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Sophie, qui m’ont beaucoup aidé pour les dossiers administratifs et les procedures de

soutenance.
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General Introduction

Over the past decade, wireless technologies have undergone significant changes; new

and innovative techniques have been introduced, the focus of wireless communications

is increasingly changing from mobile voice applications to wireless data (including multi-

media) applications [1]. In this context, not only the content of transmitted information

is changed, but also the scale of networks. In other words, the mobile voice applica-

tions usually locate in wireless wide-area networks (WWAN), i.e., cellular networks [1];

while the wireless data applications consist of the communications not only in WWAN,

but also in wireless local area networks (WLAN) [2], such as IEEE 802.11a/b/g/n, as

well as in wireless personal area networks (WPAN) [3], e.g., Bluetooth, ultra-wideband

(UWB), wireless ad hoc networks, etc. The expanding wireless networks allow secure,

reliable wireless communications among all possible hand-held devices [1]. Variety of

communication systems have been proposed and selected for the applications in differ-

ent networks, and more systems are being studied, pursuing better quality of service

(QoS), higher transmission rate, or less complexity in transceiver, hence low-cost device.

On the other side, telecommunication is the transmission of signals over a distance

for the purpose of communication, in which the signals are typically generated by

electronic devices. Furthermore, the synchronization between the transmitted signals

and the received ones is indispensable for a successful communication. Hence, no matter

a signal is periodic, chaotic or random, it can be used as the information carrier if it

can be generated and synchronized.

In the beginning of 1980s, the generation of chaotic signals by simple electronic

circuits was found possible [4], and the research on the synchronization of the generated

chaotic signals have been carried out [5]. In the following two decades, the application

of chaos in the field of communications has attracted lots of attentions, which formed

a research domain called chaos-based communications. Depending on which step the
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General Introduction

chaos is applied in the communication systems, different chaotic applications can be

obtained, i.e., chaotic masking, chaotic spreading sequence, chaotic modulation, etc.

Because of the wideband nature of chaotic signals which can be possibly gener-

ated by simple electronic circuits, chaotic modulation is considered potentially more

resistant to multipath propagation then a modulation based on the periodic basis func-

tions without spectrum spreading [6], and has less complexity in transceiver to the

conventional spread spectrum systems.

However, although chaotic signals are deterministic, they are very sensible to the

initial conditions. This sensibility can cause the difficulty (or impossibility) to the syn-

chronization, especially when the wireless propagation channel is concerned, so that

the interference (including additive noise and interference from other applications) and

distortion are unavoidable. Hence, if the chaotic modulation is applied in the wireless

communications, two solutions are more robust: a chaotic modulation with noncoher-

ent detection, or a transmitted reference (TR) chaotic modulation with differentially

coherent detection, since the synchronization is not required in both of them. However,

as long as the additive noise performance is concerned, the communication systems with

coherent receivers offer the best performance if the synchronization can be achieved, or,

the optimal noise performance of the ’robust’ chaotic modulation systems are always

behind the one of the conventional narrowband modulation systems.

Hence, if a potential application is searched for the chaotic modulations, such ap-

plication should be found where the performance limit is less important [7][8], and in

contrary, the realization of wideband transmissions with simple (low-cost) transceiver

is the main deciding factor. The short range transmissions usually take place in compli-

cated environments, such as houses and offices, where the signals are transmitted not

only by the direct path, but by the reflections of lots of furniture and bureaus [9], hence,

the multipath attenuation is the determinative factor rather than the additive noise.

In this context, wideband systems can be used. The applications in such environments

which require numerous devices for simple functions may need low-cost transceivers.

The motivation of this thesis is to study a dynamical system, in order to determine

some properties of chaotic signals, and to propose a chaotic modulation system utiliz-

ing these properties in the noncoherent detection. Our system should be different to

the existing chaotic modulation systems, and should outperform them under certain

conditions. The application of our system will be the general short range wideband

2



GENERAL INTRODUCTION

transmissions, without entering into the particular networks, hence no consideration

on the power control or frequency band allocation.

As a study in the cross domains, the outline of thesis is organized as follows:

Chapter 1 presents firstly the basic fundamental theories of both dynamical systems

and wideband communications, and then the state of the art in the field of chaos-based

communications. The introduction on dynamical systems and chaos gives the neces-

sary definitions of the basic terms, as well as the mathematical methods for analyzing

the simplest behaviors of a dynamical system. The part of wideband communica-

tions introduces the advantages compared to the narrowband communications, and the

popular conventional wideband communication systems realized by different spectrum

spreading techniques.

To a certain extent, the spectrum spreading belongs to the modulation step of the

communication systems. Furthermore, both techniques of chaotic spectrum spreading

and chaotic modulation can be applied in the wideband communications. In order

to avoid the confusion on the terms, the application of chaos in the modulations of

wideband communication systems will be called generally the chaos-based wideband

communications in the context of this thesis, and the two implementations are treated

as two branches of the research, respectively called: the chaotic spreading sequence

modulations, and the direct chaotic signals modulations. The state of the art of both

research branches is presented. Among the mentioned systems, differential chaos shift

keying (DCSK) has been widely studied in the past decade, and considered to be the

most practical chaos-based modulation scheme when the radio propagation environment

is concerned.

In Chapter 2, a sinusoidal two-dimensional discrete-time dynamical system is se-

lected, and its periodic behaviors are studied, using the mathematical tool of bifurcation

analysis defined in Chapter 1, as well as the numerical method for the higher periods.

Variety of attractors can be derived by the analysis, including the chaotic cyclic attrac-

tor (CCA). Further studies on CCAs show their specific properties, which are found

being parametrized by the periods.

Chapter 3 concentrates on the application of CCA properties in the wideband com-

munications. Two CCA-based modulation schemes are proposed, with the simple non-

coherent detections realized by observing the specific properties of received signals.

3



General Introduction

The performance evaluation of each CCA-based modulation system using different de-

tection schemes in the additive white Gaussian noise (AWGN) channel is theoretically

analyzed and simulated. Furthermore, the performance of CCA-based modulation sys-

tems in the basic multipath channel model are discussed, as well as a simple case of

multi-user application for the second system, hence the possibility of multiple-access.

Finally, the conclusion and perspective of the thesis are given.
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1

Chaos-based Communications

1.1 Introduction

Although the dynamical systems and chaos theory have been deeply studied and de-

veloped by the mathematicians for longtime, it is only until recent decades that chaos

theory became a very active area in the communication engineering domain, when the

generation of chaotic signals by simple electronic circuits was found possible [4][10][11],

and the synchronization of the generated chaotic signals can be realized [5][12][13]. In

the signal level, the most important characteristics of the chaotic signals compared to

the periodic signals are that, the former has a nature wideband spectrum.

Meanwhile, as a quickly expanding domain, communication engineering has en-

countered lots of developments, innovations as well as challenges, which will doubtlessly

continue in the predictable future. In the recent twenty years, the combination of chaos

theory and the communications has formed a special research topic named chaos-based

communications, which has attracted considerable attentions. One part of chaos-based

communications is focused on the wideband applications, utilizing the natural wide-

band of the chaotic signals. We define this research branch as chaos-based wideband

communications in the context of this thesis.

Our research is based on the study of chaotic attractor properties and the applica-

tion of these properties in the wideband communication systems. For this object, this

chapter presents the general introduction of chaos theory and conventional wideband

communications, as well as the state of the art in the chaos-based wideband commu-

nications, with a purpose to firstly introduce the principles of both systems, and then
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1. CHAOS-BASED COMMUNICATIONS

the motivation of our research works.

1.2 Dynamical Systems and Chaos

Around 1975, a large number of scientists around the world became aware that there

exists a third kind of motion, which differs from steady state and either periodic or

quasi-periodic oscillation, which is now called ’chaos’ [14]. This motion looks erratic,

is not simply quasi-periodic with a large number of periods, and is not necessarily due

to a large number of interacting particles.

Chaos describes the behavior of these dynamical systems that may exhibit non-

periodicity and highly sensitive dependence on initial conditions. As a result of this

sensitivity, which manifests itself as an exponential growth of perturbations in the initial

conditions, the behavior of chaotic systems appears to be random, though actually they

are deterministic with no random elements involved, i.e., the future dynamics of these

systems are uniquely defined by their initial conditions. Figure 1.1 uses a schematic

diagram to show the sensitivity of a chaotic system xk = f(xk−1), where x0 and x
′
0 are

two different initial conditions with a very close Euclidean distance.

x0
x1

x′
0 x′

1

xk

x′
k

Figure 1.1: Schematic diagram of the sensitivity of a chaotic system xk = f(xk−1) under
different but very close initial conditions x0 and x′0.

The system in Figure 1.1 is given in a discrete-time domain, which is one of the

following two types of dynamical systems [15][16]:

• (Discrete-time dynamical system) A discrete-time dynamical system takes

the current state as input and updates the situation by producing a new state as

output. Such a system is usually modeled by a map.

6



1.2 Dynamical Systems and Chaos

• (Continuous-time dynamical system) A continuous-time dynamical system

can be considered as the limit of discrete system with smaller and smaller updating

time. Such a system is otherwise modeled by a differential equation.

1.2.1 Discrete-Time Dynamical System

The discrete-time dynamical system can be represented in the form of map as [15]

x 7→ g(x;µ) (1.1)

or in a difference equation of the following form

xk = g(xk−1;µ) (1.2)

where g :Rm×Rp 7→ Rm is at least a continuous or piecewise continuous function with

m the dimension of the map, and µ ∈ Rp stands for the internal parameters of the

systems with p the number of parameters. xk ∈ Rm is a m-dimensional vector in state

k. The set of vectors {x0, g(x0;µ), g2(x0;µ), ...} is called the trajectory through the

initial point x0 ∈ Rm.

The periodic behavior of the trajectories of the m-dimensional map g(x;µ) can be

defined as follow [14][16]:

• (Periodic Point and Fixed Point) A point x∗ ∈ Rm is a periodic point of

period q (also called period-q point) of the map g(x;µ) with µ fixed, if gq(x∗;µ) =

x∗, meanwhile if q is the smallest such positive integer. Especially, the periodic

point x∗ is a fixed point of the map g(x;µ) with µ fixed if the period is 1, i.e.,

g(x∗;µ) = x∗.

• (Periodic Orbit) The orbit with the initial point being the periodic point of

period q is called a periodic orbit of period q (also called period-q orbit, or order

q cycle).

and the periodic behavior can be characterized by their stability, which is defined as

[16][14]:

• (Asymptotically Stable and Unstable) The periodic point x∗ ∈ Rm is called

attractive or asymptotically stable, if for every initial condition x0 belonging to

a sufficiently small neighborhood U of x∗, we have limk→∞ xk = x∗. In contrary,

7



1. CHAOS-BASED COMMUNICATIONS

x∗ is called or unstable if for an initial condition x0 ∈ U, we get at least one

xk /∈ U.

• (Hyperbolic Fixed Point) The fixed point x∗ ∈ Rm is called a hyperbolic fixed

point if none of the eigenvalues of Dg(x∗) have unit modulus, where Dg is the

derivative of g.

• (Basin of Attraction) The basin of attraction of the fixed point (or period-q

point) x∗ is the set of points x such that limk→∞ gk(x) = x∗.

Hence, the iteration in the phase plane Rm with the initial point x0 belonging to the

basin of attraction of a periodic point goes ultimately to the periodic point.

Besides the periodic behavior, dynamical systems can have a more complex asymp-

totic behavior. The asymptotic behavior of the trajectories of the m-dimensional map

g can give rise to more complex attractive sets, with the following necessary definitions

[14][16]:

• (Invariant Set) A set Λ ⊂ Rm is called an invariant set of g if g(Λ) ⊂ Λ.

