended to assess the performance degradation due to interference. Performance metrics are derived which quantify the effects of multiple-user interference, as well as that from external interferers, such as WiFi. Since the correlation operation mixes all in-band signals, the total interfering entities are quadratically increased. The research shows the vulnerability of N-FOM to interference, which makes it optimistic to operate in a crowded shared spectrum (such as the ISM 2.4\,GHz band). We also observe an upper limit on the number of mutually interfering links in a multiple access (MA) network, that can be established with an acceptable quality. The scheme is further investigated for its resilience against impairments introduced by a dense multipath environment. It is observed that despite the noise enhancement, the N-FOM system performs reasonably well in a non-line-of-sight (NLOS) communication. The detection mechanism exploits the multipath channel diversity and leads to an improved performance in a rich scattering environment. An analytical expression for outage probability is also derived. The results indicate that a healthy N-FOM link with very low outage probability can be established at a nominal value of the received bit SNR. It is also found that the choice of the frequency offset is central to the system design. Due to multiple practical implications associated with this parameter, the maximum data rate and the number of usable frequency offsets are limited, particularly in a MA NLOS communication scenario. The analysis evolves into a rule-of-thumb criterion for the data rate and the frequency offset. It is deduced that, due to its limited capability to coexist in a shared spectrum, N-FOM is not a replacement for coherent DSSS systems. The scheme is mainly suited to a low data rate network with low overall traffic, operating in an interference-free rich scattering environment. Such a niche of sensor applications could benefit from N-FOM where the design goal requires a simple detection mechanism and immunity to multipath fading
    • …
    corecore