• (Attracting Set and Repelling Set) A closed invariant set Λ ⊂ Rm is called an

attracting set if there is some neighborhood U of Λ such that: ∀k ≥ 0, gk(U) ⊂ U
and ∩k>0gk(U) = Λ. A repelling set is defined by replacing k by −k.

• (Basin of Attraction) The basin of attraction of an attracting set Λ is given

by
⋃
k≤0 gk(U), where U is any open set satisfying the definition of the attracting

set.

• (Attractor) An attractor is a topologically transitive attracting set, with the topo-

logical transitivity defined as: a closed invariant set Λ is said to be topologically

transitive if, for any two open sets U, V ⊂ Λ, ∃k ∈ Z, so that gk(U) ∩ V 6= ∅.

Therefore, the iteration in the phase plane Rm with the initial point x0 belonging to

the basin of attraction of an attracting set goes ultimately to the attractor.

Among the attractors, one can focus on

- invariant closed curve

- chaotic attractor

with the characteristics related to the term ’chaos’ defined as follow [15]:
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1.2 Dynamical Systems and Chaos

• (Sensitive Dependence on Initial Conditions) The map g(x;µ) with µ fixed

is said to have sensitive dependence on initial conditions on Λ if there exists ε > 0

such that, for any x ∈ Λ and any neighborhood U of x, there exists x′ ∈ U and

k > 0 such that ‖gk(x;µ)− gk(x′;µ)‖ > ε.

• (Chaotic) Λ is said to be chaotic if

1. g(x;µ) has sensitive dependence on initial conditions on Λ.

2. g(x;µ) is topologically transitive on Λ.

3. The periodic orbits of g(x;µ) are dense in Λ.

All the above mentioned definitions are done under the condition that the parameter

µ is fixed. Then, how is the stability or instability affected as µ is varied? For a

hyperbolic fixed point, varying µ slightly doesn’t change the stability of the fixed point

[15]. However, when the fixed point (x∗;µ∗) is not hyperbolic, for µ very close to

µ∗, radically new dynamical behaviors can occur, e.g., fixed points can be created or

destroyed, and periodic or even chaotic dynamics can be created [15]. The phenomena

is called bifurcation of fixed points. In dynamical systems, a bifurcation occurs when

a small smooth change made to the parameter values of a system causes a sudden

’qualitative’ or topological change in its behavior.

Since the dynamics of the discrete-time dynamical system depend on the dimen-

sion, let’s talk about the simplest one-dimensional maps and two-dimensional maps

separately.

1.2.1.1 One-Dimensional Maps

As a one-dimensional map, the logistic map is given by:

x 7→ g(x; a) = ax(1− x) (1.3)

where x ∈ R, and a ∈ R is the parameter.

Let a = 2, so that the corresponding difference equation is xk = 2xk−1(1 − xk−1),

with initial condition x0 ∈ (0, 1). The trajectories through the initial points x0 = 0.1,

x0 = 0.2 and x0 = 0.75 are illustrated in Figure 1.2, which shows that the three

different initial conditions lead the trajectories to approach the same attractive fixed

point x = 0.5 quickly.

9
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Figure 1.2: Trajectories of xk = 2xk−1(1 − xk−1) through the initial points x0 = 0.1,
x0 = 0.2 and x0 = 0.75, with the first 21 states (k ∈ [0, 20]).
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Figure 1.3: Trajectories of xk = 4xk−1(1− xk−1) through the initial points x0 = 0.1 and
x0 = 0.1001, with the states k ∈ [0, 20] and k ∈ [80, 100].
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In contrast, when a = 4, another difference equation xk = 4xk−1(1 − xk−1),

x0 ∈ (0, 1) shows a different behavior. As illustrated in Figure 1.3, the trajectories

through the slightly different initial points, i.e., x0 = 0.1 and x0 = 0.1001, come to two

completely separate orbits. It shows the sensitive dependence of the map g(x; 4) on

initial conditions, which gives rise to a chaotic attractor.

Figure 1.4: Bifurcation diagram of g(x; a) = ax(1− x).

From the above two examples, we can see that the behavior of a map can be

completely different under different parameter values. For analyzing the stability of

fixed points, there are two basic bifurcations for the one-dimensional map g(x;µ) [15]:

• (Tangent bifurcation) A tangent bifurcation (or a fold bifurcation) is a bifur-

cation in which a birth of two fixed points arrives, who collide and annihilate each

other. A tangent bifurcation occurs to the fixed point (x∗;µ) when Dg(x∗;µ) has

the eigenvalue equal to 1.

• (Period-doubling bifurcation) A period-doubling bifurcation (or a flip bifur-

cation) is a bifurcation in which the system switches to a new behavior with twice

the period of the original system. A period-doubling bifurcation occurs to the fixed

point (x∗;µ) when Dg(x∗;µ) has the eigenvalue equal to −1.

11



1. CHAOS-BASED COMMUNICATIONS

A bifurcation diagram is often taken to show the birth, evolution, and death of

attracting sets. The bifurcation diagram of the logistic map is illustrated in Figure 1.4,

which shows that fixed point exists for 0 ≤ a < 3, while it turns to a period-2 orbit at

the ’bifurcation point’ a = 3, and then a period-4 orbit arrives at a ≈ 3.45. This is a

standard period-doubling bifurcation. Furthermore, the increase of value of a leads to

more complicated orbits, such as period-qn (q = 1, 2, ...; n = 1, 2, ...) orbits, as well as

chaotic orbits .

1.2.1.2 Two-Dimensional Maps

A two-dimensional map can be presented as

x = (x, y) 7→ g(x;µ) =
(
g1(x, y;µ), g2(x, y;µ)

)
(1.4)

where g1, g2 : R 7→ R are smooth maps, x, y ∈ R, and µ ∈ Rp is the parameter.

The fixed points for a two-dimensional map includes three types: an attracting

fixed point is also called a sink; a repelling fixed point is called source; and a new

type of fixed points called saddle, which has one attracting direction and one repelling

direction.

As long as the stability of a two-dimensional map is concerned, three types of

bifurcations can be observed [15]:

• A tangent bifurcation as defined for the one-dimensional maps, which occurs to

the fixed point (x∗, y∗;µ), when Dg(x∗, y∗;µ) has one real eigenvalue be equal to

1.

• A period-doubling bifurcation as defined for the one-dimensional maps, which

occurs to the fixed point (x∗, y∗;µ), when Dg(x∗, y∗;µ) has one real eigenvalue be

equal to −1.

• (Neimark-Sacker bifurcation) A Neimark-Sacker bifurcation is the birth of a

closed invariant curve from a fixed point, when the fixed point changes stabil-

ity. It occurs to the fixed point (x∗, y∗;µ), when Dg(x∗, y∗;µ) has two complex

conjugate eigenvalues having modulus 1.

The derivative of g mentioned above can be given by

Dg(x∗, y∗;µ) =

[
∂g1(x,y;µ)

∂x
∂g1(x,y;µ)

∂y
∂g2(x,y;µ)

∂x
∂g2(x,y;µ)

∂y

] ∣∣∣∣∣
(x,y)=(x∗, y∗)

(1.5)
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1.2 Dynamical Systems and Chaos

1.2.2 Continuous-Time Dynamical System

A discrete-time dynamical system describes the time evolution of a dynamical system by

expressing its present state as a function of its previous states, so that the system motion

through time corresponds to the iteration of the map. A continuous-time dynamical

system can be given in the form of differential equations, by expressing the change rate

of the present state as a function of the state itself, as:

ẋ = f(x, t;µ) (1.6)

ẋ = f(x;µ) (1.7)

where f : Rm×Rp 7→ Rm is a continuous function, m is the dimension of the system, x

is a m-dimensional vector, and µ ∈ Rp is the parameter. Remind that the first differ-

ential equation stands for nonautonomous type of systems, where the time variable

t ∈ R explicitly appears in the differential equation, while the second one stands for

autonomous type of systems [14][15].

The fixed point of a continuous-time dynamical system is defined as the solution of

f(x, t;µ) = 0, and the solution of equation (1.6) or equation (1.7) forms the trajectory

of the system. Based on the reason that the continuous-time dynamical systems have

not been particularly studied during our research, we won’t give the other definitions

of periodic or dynamical behaviors in this section. Reference [15] is recommended for

further interests.

The Lorenz dynamical system could be given as an example of continuous-time

dynamical system, which is three-dimensional with the following differential equation:
ẋ = −σx+ σy
ẏ = −xz + rx− y
ż = xy − bz

(1.8)

where x = [x y z] is the state vector, and σ, r, b are three real valued parameters. The

Lorenz system belongs to the autonomous type of dynamical systems.

As a three-dimensional system with three parameters, the Lorenz system can lead

to very complicated behavior on changing the parameter values. Here we choose the

standard parameter values σ = 10, r = 28, and b = 8
3 , under which the well-known

’butterfly’ attractor exists, as shown in Figure 1.5.

Till now, we have given the definitions of the most basic terms of the dynamical

systems, as well as several familiar examples. These definitions are necessary for us to

13
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Figure 1.5: Lorenz attractor with parameters values σ = 10, r = 28, and b = 8
3 initial

conditions [x(0) y(0) z(0)] = [0.3 0.3 0.3].

study the properties of chaotic attractor in the second chapter. On the other side, our

further study in the third chapter is concentrated on the application of these proper-

ties in the wideband communication systems. Therefore, the fundamental concepts of

conventional wideband communications are necessary, as well as the state of art of the

existing chaos-based wideband communications.

1.3 Wideband Communications

During the past 50 years, the communication domain has experienced a lot of de-

velopments, from wired to wireless, from voice communication to data transmission,

from narrowband to wideband, recently even ultra-wideband (UWB), etc. Intuitively

speaking, if the requirement of wireless communications can trace its roots to the mi-

gration/moving nature of human beings and the pursuit of convenient facilities, and if

the data transmission is caused by the computer development and information digital-

ization, then how to explain the development from narrowband to wideband commu-
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1.3 Wideband Communications

nications? In fact, it’s more than a single question.

Firstly, what is wideband?

In communications, wideband is a relative term (to narrowband) used to describe

a wide range of frequencies in a spectrum. Generally, a wideband system uses many

times larger than the bandwidth required to transmit information. It’s often known as

a spread spectrum system.

It seems that a spread spectrum signal could be counterproductive, as the receive

filter will require an increased bandwidth and, hence, will pass more noise power to

the demodulator. However, a matched filter [17] is often used in the receiver of a

spread spectrum system. Since the filter is matched to the signal, it’s mismatched to

the noise. The remarkable aspect of this result is that the filter bandwidth and the

output noise power are irrelevant. Thus, there is no fundamental barrier to the use of

spread-spectrum communications.

Secondly, what advantages can spread spectrum gain?

Spread-spectrum communication systems are useful for suppressing interference,

making interception difficult, accommodating fading, and providing a multiple-

access capability. Here we take interference suppressing and fading accommodating

for example.

In communications, interference is anything which alters, modifies, or disrupts a

signal as it travels along a channel between a source and a receiver. Interference may

be broadly categorized into two types: broadband interference and narrowband in-

terference. Narrowband interference usually arises from intentional transmissions

such as radio and TV stations, pager transmitters, cell phones, etc.; while broadband

interference usually comes from incidental radio frequency emitters. Figure 1.6 shows

how a signal uses the spread spectrum to resist the narrowband interference [18]: The

narrowband signal is firstly spread onto a large frequency band with a much lower power

level, and then transmitted into the channel, where both narrowband and broadband in-

terferences are added to it. In the receiver, despreading the spread signal is meanwhile

spreading to the narrowband interference, which consequently makes the power lever

of narrowband interference much lower. In this way, the receiver can reconstruct the

original data because the power level of user signal is much stronger than the remaining

interference.
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Figure 1.6: Spread spectrum: using spreading and despreading to resist narrowband
interference.

Fading is another unavoidable phenomena in communications, generally refers to

the degradation of the signal at the receiver. According to the coherence time of the

channel which is large or small relative to the delay constraint of the channel, slow

fading and fast fading can be therefore defined. The slow fading includes the following

cases: the large-scale fading when the subscriber moves away significantly from the

transmitter; or the shadowing when the subscriber moves behind a large object or

in a tunnel. On the other side, the fast fading can be caused by different situations:

either by the multipath fading which is known for the interference between two or

more waves leaving the transmitter at the same time, but taking different paths to get

to the receiver and thus arriving at different times; or by the Doppler shift because

of the motion of the terminals (such as driving in a car), which is also called Rayleigh

fading. [19]

It should be noticed that in communications, different frequencies propagate differ-

ently, so that fading can often be frequency selective, hence as shown in Figure 1.7, it’s

obvious that a system using a wider frequency band could resist a fading environment

better than a narrowband system: If a narrowband signal and a spectrum spread signal

transport through the same frequency selective fading channel, it’s possible that nar-

rowband one is located in a very deep fading frequency point, which could consequently

cancel most of its power. On the other hand, it’s not as possible that all the spread

spectrum locate in the deep fading points, so that the spectrum spread signal in the

receiver can be used to reconstruct the original data with the enough remaining signal
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Figure 1.7: Spread spectrum signal resists better deep fading than narrowband signal.
(In order to better observe the received spread spectrum signal after transmitting in deep
fading channel, the magnitude of power per frequency, i.e., dP/df , is amplified, but the
proportion of attenuation stays invariant. )

power.

Finally, how to spread spectrum?

There are several ways to spread a signal. The most practical and dominant methods

of spread-spectrum communications in recent research and industry domains are direct-

sequence spread spectrum (DSSS) [20][21], frequency-hopping spread spectrum (FHSS)

[20] and orthogonal frequency-division multiplexing (OFDM) [22][21]. Since every wide-

band/spread spectrum modulation schemes is more or less based on and extended from

the principles of narrowband modulations, we will first briefly talk about the conven-

tional digital modulation schemes, known as shift keying [23], before introducing each

spread spectrum method.

1.3.1 Shift Keying

In communications, modulation is the process of varying a waveform, which is more

suitable for transmission, in order to use that signal to convey a message. Such a

waveform is often called carrier or basis function. The three key parameters of a

basis function are its amplitude, phase and frequency, all of which can be modified
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1. CHAOS-BASED COMMUNICATIONS

in accordance with a low frequency information signal to obtain the modulated signal.

Besides, digital modulation aims to transfer a digital bit stream over an analog bandpass

channel or a certain radio frequency (RF) band. Generally, shifts from one state to

another can be used to signify a one or a zero, where the states could be one of the

three parameters of an RF carrier, and sometimes a combination of two.

Amplitude-shift keying (ASK) [23] simply varies the amplitude of the carrier between

two states, one representing a one, the other representing a zero. Obviously, this method

is linear and sensitive to atmospheric noise, distortions, propagation conditions, and

speed is also a problem. Thus, it is not practical for advanced systems (although some

systems do use a combination of ASK and another method).

Frequency-shift keying (FSK) [23] shifts the frequency of the carrier between the

states to represent different data values, and it’s actually used quite extensively in

analog system signaling.

Phase-shift keying (PSK) [23][21] is the system best suited for today’s cellular and

personal communication services (PCS) systems. Essentially, the phase of the carrier

is shifted, depending on the data to be sent. The simplest form of this is binary PSK

(BPSK), where two phase states which are separated by 180◦ represent either a one

or a zero. It’s also the most robust modulation of all the PSKs since it takes serious

distortion to make the demodulator reach an incorrect decision. For example, if a phase

at 0◦ presents a zero, and at 180◦ presents a one, the binary data can be consequently

conveyed as:

s(t) = Acos (2πfct+ d(t)π) (1.9)

where A is the signal amplitude, d(t) is the data symbol.

In the receiver, a demodulation is designed specifically for the set of symbols used

by the modulator, where the amplitude, frequency or phase of the received signal is

determined, and mapped back to the data symbol it represents, thus recovering the

original data. According to the principle of demodulation, the receiver can be divided

into two types [21]:

• Coherent detection receiver

Coherent detection receivers are those in which the exact copies of all the basis

functions are known. They are usually applied to demodulate ASK, PSK, etc.
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• Noncoherent detection receiver

In noncoherent detection receivers, the basis functions are unknown, but one or

more robust characteristics of modulated signals can be determined, so that the

demodulation is performed by evaluating one or more selected characteristics of

the received signals. Noncoherent detection is often used in FSK.

It’s often claimed that coherent detection outperforms noncoherent detection in the

presence of additive channel noise. But noncoherent detection is the only possible

solution when propagation conditions are so poor that the basis functions cannot be

recovered from the received signal. Furthermore, noncoherent detections can often be

implemented using easy circuitry.

In communications, the bit error ratio (BER) is a standard criterion to judge the

performance of a system, which stands for the incorrectly detected symbol ratio in

the receiver during a specified time interval. Note that BER is related to certain

propagation conditions, i.e., transmission channels. The additive white Gaussian noise

(AWGN) channel model is one in which the additive Gaussian noise is the only im-

perfection during the transmission. For a communication system, its BER in AWGN

channel model is the most basic performance parameter, which is widely considered

as a basic system performance parameter by researchers and engineers in this domain.

Furthermore, Eb/N0 is a term especially useful when comparing the BER performance

of different digital modulation schemes without taking bandwidth into account. Here

Eb is the energy of one bit transmitted information, N0/2 is the double sided noise

power spectral density.

Take the BER in AWGN of the robust BPSK with coherent detection for example,

which is the most often considered reference for the comparison of digital modulation

schemes. It can be calculated mathematically as [21]:

BERBPSK =
1
2

erfc(
√
Eb
N0

) (1.10)

where erfc(·) is the complementary error function defined as:

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt (1.11)

It should be be noticed that, the coherent detected BPSK masters the limit BER per-

formance in AWGN channel. Although the other modulation systems can’t outperform
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it, they could own other advantages, such as better symbol error rate of high-order

PSK, simpler receivers of the noncoherent systems, multipath fading resistance of the

spread spectrum systems, etc.

1.3.2 Direct-Sequence Spread Spectrum

A direct-sequence (DS) signal is a spread-spectrum signal generated by the direct mixing

of the data with a spreading waveform before the final carrier modulation [20]. For

example, a direct-sequence signal with BPSK data modulation can be represented by

[20]

s(t) = Ad(t)p(t)cos(2πfct+ θ) (1.12)

where A is the signal amplitude, d(t) is the data symbol, p(t) is the spreading waveform

stream, fc is the carrier frequency, and θ is the phase at t = 0. The data symbol stream

is a sequence of nonoverlapping rectangular pulses of duration Ts, each of them has an

amplitude dn = +1 if the associated data symbol is a one and dn = −1 if it is a zero.

Furthermore, the spreading waveform has the form [20]:

p(t) =
∞∑

n=−∞
pnU(t− nTc) (1.13)

where each pn equals +1 or −1 and represents one chip of the spreading sequence, and

Tc is the chip duration. The DS processing gain G = Ts/Tc is an integer equal to the

number of chips per symbol. If W is the bandwidth of spreading waveform p(t), and

B is the bandwidth of data symbol d(t), the spreading ensures that the DS signal s(t)

has a bandwidth W � B.

In order to recover the received signal, the same spreading sequence is reproduced

in the receiver and mixed with the spread signal. If the incoming signal and the locally

generated spreading code are synchronized, the original signal after correlation can be

recovered. Figure 1.8 is a conceptual block diagram of DSSS system transceiver, where

the modulate and demodulate modules could be any shift keying or other methods,

often PSK as in the cited example.

The spreading sequence in DSSS is normally pseudorandom noise (PN) codes with

good cross- and autocorrelation properties [24]. In a multiuser environment, the user

signals can be distinguished by different orthogonal PN codes, and the receiver needs
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Figure 1.8: Conceptual block diagram of DSSS system [20]: (a) transmitter; (b) receiver.

only knowledge of the user’s PN code. The longer the PN code is, the more noise-like

signals appear. The drawback is that synchronization becomes more difficult unless

synchronization information such as pilot signals is sent to aid acquisition. A max-

imum length sequence [25], also called m-sequence, is a type of widely used PN

sequence.

DSSS is applied in many communications systems, such as direct-sequence code-

division multiple access (DS-CDMA) system [22] and wireless local area network (WLAN)

standards, e.g., 802.11b Wi-Fi.

1.3.3 Frequency-Hopping Spread Spectrum

Frequency hopping (FH) is similar to direct sequence spreading where a code is used

to spread the signal over a much larger bandwidth than that required to transmit

the signal [20]. A FH signal is generated by rapidly switching a carrier among many

frequency channels, according to a specified algorithm, although the signal bandwidth

keeps unchanged and has the same bandwidth as the transmitted signal at any instant.
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The specific order in which frequencies are occupied is a function of a code sequence

known by both transmitter and receiver, called FH pattern, as illustrated in Figure

1.9, where B is the frequency bandwidth of a single carrier, W is the total hopping

bandwidth, and the hop interval is denoted by Th. The FH pattern is generated usually

by a PN sequence generator, such as m-sequences and Reed-Solomon codes [20].

f

t
Th

W

B

Figure 1.9: A frequency-hopping pattern.

In a FHSS system, the transmitter should operate in synchronization with the

receiver, which remains tuned to the same center frequency as the transmitter. Though

FHSS requires a much wider bandwidth than is needed to transmit the same information

using only one carrier frequency, a short burst of data is transmitted on a narrowband,

so that FH can enjoy the coexistence of several access points in the same area.

FHSS can provide a security transmission by choosing secret and complex hop-

ping pattern, hence it is especially applied in military use, i.e., U.S. military employes

separate encryption devices with FH.

1.3.4 Orthogonal Frequency-Division Multiplexing

OFDM is a multi-carrier spread spectrum method [22]. The principle of multi-carrier

modulation is to convert a serial high-rate data stream (with the source symbol duration

Td) into Nc parallel low-rate sub-streams. Each sub-stream is modulated on one sub-

carrier, so that the symbol rate on each sub-carrier is 1/Nc the initial serial data

symbol rate [22]. An example of multi-carrier modulation with four sub-carriers Nc = 4

is illustrated in Figure 1.10 in three dimensional representation, i.e., time, frequency
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and power density. Note that in the frequency domain, the spectra of the modulated

symbol is spread to the total spectrum of Nc sub-carriers, therefore the power density

is lowered. Here the A axis stands for the power density distribution trend, and does

not make any sense in the context of pulse or spectrum shaping.
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Figure 1.10: Conceptual block diagram of multi-carrier spread spectrum with four sub-
carriers.

The principle of OFDM is to modulate the Nc sub-streams on Nc sub-carriers with

a spacing of Fs = 1/Ts in order to achieve orthogonality between the signals on the sub-

carriers [22]. Here Ts = NcTd is the OFDM symbol duration, and an OFDM symbol

includes the Nc parallel modulated source symbols Sn, n = 0, ..., Nc − 1. The complex

envelope of an OFDM symbol can be presented as [22]

x(t) =
1
Nc

Nc−1∑
n=0

Sne
j2πfnt, 0 ≤ t < Ts (1.14)

where the sub-carrier frequencies are located at fn = n/Ts, n = 0, 1, ..., Nc − 1. By

sampling the complex envelope x(t) of an OFDM symbol with rate 1/Td, we can get a

sampled sequence as

xm =
1
Nc

Nc−1∑
n=0

Sne
j2πn m

Nc , m = 0, 1, ...Nc − 1 (1.15)

Obviously, xm, m = 0, 1, ...Nc − 1 is the inverse discrete Fourier transform (IDFT)

of Sn, n = 0, 1, ...Nc − 1. Hence, a key advantage of using OFDM is that multi-

carrier modulation can be implemented in the discrete domain by using an IDFT, or

a computationally more efficient inverse fast Fourier transform (IFFT). Meanwhile,

the corresponding demodulation can also be implemented by using discrete Fourier

transform (DFT) or fast Fourier transform (FFT). This is why OFDM is known as
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a low-complex technique to efficiently modulate multiple sub-carriers by using digital

signal processing [22][26]. OFDM is widely used in various multi-carrier-based com-

munications standards, such as digital audio/video broadcasting (DAB/DVB), WLAN

and wireless local loop (WLL), etc. [22]

1.4 Chaos-based Wideband Communications

According to Section 1.3, wideband systems are considered to be more robust than nar-

rowband systems in certain propagation conditions, such as multipath fading channel.

Hence, they are widely required in modern communications, especially wireless com-

munications in severe transmission environments. Different spread-spectrum schemes

are developed and applied in different communication systems, which are introduced

and compared briefly. Because the conventional modulation schemes are usually based

on periodic carrier waveforms, such as the sinusoidal waveforms, which are normally

narrowband, the spread spectrum methods try to either use the PN codes (which have

flat band) to spread the frequency bandwidth of the carrier, or use simultaneously the

total frequency bands of multi-carrier to form a globally larger bandwidth.

In Section 1.2, the basic behaviors of dynamical systems are presented. The revealed

characteristics are very specific and different from those of periodic systems. A variety

of chaotic waveforms can be generated by dynamical systems simply on choosing suit-

able parameter values. Talking about in the signal level, although chaotic signals are

essentially deterministic, their pseudo-stochastic appearance leads to naturally wide-

band in the spectral distribution, which makes them very attractive for using as the

carriers in spread spectrum communications. Furthermore, the sensitivity to initial

conditions of the chaotic signals causes difficulty in eavesdropping. In other words, this

sensitivity brings security to communications, while the deterministic essential ensures

the possibility of detection under certain conditions. Above all, the developement of

research of chaos in electronic circuits in late 1980s brought a research opportunity in

chaos-based wideband communications.

In this section, the state of the art of the research on chaos-based wideband com-

munications is given. According to the fact that chaotic signals are applied as spread-

ing codes or directly as modulation carrier waveforms, chaotic spreading sequence

modulation and chaotic signal direct modulation are separated and defined.
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1.4 Chaos-based Wideband Communications

1.4.1 Chaotic Spreading Sequence Modulation

As mentioned in the previous section, modern spread spectrum communications, such

as DSSS and FHSS, use PN sequences as spreading codes. In this section, chaotic

spreading sequence modulation is defined in case that the chaotic sequences are used in

place of PN sequences in spread spectrum systems, such as chaotic DSSS and chaotic

FHSS.

1.4.1.1 Chaotic Direct-Sequence Spread Spectrum

The research on chaotic DSSS can be dated back to references [27] and [28], where the

chaotic sequences were proposed for DSSS for the first time. The auto-/cross-correlation

properties and the power spectral density (PSD) of these proposed sequences are similar

to random white noise, as shown in Figure 1.11 with the corresponding correlations and

the spectra of logistic map of equation (1.3) with parameter a = 4. The numbers and

lengths of chaotic sequences are theoretically not restricted like m-sequences, however,

due to the limited precision of practical systems, there is only a finite number that can

be used. This number augments with the increase of the precision, with a cost of longer

generation time. The simulations in reference [27] show that the BER performance of

DSSS using random binary PN sequences and chaotic sequences generated by logistic

map is comparable in the presence of AWGN for different numbers of users. Another

advantage of chaotic sequences is that due to the noise-like appearance, they outperform

PN sequences in low probability of intercept (LPI).

The application of chaotic DSSS for DS-CDMA system has been studied in refer-

ences [29], [30] and [31] when AWGN channels are considered and multi-user interference

is the dominant cause of the channel’s non-ideality. Under such environment, theoret-

ical performance bounds have been studied which show that significant improvement

can be achieved by employing a properly designed family of chaotic systems generating

real trajectories that are then quantized and periodically repeated to yield the users

signatures.

1.4.1.2 Chaotic Frequency-Hopping Spread Spectrum

The research of chaotic sequence for FHSS began with reference [32], which showed

that the FH sequences generated by chaotic systems are harder to intercept and give
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Figure 1.11: Properties of chaotic (logistic map with a = 4) sequences of length 5000
(the first 1000 iterations are abandoned): (a) Normalized auto-correlation property of a
sequence with initial condition x0 = 0.1, only the middle 2000 points are shown; (b)
Normalized cross-correlation property between a sequence with initial condition x0 = 0.1
and a sequence with initial condition x0 = 0.3, only the middle 2000 points are shown; (c)
PSD of the sequence with initial condition x0 = 0.1 under 1028 points of FFT.
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1.4 Chaos-based Wideband Communications

a uniform spread over the entire frequency bandwidth. Meanwhile, they own the good

Hamming correlation properties and the ideal linear span which is attractive in multiple-

access applications.

The application of chaotic FH sequence in the CDMA systems has been stud-

ied [33][34]. Reference [33] realized a chaostic FH sequence generator prototype in

field programmable gate arrays (FPGA), and the BER performance evaluation of the

chaos-based asynchronous FH-CDMA system suggests that the cost-effective and well-

performing generator has the potential to be incorporated into existing FH systems.

1.4.2 Chaotic Signal Direct Modulation

As introduced above, chaotic spreading sequence modulations use chaotic sequences to

spread the spectrum of conventional narrowband modulation systems, such as BPSK.

In other words, spreading and modulation are realized in two different processes.

In this section, another way of using chaotic signals directly to realize wideband

communications is discussed, named chaotic signal direct modulation in the context of

this thesis. It uses similar schemes of shift keying as in Section 1.3.1 for narrowband

modulation, while a chaotic carrier differs to a conventional periodic carrier at least

in two domains: in the time domain, a chaotic basis function is nonperiodic [35],

hence, the transmitted waveform is never periodic, even if the same data symbol is

transmitted repeatedly; in the frequency domain, the spectrum of a chaotic carrier

is nature-wideband, while a periodic carrier is narrowband without spread spectrum

techniques.

Chaotic signal direct modulation is concerned with directly mapping data symbols

to the chaotic waveforms generated by the dynamical systems. For example, chaos shift

keying (CSK) [36] is proposed to map informations to weighted chaotic basis functions.

According to the detection scheme, different types of CSK can be divided, such as

antipodal CSK [6], chaotic on-off keying (COOK) [37], chaotic parameter modulation

(CPM) [38], etc. Differential chaos shift keying (DCSK) [39] is a variety of CSK,

in which the basis function is composed by both reference and information-bearing

functions, so that the detection can be realized differentially.
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1. CHAOS-BASED COMMUNICATIONS

1.4.2.1 Coherent Chaos Shift Keying

CSK is a digital modulation scheme where chaotic signals generated by different at-

tractors or chaotic signals generated by the same attractor but emerging from different

initial conditions are used as basis functions [36][6]. The number of attractors or initial

conditions is equal to the number of basis functions N , which can form M elements

of signal set using the combination of them, with M ≥ N . The attractors may be

produced by the same dynamical system with different values of bifurcation parameter,

or by different dynamical systems.

The M elements of the signal set can be defined as [40]

sm(t) =
N∑
n=1

smngn(t), m = 1, 2, ...,M (1.16)

where the basis functions gn(t) (n = 1, 2, ..., N) are chaotic waveforms, and sm(t)

(m = 1, 2, ...,M) can be conceptually shown in Figure 1.12.(a).

g1(t)

. . .

g1(t)

. . .

∫ T

0

·dt

∫ T

0

·dt

(a) (b)

sm(t)

gN(t)

sm1

smN

rm(t)

ŝm1

ŝmN

gN(t)

Figure 1.12: Conceptual diagram of CSK [40]: (a) generation of the elements of the
modulated signal set; (b) observation signals using coherent detection.

Suppose that the chaotic basis functions gn(t) (n = 1, 2, ..., N) are all zero mean

and normalized, i.e., E
[∫ T

0 gn(t)dt
]

= 0 and E
[∫ T

0 g2
n(t)dt

]
= 1, where E[·] denotes

the expectation operator, and T is the symbol duration. They are considered to be

orthonormal in the mean CSK [6] as:

E

[∫ T

0
gn(t)gn′(t)dt

]
=
{

1 if n′ = n
0 otherwise

(1.17)
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1.4 Chaos-based Wideband Communications

Hence, the weights smn of the signal vector can be recovered by correlating the received

signal with locally generated copies of the basis functions gn(t), as shown in Figure

1.12.(b), where rm(t) is the received signal, and rm(t) = sm(t) if the transmission

channel is distortion and noise free. The estimated element ŝmn of the observation

vector when rm(t) = sm(t) can be given by

ŝmn =
∫ T

0 sm(t)gn(t)dt
=

∫ T
0

[∑N
n′=1 smn′gn′(t)

]
gn(t)dt

= smn
∫ T

0 g2
n(t)dt

≈ smn

(1.18)

where the bit duration T is long enough.

It should be noted that, since each basis function gn(t) is not periodic, the waveform

is not fixed for different symbol times, and the bit duration T is limited by the data rate.

Therefore the estimated element ŝmn of the observation vector are random numbers,

so that the observation vector can only be considered as an estimation of the signal

vector.

The simplest case of binary coherent antipodal CSK uses only one basis function,

i.e., symbol ’1’ is represented by s1(t) =
√
Ebg1(t) and symbol ’0’ is represented by

s2(t) = −√Ebg1(t). The bit energy Eb is assumed constant. Consider AWGN in the

transmission channel so that rm(t) = sm(t) +n(t) (m = 1, 2), where n(t) stands for the

added noise, the theoretical noise performance was reported in reference [40] by

BERantipodal CSK =
1
2

erfc

(√
Eb
N0

)
(1.19)

which is identical to the BER of BPSK in equation (1.10). An approach to calculating

the BER of coherent CSK has been presented by reference [41].

Equation (1.19) shows the ideal AWGN performance on assuming that the basis

function g1(t) can be properly regenerated from the received signal and perfectly syn-

chronized. However, the high sensitivity of chaotic signals to initial conditions and

poor propagation conditions may cause the recovering very difficult, if not impossible.

Several strategies for recovering the basis functions have been proposed under the title

’chaotic synchronization’ [5][12][42], but the problem still keeps unrealistic from the
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1. CHAOS-BASED COMMUNICATIONS

practical or engineering point of view [43][35][6]. Hence, in real applications, a coher-

ent detection may be impractical and a noncoherent or differentially coherent receiver

should be considered.

1.4.2.2 Noncoherent Chaos Shift Keying

Remind that in a noncoherent detection, one or more robust characteristics of modu-

lated signals can be determined, so that the demodulation is performed by evaluating

one or more selected characteristics of the received signals. Under this principle, COOK

observes the symbol energy as characteristic to be evaluated, while CPM treats the bi-

furcation parameter as characteristic to be estimated.

Chaotic On-Off Keying

COOK is a binary CSK (M = 2) using one basis function (N = 1) with noncoherent

detection, which maps data ’1’ to s1(t) =
√

2Ebg1(t) and data ’0’ to s2(t) = 0, where

Eb is the average energy per bit [37][6].

Since the symbol energy is the selected characteristic for noncoherent detection, the

observation variable after the distortion and noise free transmission (rm(t) = sm(t))

can be consequently given as [40]:

ŝm1 =
√∫ T

0 s2
m(t)dt

=
√
s2
m1

∫ T
0 g2

1(t)dt

= sm1

√∫ T
0 g2

1(t)dt
≈ sm1

(1.20)

where m = 1, 2 and [s11 s21] = [
√

2Eb 0].

The noncoherent receiver of COOK can be shown schematically in Figure 1.13. As

a noncoherent system, the noise performance in AWGN depends on both bit duration

T and RF channel bandwidth 2B, where B stands for the Nyquist frequency. Fur-

thermore, though AWGN is a zero-mean noise, it adds a non-zero noise energy to the

observation variable ŝm1, (m = 1, 2), hence, noncoherent COOK has a biased detection

and the decision threshold should be adjusted depending on the SNR measured in the

receiver.
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1.4 Chaos-based Wideband Communications

∫ T

0

·dt
√ · Decision 

circuit

ŝm1 b̂mrm(t)

Figure 1.13: Noncoherent receiver for COOK system [6].

Chaotic Parameter Modulation

CPM [38] is another type of CSK, in which the basis functions gn(t) (n = 1, 2, ..., N) are

generated from the same dynamical system with distinct bifurcation parameters, and

each value of information data corresponding to one of such parameters, i.e., gn(t) =

gan(t), where an is the parameter value mapped to snn. In this way, only M = N

elements are possible in the signal set.

Since the bifurcation parameter is the selected characteristic for noncoherent de-

tection, the observation of the changes of the parameter should be considered in the

receiver. Noted that the parameter characteristic is not a general characteristic for

any dynamical systems, hence, different solutions could be optimal under certain se-

lected dynamical systems or circuits. Authors of reference [38] have studied a binary

CPM based on Chua’s circuit [44], with the detection realized using the synchroniza-

tion error to decide whether the received signal corresponds to one parameter, or to the

other. Authors of reference [45] have proposed an ergodic chaotic parameter modulation

(ECPM), using certain chaotic maps whose mean value functions are monotonic, such

as Chebyshev’s map given by x(t) = cos
(
θ cos−1(x(t− 1))

)
, and based on this mono-

tone property, it’s possible to estimate a particular parameter value θ0 by a mean value

method. Authors of reference [46] have provided a method of using different chaotic

signals which have different average frequencies, and the detection can be realized by

measuring the average value of the zero-crossing rate of the received signals.

1.4.2.3 Differential Chaos Shift Keying

DCSK is a variety of binary CSK, in which the basis function is formed together by

both reference and information-bearing parts, so that the detection can be realized

differentially (noncoherently) [39][40][6].
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1. CHAOS-BASED COMMUNICATIONS

Using the notations in Section 1.4.2.1, a binary DCSK can be shown as

sm(t) = sm1g1(t) + sm2g2(t), m = 1, 2 (1.21)

where the weight set of smn (m = 1, 2, n = 1, 2) is[
s11 s12

s21 s22

]
=
[ √

Eb 0
0

√
Eb

]
(1.22)

and the basis functions gn(t) (n = 1, 2) have the special form as

g1(t) =

{
+ 1√

Eb
c(t) 0 ≤ t < T

2

+ 1√
Eb
c(t− T

2 ) T
2 ≤ t < T

g2(t) =

{
+ 1√

Eb
c(t) 0 ≤ t < T

2

− 1√
Eb
c(t− T

2 ) T
2 ≤ t < T

(1.23)

where c(t) is the chaotic waveform. The first half symbol duration in each basis func-

tion is the reference chip, while the latter half is the information-bearing chip. The

conceptual diagram of DCSK modulator is shown in Figure 1.14.(a).

Delay 
 

b̂m

sm(t)c(t)

√
Eb

g1,2(t)

T/2T/2

bm = ±1

Delay 
 T/2

∫ T

T/2

· dt
Decision

circuit

ŝmrm(t)

(a)

(b)

Figure 1.14: Conceptual diagram of DCSK system [39]: (a) modulator; (b) differential
coherent demodulator.

The observation variable for DCSK can be the correlation between the reference

chip and the information-bearing chip of the received symbol rm(t) [39], which can
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1.5 Conclusion

therefore be presented under distortion and noise free conditions, i.e., rm(t) = sm(t),

as:

ŝm =
∫ T
T/2 sm(t)sm(t− T/2)dt

= Eb
∫ T
T/2 gm(t)gm(t− T/2)dt

(1.24)

Since E[
∫ T
T/2 g

2
m(t)dt] = 1/2, it comes that [ŝ1 ŝ2] ≈ [Eb2 − Eb

2 ]. The block diagram of

the differential coherent receiver is shown in Figure 1.14.(b).

The exact analytical expression for the noise performance of differentially coherent

DCSK was reported in reference [47], and the approximated expression of BER in

AWGN was given by reference [48] as:

BERDCSK =
1
2

erfc

√ Eb
4N0

(
1 +

2
5Ms

Eb
N0

+
N0

2Eb
Ms

)−1
 (1.25)

where 2Ms = 2BT is the number of samples per symbol using a sampling rate 2B.

According to reference [35], in the radio propagation environments, DCSK offers

the best noise performance among the chaotic signal direct modulations mentioned

above. Hence, in the past twenty years after the publication of DCSK by Kolumbán,

lots of performance analysis, enhancement and amelioration have been proposed based

on DCSK.

For example, caused by the nonperiodicity of chaotic signals and the finite-length

of each modulated symbol, DCSK (similar for the other chaotic signal direct mod-

ulations) has the non-constant bit energy, which leads to a estimation problem. In

order to avoid this problem, DCSK can be combined with Frequency Modulation (FM),

which forms the FM-DCSK modulation system [35][49][6][50], which can be treated as

an amelioration of DCSK. Furthermore, the multipath, multi-user as well as multiple

access schemes and performance of DCSK have been basically researched [51][52][53].

[51] and reference [52] have analyzed the multipath multi-user performance of DCSK

respectively. As long as the application of DCSK is concerned, authors of reference [54]

have talked about the low-rate UWB systems utilizing DCSK.

1.5 Conclusion

This chapter firstly presented a general introduction of chaos theory and dynamical

systems. Definitions of specific notations of the behavior and stability of the discrete-

time dynamical systems, as well as the simplest mathematical methods for analyzing
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such systems have been given. They will be applied in Chapter 2 for studying our

dynamical system. Secondly, another general introduction is concentrated on the target

and advantages of the wideband communications, and the conventional spread spectrum

communication systems, such as DSSS, FHSS and OFDM. Finally, the state of the art

in the chaos-based modulation systems has been given, including the chaotic spreading

sequence modulation and the chaotic signal direct modulation.

Based on the fundamental knowledge of chaos theory, further study of a selected

dynamical system will be processed in Chapter 2. Specific properties of the studied

system will be concluded, and application of these properties in the chaos-based com-

munications will be given in the next chapters.
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2

Chaotic Cyclic Attractors and

Characteristics

2.1 Introduction

According to the Poincaré-Bendixson theorem [55][56][15], a continuous dynamical sys-

tem on the plane cannot be chaotic; among the continuous-time dynamical systems,

only those whose phase space is non-planar (having dimension at least three, or with

a non-Euclidean geometry) can exhibit chaotic behavior. However, a discrete-time dy-

namical system can exhibit chaotic behavior in a one-dimensional or two-dimensional

phase space. Furthermore, the continuous-time dynamical systems are often repre-

sented by the differential equations as (1.6)-(1.7), e.g., the Lorenz dynamical system in

equation (1.8); in contrary, the discrete-time dynamical systems can be represented by

simpler difference equation (map) as (1.1) or (1.2), e.g., logistic map in equation (1.3),

which can be more easily simulated by the numerical computer. Therefore, the lower

dimension discrete-time dynamical systems are usually considered by the researchers

on chaos-based communications.

In the terminology of communications, chaotic signals are wideband, deterministic,

nonperiodic, and random-like signals derived from nonlinear dynamical systems, which

offer a number of attractive features as introduced in Chapter 1: the inherent wide-

band characteristic and the corresponding multipath fading resistance; the sensitive

dependence on the initial conditions and parameter values so that a large number of

spreading waveforms can be easily produced, hence, a cheap alternative solution for
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2. CHAOTIC CYCLIC ATTRACTORS AND CHARACTERISTICS

spread-spectrum communications; very good spectral properties, especially that they

can easily be generated by simple circuits.

A lot of dynamical systems can serve as the chaotic signal generators for chaos-based

communications, and many of them have been studied in the research domain, such as

piecewise-linear maps [10][57], tent maps [58][59], logistic maps [60][61] and chebyshev

maps [62]. Another type of dynamical systems, which has a structure of n-dimensional

digital filter, has been proposed by reference [63] to generate chaotic signals, and to be

used in cryptography as in reference [64], etc.

The aim of this thesis is not to provide an overview or innovations of chaotic signals

generators, but to study novel approaches of chaos-based communications, especially

when noncoherent detection is concerned. During our study, a 2-dimensional digital

filter structure system has been selected as a chaotic signal generator, which exhibits

chaotic behavior in a 2-dimensional phase plane. The model of this dynamical system

is given by

g(x, y) =
(

sin(aπx+ bπy), x
)

(2.1)

where g : R2 → R2 is a continuous function, and a, b are real valued parameters,

which should be held fixed when the map is iterated. The conceptual diagram can be

illustrated as in Figure 2.1, in which (xk, yk) is the iteration vector in state k.

aπ

bπ

z−1

sin(·)

z−1

x

y

Figure 2.1: Conceptual diagram of system (2.1).

If we set the parameter values with (a, b) = (0.05,−0.63), and choose initial condi-

tions such that (x0, y0) ∈ [−1, 1]2, the iterations will be attracted by a period-4 orbit:

36



2.1 Introduction

(−0.9198,−0.9765) 7→ (0.9765,−0.9198) 7→ (0.9198, 0.9765) 7→ (−0.9765, 0.9198) �, as

illustrated in Figure 2.2.(a). On the other hand, if we set (a, b) = (0.05,−0.93) under
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Figure 2.2: Analysis of xk of system (2.1) with a=0.05, b=-0.63, k ∈ [90 000, 90 100]: (a)
attractor; (b) waveform in time; (c) autocorrelation; (d) PSD (obtained by 1028 points of
FFT).

the same initial conditions, the iterations will be attracted by a chaotic attractor, which

is composed by four zones, as shown in Figure 2.3.(a). In both of the two trajectories,

105 points of iterations are computed, but only the last 104 points are depicted, in

order to better observe the attractor.

Furthermore, the waveform in time, auto-correlation and PSD of 100 points (k ∈
[90 000, 90 100]) of both iterations are also shown in Figure 2.2 and Figure 2.3. From

the comparison between them, an interesting phenomena can be observed namely that,

though the attractors and waveforms in time are completely different between the two

types of iterations, they have a very similar auto-correlation property and spectrum.
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Figure 2.3: Analysis of xk of system (2.1) with a=0.05, b=-0.93, k ∈ [90 000, 90 100]: (a)
attractor; (b) waveform in time; (c) autocorrelation; (d) PSD (obtained by 1028 points of
FFT).

How to get the type of chaotic attractors as in Figure 2.3.(a)? Is there some re-

lationship between this type of attractors and the period-q orbits? What interesting

properties do they own on applying in chaos-based communications? The further study

of system (2.1) has been done in this chapter to answer these questions.

38



2.2 Bifurcations Analysis and Attractors

2.2 Bifurcations Analysis and Attractors

2.2.1 Basic Bifurcations Analysis

It has been briefly introduced in Section 1.2.1.2 that, in order to analyze the stability of

a two-dimensional map, three basic bifurcations should be concerned, i.e., the tangent

bifurcation, the period-doubling bifurcation, and the Neimark-Sacker bifurcation. For

this sake, the eigenvalues of the system (2.1) should be obtained.

Rewrite the map of the dynamical system f : R2 → R2 in equation (2.1) as:

X =
[
x
y

]
7→ g(X; A) =

[
sin (aπx+ bπy)

x

]
(2.2)

where x, y ∈ R, A =
[
a
b

]
is the parameter with a, b ∈ R. Note X∗ =

[
x∗

y∗

]
as a

fixed point, then we can get:

g(X∗) = X∗ (2.3)

or {
x∗ = sin (aπx∗ + bπx∗)
y∗ = x∗

(2.4)

Let Dg be the derivative of g, wet get

Dg(X∗; A) =

[
∂ sin(aπx+bπy)

∂x
∂ sin(aπx+bπy)

∂y

1 0

] ∣∣∣∣∣
(x∗,y∗)

=
[
aπ cos(aπx∗ + bπy∗) bπ sin(aπx∗ + bπy∗)

1 0

]
(2.5)

so that the eigenvalues λ of the fixed point X∗ can be obtained by solving the following

equation:

|Dg(X∗; A)− λI| = 0 (2.6)

where I is the two-dimensional identity matrix. Assume that the fixed point has at

least a pair of complex conjugate eigenvalues described by:

λ, λ = ρe±jθ (2.7)

where j stands for the imaginary unit, ρ is the radius of the eigenvalues, and θ is the

argument. Inserting equation (2.7) into equation (2.6), we get:

ρ2ej2θ − aπ cos(aπx∗ + bπy∗)ρejθ − bπ cos(aπx∗ + bπy∗) = 0 (2.8)
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Define χ = <χ+ j=χ to present the left side of equation (2.8), with <χ and =χ being

the corresponding real and imaginary parts, i.e.,{ <χ = ρ2 cos(2θ)− (aπρ cos(θ)− bπ) cos(aπx∗ + bπy∗)
=χ = ρ2 sin(2θ)− aπρ sin(θ) cos(aπx∗ + bπy∗)

(2.9)

Combining equation (2.3) and (2.8), we can get: g(X∗; A)−X∗

<χ
=χ

 = 0 (2.10)

or 
sin (aπx∗ + bπx∗)− x∗ = 0
ρ2 cos(2θ)− (aπρ cos(θ)− bπ) cos(aπx∗ + bπx∗) = 0
ρ2 sin(2θ)− aπρ sin(θ) cos(aπx∗ + bπx∗) = 0

(2.11)

According to Section 1.2.1, for a two-dimensional discrete-time dynamical system,

the change of stability of a fixed point can be observed in three basic bifurcation cases,

i.e., the tangent (or fold) bifurcation, the period-doubling (or flip) bifurcation, and the

Neimark-Sacker bifurcation. The mathematical method for obtaining these bifurcations

is given by calculating the eigenvalues λ, i.e., one eigenvalue equal to 1 (ρ = 1, θ = 0)

for the fold bifurcation, one eigenvalue equal to -1 (ρ = 1, θ = π) for the flip bifurcation,

while two complex conjugate eigenvalues with ρ = 1 (θ 6= 0, π) for the Neimark-Sacker

bifurcation.

By replacing the typical value of the eigenvalues into equation (2.11), the three basic

bifurcations of fixed points of system (2.1) can be derived, which are illustrated in the

parameter space (a, b) in Figure 2.4.(a)-(c) respectively. In this way, the parameter

region corresponding to the existence of attractive fixed points is surrounded by these

bifurcations, as shown in Figure 2.4.(d).

Furthermore, since a period-q point of the map g is also a fixed point of the map gq

[15], i.e., gq(X∗; A) = X∗, the analysis of the bifurcations of the other periodic points,

as well as the parameter region corresponding to the existence of period-q points in

the parameter space (a, b) can also be manipulated like those in equations (2.5)-(2.10)

by replacing g by gq, and the complexity of calculation increases a lot with the value

of period q. In our research, a numerical method has been operated instead of the

analysis, in which the parameter regions in the parameter space (a, b) for the existence

of period-q points with q < 15 can be obtained simultaneously, as shown in Figure 2.5.
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(a) Fold bifurcation
(b) Flip bifurcation

(c) Neimark-Sacker bifurcation (d) Parameter region of fixed point

Figure 2.4: Three basic bifurcations of fixed points of system (2.1) in the parameter
plane, and the corresponding parameter region of existence of a fixed point.
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(a)

(b)

0

-1
0 1a

b

(c)

Figure 2.5: Simulated bifurcation diagram of system (2.1) in the phase plane (a, b) with:
(a) a ∈ [−2, 2], b ∈ [−2, 2]; (b) a ∈ [−1, 0], b ∈ [−1, 0]; (c) a ∈ [0, 1], b ∈ [−1, 0]. The colored
areas denote parameter values of existence of period-q (q ≤ 14) points, where the periods
q are differed by colors. Black denotes the parameter region of the existence of period-q
orbits with q > 14, or other attractors, including chaotic attractors.
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Observing the details of the diagram in Figure 2.5.(b)-(c), we can see the phe-

nomenon of some special tongue-like colored zones (colors denoting different periods)

surrounding a bifurcation, with their cusps pointing to the bifurcation. From the com-

parison between the analytical basic bifurcations in Figure 2.4 and the numerical result

in Figure 2.5, it can be proved that the bifurcation with the cusps of tongue-like zones

intersected is a Neimark-Sacker bifurcation. This phenomenon is called frequency lock-

ing and is characterized as structure of Arnold tongues [65] in the two-parameter

bifurcation plane.

Authors of reference [66] proposed a numerical method to obtain the accurate loca-

tion and the parameter value of the fixed point corresponding to a specified argument

θ = 2πp/q (p, q are coprime intergers) of the complex conjugate eigenvalues λ, λ. As

the parameter changes, such solution draws as an isocline in the parameter space. The

intersection point of the isocline of θ = 2πp/q and the Neimark-Sacker bifurcation co-

incide on the cusp of Arnold tongue of period-q. This method is chosen in our research

to localize more precisely the parameter regions of the existence of periodic points.

A super stable fixed point exists when one eigenvalue is equal to 0. Therefore,

in case of ρ = 0 (so that the eigenvalue λ = 0), through analyzing equation (2.11), we

can get b = 0 and a = 0, 0.5 + 2m (m ∈ Z). In other words, the parameter values

(0, 0), (0.5 + 2m, 0) (m ∈ Z) in the parameter space (a, b) correspond to the existence

of super stable fixed points of our system.

Otherwise, in case of ρ 6= 0, for each specified argument θ ∈ [0, π], the radius of

the complex conjugate eigenvalues can be represented by ρ = −2b
a cos(θ). Hence, the

location of one parameter of the fixed point X∗ forms an isocline as the value of the

other parameter varies. By replacing ρ = −2b
a cos(θ) into equation (2.11), the expression

of the isocline of argument θ can be obtained as:

√
1− 16b2 cos4(θ)

a4π2
−
π − arccos

(
4b cos2(θ)
a2π

)
π(a+ b)

− 2m
a+ b

= 0 (2.12)

where the coefficient m ∈ Z is caused by the periodicity of sinus.

Each isocline corresponding to the specified arguments θ in equation (2.12) can

be drawn in the parameter plane (a, b) by plotting the solution a as the incremental

parameter. Figure 2.6 shows the isoclines with the arguments θ = 2π/3 (dashed lines)

and θ = 2π/8 (dash-dotted lines), which are illustrated on top of the parameter region
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Figure 2.6: Isoclines corresponding to the arguments θ = 2π/3 (dashed lines) and θ =
2π/8 (dash-dotted lines).

of the existence of fixed points in Figure 2.4.(d). It can be noticed that all the isoclines

pass by one of the mentioned points (0, 0), (0.5 + 2m, 0) (m ∈ Z).

Furthermore, Figure 2.7 puts the analytical bifurcations and isoclines of the fixed

points in the parameter space together with the simulated bifurcation diagram. As ex-

pected, it can be observed that the blue regions (parameter region corresponding to the

existence of fixed points) in both results correspond one to the other; while the cross

points of Neimark-Sacker bifurcation and the isoclines with θ = 2π/3 and θ = 2π/8

coincide with the cusps of the Arnold tongues of period-3 points and period-8 points,

respectively.
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(a)

(b)

Figure 2.7: (a) Analytical bifurcations of the fixed points on top of the simulated bifurca-
tion diagram(top); (b) Coincidence between the cusps of the parameter regions correspond-
ing to the existence of period-q (q = 3, 8) orbits and the cross points of the Neimark-Sacker
bifurcation with the isoclines of θ (θ = 2π/3, 2π/8).
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2.2.2 Diversity of Attractors

Based on the analysis and simulation of isoclines and bifurcation diagram in section

2.2.1, the rule of choosing suitable parameter values for different types of attractors

for the dynamical system (2.1), i.e., fixed point, periodic orbit, closed invariant curve

and chaotic attractor can be discussed. In this section, we will choose the isocline of

θ = 2π/8 to give an example, which can be presented as√
1− 4b2

a4π2
− π − arccos

(
2b
a2π

)
π(a+ b)

− 2m
a+ b

= 0, m ∈ Z (2.13)

Let’s only consider part of this isocline, i.e., b = −a2π/2, which intersects the cor-

responding part of Neimark-Sacker bifurcation b = −1/π in the point (a8, b8) =

(±√2,−1/π). Remind that this point coincides with the cusp of the parameter re-

gion corresponding to the existence of period-8 orbits, which is indicated by light red

in Figure 2.7, according to the structure of Arnold tongues.

Choose the parameter values to satisfy b=−a2π/2 and b ∈ (b8, 0), so that ρ < 1,

then iterations attracted by the stable fixed point X∗ = (0, 0) can be generated, as

shown in Figure 2.8.(a) using (a, b) = (0.4495,−0.3173). Notice that the trajectory is

formed by 8 branches, each of them approaches toward the fixed point X∗ quickly.

According to the definition, the Neimark-Sacker bifurcation is the birth of a closed

invariant curve from a fixed point. Choose the parameters locating on the isocline

with b < b8 so that ρ > 1, but not far from the cusp (a8, b8). As expected, iterations

attracted by a closed invariant curve are generated, as shown in Figure 2.8.(b) using

(a, b) = (0.4509,−0.3193).

Again, choose the parameters around the cusp (a8, b8) to make ρ > 1, meanwhile

to make sure that the parameters locate in the parameter region corresponding to

the existence of period-8 orbits (indicated by light red in Figure 2.5), the expected

iterations attracted by a period-8 orbit are generated, as shown in Figure 2.8.(c) with

(a, b) = (0.7,−0.5).

Select the parameters locate slightly out of the region corresponds to the existence

of period-8 orbits by the direction opposite to the cusp (a8, b8), iterations attracted by

a chaotic attractor are generated, as shown in Figure 2.8.(d) with (a, b) = (0.75,−0.55).

This attractor is composed by several cyclic zones, and the iteration jumps from one

zone to another with a regular order, but the position of iteration in each zone is chaotic.
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Figure 2.8: Iterations in the phase plane (y, x) with: (a) (a, b) = (0.4495,−0.3173),
attracted by a fixed point X∗ = (0, 0) (denoted by a cross); (b) (a, b) = (0.4509,−0.3193),
attracted by a closed invariant curve; (c) (a, b) = (0.7,−0.5), attracted by a period-8 orbit
(denote by the crosses); (d) (a, b) = (0.75,−0.55), attracted by a CCA-8. Each trajectory
is obtained by 105 iterations with initial condition x0, y0 ∈ [−1, 1] selected randomly, and
all the attractors are denoted in red).
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Name here this type of attractor as chaotic cyclic attractor (CCA), and Figure 2.8.(d)

shows a CCA of period 8. In the later text, CCA-q will be used to denote the CCA of

period q.

2.3 Properties of Chaotic Cyclic Attractor

As introduced in the previous section, CCA-q is a chaotic attractor, which is composed

by q cyclic zones, and the iteration jumps from one zone to another with a regular

order, but its position in each zone is chaotic.

In this section, the specific properties of the output x of CCA-q generator will

be discussed, including the auto-correlation property, the spectral property and the

statistical property. As iteration result of the discrete-time dynamical system, x can

be denoted as a sequence x = (x1, x2, ..., xL), where L stands for the finite length

in the analysis. Furthermore, caused by the composition of q zones, the iterations in

each zone can be denoted as a sub-sequence xq,l = (xl, xl+q, xl+2q, ..., xl+Llq), with

l ∈ {1, 2, ...q} indicating the index of the q zones, and Ll + 1 = bL−lq c + 1 standing

for the length of each sub-sequence (b·c denotes the floor function which maps a real

number to the next smallest integer). It is known that for a electronic signal in the

communications, the direct current (DC) component does not transport information,

which should always be subtracted to optimize the signal energy. The DC component

equals to the mean of a signal side, alternatively speaking, we can simply make 〈x〉 = 0

to drop the unnecessary component, where 〈·〉 denotes the mean operator.

For sake of verification of the properties, the CCA-31 of system (2.1) with the

parameter (a, b) = (0.3590,−0.6184) will be chosen as an example, and its iteration in

phase plane (xn−1, xn) as well as in the time domain are illustrated in Figure 2.9, with

the signal made zero mean.

2.3.1 Auto-Correlation Property

The auto-correlation of the iteration sequence of CCA-q x = (x1, x2, ..., xL) can be

performed as:

Rxx[m] =
L∑
n=1

xnxn−m =
q∑
l=1

Ll∑
k=0

xl+kqxl+kq−m (2.14)
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Figure 2.9: CCA-31 of system (2.1) with the parameter (a, b) = (0.3590,−0.6184) using
105 iterations (first 100 points are abandoned) with initial condition (−1 ≤ x0 ≤ 1,−1 ≤
y0 ≤ 1) generated randomly: the iteration in phase plane (left) and the waveform in time
(right).

where Ll = bL−lq c. Let’s define l′ = mod(l − m, q), with mod(·) being the modulo

operation, so that the second sum in the above equation corresponds to the cross-

correlation between the sub-sequence xq,l and xq,l′ , i.e.,

Ll∑
k=0

xl+kqxl+kq−m = Rxq,lxq,l′ [m
′] (2.15)

where m′ = bmq c. Especially, when m is the multiple of q, i.e., m = `q (`∈Z, ` 6=0), we

can get m′ = 0, and this sum equals to the auto-correlation of xq,l.

Since each zone of CCA appears as a dense chaotic attractor, it has the character-

istics similar to a chaotic attractor. Denote the statistics of the lth zone of CCA-q as

〈xq,l〉 = µl, and 〈x2
q,l〉 = µ2

l + δ2
l . According to reference [6] and equation (1.17), we can

say that:

〈 Ll∑
k=0

xl+kqxl+kq−m

〉
=


(Ll + 1)(µ2

l + δ2
l ), if m = 0

(Ll + 1)µ2
l , if m = `q (` ∈ Z, ` 6= 0)

(Ll + 1)µlµl′ , otherwise
(2.16)

where l′ = mod(l −m, q) 6= l. Inserting equation (2.16) into equation (2.14), we can

get:

Rxx[m] =


∑q

l=1(Ll + 1)(µ2
l + δ2

l ), if m = 0∑q
l=1(Ll + 1)µ2

l , if m = `q (` ∈ Z, ` 6= 0)∑q
l=1(Ll + 1)µlµl′ , otherwise

(2.17)
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Since 〈x〉 = 0, we can say that
∑q

l=1 µl = 0, and
∑q

l=1(Ll + 1)µlµl′ <
∑q

l=1(Ll + 1)µ2
l .

Therefore, the auto-correlation property of a CCA can be concluded as: when m = 0,

the auto-correlation Rxx[m] of the iteration sequence of CCA-q has a maximum value,

just as the auto-correlation of any sequence; while when m 6= 0, it has relatively larger

value if m is multiple of q than if not. In other words, CCA-q owns a quasi-cyclic

auto-correlation property, which is similar to a period-q sequence.

Example: The unbiased (divided by the length of calculated elements) auto-

correlation of an iteration sequence of CCA-31 of system (2.1) with length L = 104

is simulated, and the center part (m ∈ [−100, 100]) is illustrated in Figure 2.10.
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Figure 2.10: Unbiased auto-correlation of iteration sequence of CCA-31 of system (2.1)
with length L = 104, and the center m ∈ [−100, 100] is shown.

2.3.2 Spectral Property

Perform a p-point (p ∈ N) DFT on the iteration sequence x = (x1, x2, ..., xL) of

CCA-q, so that

X[K] =
L∑
n=1

xne
−jK

p
2πn

=
p∑
l=1

ϑ(p, l)e−j2π
K
p
l (2.18)
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where K ∈ {1, 2, ..., p}, and ϑ(p, l) =
∑Ll

k=0 xl+kp (l ∈ {1, 2, ..., p}, Ll = bL−lp c)
is used to represent the sum of the elements of the down-sampled sequence xp,l =

(xl, xl+p, ..., xl+Llp). Three cases corresponding to different values of p should be

considered separately, as:

1. p = `q (`∈N)

In case that p equals to the multiple of the period of CCA-q, the corresponding

down-sampled sequence xp,l (l ∈ {1, 2, ..., `q}) is a gathering of iterations belong-

ing to the l′ th zone of CCA-q, with

l′ = l − qb l
q
c

Hence, it can be obtained that 〈xp,l〉 = 〈xq,l′〉, and ϑ(p, l) = (Ll + 1)〈xq,l′〉.

2. p ⊥ q (p, q are coprime)

In case that p is coprime to q, the corresponding down-sampled sequence xp,l
(l ∈ {1, 2, ..., p}) is a gathering of iterations from all the q zones of CCA-q. Hence,

〈xp,l〉 = 〈x〉 = 0, and ϑ(p, l) = (Ll + 1) 〈x〉 = 0.

3. p is other fraction of q

In case that p is other fraction of q, which can be represented by p = `1
`2
q (`1, `2∈N,

1 < `1 < p, 1 < `2 < q, and `1 ⊥ `2), the corresponding down-sampled sequence

xp,l (l ∈ {1, 2, ..., p}) is a gathering of iterations from `2 zones of CCA-q. Hence,

〈xp,l〉 = 1
`2

∑`2
m=1

〈
xq,l′m

〉
, with

l′m = l + (m− 1)
q

`2
− qb l + (m− 1) q`2

q
c

In this case, ϑ(p, l) = (Ll + 1) 1
`2

∑`2
m=1〈xq,l′m〉.

As a result, the p-point DFT of the iteration sequence of CCA-q corresponds to a

low and pseudo-random distribution if p ⊥ q, where the pseudo-random distribution is

caused by the chaoticity in each zone.

Especially, when q is a prime number, the above mentioned cases can be simplified

as follows: the p-point DFT of the iteration sequence of CCA-q has much larger mag-

nitudes when p = `q compared to p 6= `q (`∈N). It could be explained in a more visual

description that, the spectrum magnitude of the CCA-q waveform has a comb-like dis-

tribution, in which the majority of power is distributed on q equally spaced angular
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frequencies ω = K
q 2π (K ∈ {1, 2, ..., q}), while the remaining minority is distributed on

the other frequencies ω 6= K
q 2π (ω ∈ (0, 2π]).

Remind that the power distribution among the main frequency points cannot be

formulated generally, since it depends on each individual CCA, e.g., the location of

each zone in the phase plane, the form and size of them, etc.

Example: Through a matlab simulation, the CCA-31 of system (2.1) as shown

in Figure 2.9 has been generated, and p-point (1 ≤ p ≤ 63) DFT have been operated

on L = 104 length of iterations sequence. The mean magnitude of p-point DFT is

calculated, i.e., 〈|X|〉 = 1
p

∑p
K=1 |X(K)|, and is depicted versus different values of p

in Figure 2.11 (〈|X|〉 is normalized by the largest element). Similarly, |X[K]| (K ∈
{1, 2, ..., p}) is also normalized and depicted in Figure 2.12 to show the distribution

form of the passed spectrum by p-point DFT with different p (p = 31, 29, 35).

2.3.3 Statistical Property

Define the statistics of iteration sequence x as: E(x) = U , Var(x) = ∆2, where E(·)
is the expectation operator, and Var(·) is the variance operator. Similarly, set the

statistics of the sub-sequence of each zone xq,l (l ∈ {1, 2, ..., q}) as: E(xq,l) = µl,

Var(xq,l) = δ2
l . Obviously, we can get U = 〈x〉 = 0, µl = 〈xq,l〉, as well as U =

1
q

∑q
l=1 µl. Meanwhile, since the variance of a sequence is a way to capture its scale or

degree of being spread out, and δ2
l is the variance of the lth zone of CCA-q, while ∆2

is the variance of all the q zones together, hence, we can say that
∑q

l=1 δ
2
l < ∆2, and

1
q

∑q
l=1 δ

2
l � ∆2 for large value of q.

Downsample x using factor p (p ∈ N) to get xp,l = [xl xl+p xl+2p ...], where the

offset l ∈ {1, 2, ...p}. According to the definition of CCA, xp,l could be treated as a

chaotic sequence, and its statistics can also be analyzed similarly under three cases

corresponding to different value of p, as:

1. p = `q (`∈N)

In this case, xp,l (l ∈ {1, 2, ..., `q}) is a gathering of iterations belonging to the l′ th

zone of CCA-q, with l′ = l − qb lq c. Hence, 〈xp,l〉 =
〈
xq,l′

〉
, so that E(xp,l) = µl′ ,

and Var(xp,l) = δ2
l′ .
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Figure 2.11: Normalized mean magnitude of p-point DFT on iteration sequence of CCA-
31 of system (2.1) with length L = 104.
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Figure 2.12: Normalized distribution form of |X[K]| (K ∈ {1, 2, ..., p} using p-DFT with
p = 31 (red square), p = 29 (blue square) and p = 35 (green square) respectively.

53



2. CHAOTIC CYCLIC ATTRACTORS AND CHARACTERISTICS

2. p ⊥ q
In this case, xp,l (l ∈ {1, 2, ..., p}) is a gathering of iterations averagely from all

the q zones of CCA-q. Therefore, E(xp,l) = U , and Var(xp,l) = ∆2.

3. p is other fraction of q

In this case, p = `1
`2
q (`1, `2 ∈N, 1 < `1 < p, 1 < `2 < q, and `1 ⊥ `2), so that

xp,l (l ∈ {1, 2, ..., p}) is a gathering of iterations from `2 zones of CCA-q. Hence,

E(xp,l)= 1
`2

∑`2
m=1 µl′m , and

∑`2
m=1 δ

2
l′m
≤ Var(xp,l) < ∆2, where

l′m = l + (m− 1)
q

`2
− qb l + (m− 1) q`2

q
c

with m ∈ {1, ..., `2}.

Denote 〈Var(xp)〉 to be the p-downsampled mean variance (p-DMV) of x, and we

can get

〈Var(xp)〉 =
1
p

p∑
l=1

Var(xp,l) =


1
q

∑q
l′=1 δ

2
l′ , if p = `q

∆2, if p ⊥ q
δ2
`1
`2

, if p = `1
`2
q

(2.19)

where `, `1, `2∈N, 1 < `2 < q, `1 ⊥ `2, and δ2
`1
`2

stands for the mean value of `2 variances

in the above third case, which has 1
q

∑q
l′=1 δ

2
l′ < δ2

`1
`2

< ∆2.

Hence, the statistical property of the CCA-q signal can be concluded from Equation

(2.19) as: the p-DMV of CCA-q has a maximum value when p ⊥ q, and has a minimum

value when p = `q (`∈N).

Example: A matlab simulation of the CCA-31 of system (2.1) as shown in Figure

2.9 has been done, and L = 105 iterations have been generated. The statistical values

have been calculated by this simulation, among which µl, δ2
l (l ∈ {1, 2, ..., 31}) are

shown in Figure 2.13, in which the mean values indicated by the red lines show that
1
q

∑31
l=1 µl = 0 and 1

q

∑31
l=1 δ

2
l = 1.28×10−3. p-DMV versus different downsample factors

p is illustrated in Figure 2.14. Since q = 31 is a prime number, all the 25 ≤ p ≤ 63 are

either coprime or multiple to q, hence, all the p-DMV are equal to the maximum value

except p = 31, 62 (the minimum ones).
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Figure 2.13: Simulated statistical values of CCA-31 of system (2.1): (a) the expected
value of each zone µl (l ∈ {1, 2, ..., 31}); (b) the variance value of each zone δ2l (l ∈
{1, 2, ..., 31}). The mean values are indicated by the red lines.
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Figure 2.14: p-DMV of CCA-31 versus different downsample factor p. Minimum can be
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Figure 2.13.(b).
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2.4 CCA Property Enhancement

As mentioned in Section 1.3, one of the important reasons why the spread spectrum

systems are widely applied in wireless communications, is that they could resist the

fading environment much better than the narrowband ones. The direct cause of the

fading resistance is that in the frequency selective radio channel, it is less possible for

all the spread spectrum to locate in the deep fading points, as shown in Figure 1.7.

As a chaotic signal, the waveform generated by a CCA generator can be considered

as a wideband signal, and the bandwidth is determined by the iteration period Ts of the

generator, i.e., W = 1/Ts. However, the spectral distribution in this band is not as flat

as the other spread spectrum signals. The reasons can be considered as the followings:

1. Caused by the cyclicity of q zones of CCA-q, in an angular frequency period 2π,

there exists q frequency peaks equally spaced at: ω = K
q 2π (K ∈ {1, 2, ..., q}),

which makes the spectral distribution on the other frequency points ω 6= K
q 2π

less important.

2. Among the q frequency peaks, the difference of the magnitudes could be so large

that only several frequency points among them, if not only one, should be consid-

ered in the real applications, such that when a 3-dB bandwidth or 10-dB band-

width is applied. It increases the possibility that all these considered important

frequencies locate in the deep fading points.

Since the operation of q-point DFT of the iteration sequence of CCA shields the power

distributed on all the less important frequency points, this shielded part of power should

be as few as possible. Hence, we treat the first point in above as a favorable property

in our later applications. In contrary, the second point is considered as an unfavorable

point, which should be avoided if possible, e.g., manipulate the signals in order to make

the power distribution on the q main equal spaced frequency points as flat as possible.

Generally speaking, the more white random a signal is, the more flat spectrum it

owns. The cyclicity of a signal of CCA-q is due to the separation of the q zones, while

its aperiodicity is caused by the chaotic iterations in each zone. Hence, in order to

make the power distribution more flat on the main q equally spaced frequency points,

while keep the comb-like spectrum, all the zones should be as close to each other as

possible.
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2.4 CCA Property Enhancement

It should be noticed that the optimal manipulation for spectral enhancement differs

with the particular CCA generator. Here, we talk about the manipulations which have

been applied to system (2.1). Again, the CCA-31 in Figure 2.9 is taken to give a visual

comparison of spectral properties, with and without these manipulations.

A. Folding function

Observing Figure 2.9.(a), we can see that most of the 31 zones of CCA-31 in the phase

plane are more often away from the origin than close to it, which is obviously caused

by the sinus operation in system (2.1). A simple folding function f1 can be applied to

the output x to the system to inverse this situation, hence to make the zones closer to

the origin on keeping the zone size:

f1(x) = sgn(x)− x (2.20)

where sgn(·) is the sign operation.

The output iterations of f1(x) with the CCA-31 in Figure 2.9 as input is illustrated

in Figure 2.15, both in phase plane and in time. Remind that the iteration of f1(x)

is also made zero mean after generation. The p-point DFT analysis on the output

sequence of f1(x) with p = 31, 29, 35 are also illustrated in Figure 2.16, from which we

can see that the spectral distribution by 31-point DFT is more flat compared to the

one in Figure 2.12.

B. Exponential function

Since x ∈ [−1, 1], an exponential operation f2 can also be used to approach the zones

to the origin:

f2(x) = x3 (2.21)

The output iteration of f2(x) with the CCA-31 in Figure 2.9 as input is illustrated

in Figure 2.17, both in phase plane and in time, and it is also made zero mean after

generation. The p-point DFT analysis on the output sequence of f2(x) with p =

31, 29, 35 are also illustrated in Figure 2.18, from which we can see that the spectral

distribution of 31-point DFT is slightly more flat compared to the one in Figure 2.12.
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Figure 2.15: The iterations with length L = 104 of CCA-31 of system (2.1) on adding the
folding function f1(x), shown in the phase plane (left) and the corresponding waveform in
time (right).
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Figure 2.16: Normalized distribution form of |Xf1 [K]| (K ∈ {1, 2, ..., p}) using p-DFT
with p = 31 (red square), p = 29 (blue square) and p = 35 (green square).
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Figure 2.17: 104 iterations of enhanced CCA-31 of system (2.1) after applying the expo-
nential function f2(x), shown in the phase plane (left) and the corresponding waveform in
time (right).
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Figure 2.18: Normalized distribution form of |Xf2 [K]| (K ∈ {1, 2, ..., p}) using p-DFT
with p = 31 (red square), p = 29 (blue square) and p = 35 (green square).
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C. Combination function

The above two function modules could individually make the spectral distribution of

the 31-point DFT on the iterations of CCA-31 more flat, as in the figures illustrated

above. However, the combination of them performs even better, by:

f3(x) = f2(f1(x)) = (sgn(x)− x)3 (2.22)

The output iteration of f3(x) with the CCA-31 in Figure 2.9 as input is illustrated

in Figure 2.19, both in phase plane and in time. Remind again that the output of f3(x)

is made zero mean after generation. Similarly, the p-point DFT on the output iteration

sequence of f3(x) with p = 31, 29, 35 are illustrated in Figure 2.20, from which we can

see that the spectral distribution using 31-point DFT is even more flat compared to

the one in Figure 2.16.

D. Selected function and the enhanced properties

Through the above analyses, it can be observed that the combination function allows

to well improve the spectral distribution of the CCA generated by system (2.1). From

Figure 2.20, the manipulated CCA-31 owns a very interesting spectral distribution: a

high flat distribution on q equally spaced frequency points if p is chosen as multiple of q,

while a low flat distribution for the other values of p. Furthermore, Figure 2.19 shows

a much more irregular waveform in time compared to the one before the additional

manipulations in Figure 2.9.

Since the combination function is considered to be the spectral enhancement of

CCA, how does it influence the other two properties, i.e., the auto-correlation and

statistical property? The similar simulations are done to observe these two properties

of the manipulated CCA-31 in Figure 2.19, and the results are illustrated in Figure

2.21-2.22 respectively. The comparison can be done with the corresponding properties

of the original CCA-31, as shown in Figure 2.10-2.14. It shows that a better auto-

correlation property is obtained after the combination function, where the value of

Rf3(x)f3(x)[m] keeps large when m is multiple of q, but the value becomes very small

with the other m. Meanwhile, the statistical property keeps more or less the same with

or without the spectral enhancement manipulations.
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Figure 2.19: 104 iterations of enhanced CCA-31 of system (2.1) after applying the com-
bination function f3(x), shown in the phase plane (left) and the corresponding waveform
in time (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

100

frequency: ω/2π=K/p

N
or

m
al

iz
ed

 |X
f3

(K
)|

 

 

p=31
p=29
p=35

Figure 2.20: Normalized distribution form of |Xf3 [K]| (K ∈ {1, 2, ..., p}) using p-point
DFT with p = 31 (red square), p = 29 (blue square) and p = 35 (green square).
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Figure 2.21: Normalized auto-correlation of 104 iterations of enhanced CCA-31 of system
(2.1) after applying the combination function f3(x).
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2.5 Conclusion

2.5 Conclusion

In this chapter, the bifurcations of fixed points of the selected discrete-time dynamical

system have been analyzed, and the bifurcations of periodic points have been simulated,

with a period q less than 15. The structure of Arnold’s tongues and the isoclines

corresponding to the specified argument of the eigenvalues have been given, as well

as their relationship. Various types of attractors of the selected system have been

presented, together with the method of choosing the suitable parameters.

Among different type of attractors, the one processing simultaneously the chaoticity

and cyclicity is called CCA in the context of this thesis. The period of a CCA is

determined by the argument of the eigenvalues. In other words, different periods of

CCAs can be easily obtained by changing the parameter values. The specific properties

of the CCA-q signal have been discussed, including the auto-correlation property, the

spectral property, and the statistical property. All the three properties depend upon

the period q.

These analysis and discussion results give us the possibilities to detect the CCA

signals non-coherently. Furthermore, to a certain extent, the comb-like spectrum of a

CCA signal can be treated as a wideband signal. Therefore, the application of CCA in

the chaos-based wideband modulations, or the CCA-based wideband modulations, will

be proposed in the following chapter.
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3

CCA-based Modulation Systems

3.1 Introduction

As introduced in Section 1.4.2, the chaotic signal direct modulation systems map the

data symbols onto wideband chaotic waveforms directly, and processes the advantages

of the conventional spread spectrum systems over the narrowband systems. In addi-

tion, the transceiver could be less complex than the conventional ones, thanks for the

possibility of generating chaotic signals by some simple electronic circuits. As long as

the demodulation is considered, a non-coherent detection is preferred, since the regen-

eration and synchronization of the basis function in the receiver could be very difficult

or impossible, caused by the severe propagation condition of wireless channel, and the

sensitive dependence of the chaotic signals on the initial conditions.

A type of attractor called CCA is presented in the previous chapter, with the period

of zones determined by the parameter of the dynamical systems. Hence, a variety of

CCA waveforms with different periods can be generated by the dynamical systems

simply on choosing suitable parameter values. The chaoticity of a CCA assures the

large spectrum of the iterated signal; while its cyclicity makes the signal owning several

specific properties, as discussed in Section 2.3, which are all functions of the period.

Therefore, the CCA-based wideband modulations can be simply realized by mapping

the data symbols onto CCA waveforms, and detecting one of the specific properties in

the receiver.

In this chapter, the context is organized as follow: Firstly, before the presentation of

the schemes of CCA-based modulation systems, the equivalent CCA signals generated
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by the iteration of the discrete-time dynamical systems will be discussed in Section 3.2,

both in baseband and passband (RF band). Secondly, the modulation/demodulation

schemes of a CCA-based chaos shift keying will be introduced in 3.3, as well as its per-

formance evaluations in different channel models. Then, another CCA-based frequency

shift keying will be proposed in 3.4, which can be considered to be an improvement

of the first system. Similarly, the modulation/demodulation schemes will be explained

and the performance evaluations in different channel models will be analyzed. Finally,

the conclusion of this chapter will be given.

3.2 Equivalent CCA Signals in Baseband and Passband

In the chaos-based modulation systems, the chaotic signals serve as the basis functions.

It’s known that the chaotic iterations generated by the discrete-time dynamical systems

have real continuous values in discrete time, such as x = (x1, x2, ...) of system (2.1).

According to the sampling theorem, a signal in the baseband [−W/2,W/2] can be

generated from a discrete-time signal, with the band determined by the sampling rate

of the discrete signal, i.e., W = fs = 1/Ts, which can be presented by [21]:

x(t) =
∑
n

xnsinc(Wt− n) (3.1)

where xn is the iterated discrete-time chaotic sequence, sinc(·) denotes the sinc function

as follows:

sinc(t) =
sin(πt)
πt

(3.2)

and its Fourier transform is a rectangular function, i.e.,∫ +∞

−∞
sinc(t)e−j2πftdt = rect(f) =


0, if |f | > 1

2
1
2 , if |f | = 1

2
1, if |f | < 1

2

(3.3)

Obviously, x(n/W ) = xn is the signal value in the sampling instant t = n/W . Since

the aperiodic signals have no Fourier transform, they are represented in the frequency

domain by their PSD, which means, by the Fourier transform of their auto-correlation

functions. According to the theorem of Fourier analysis, the PSD of x, denoted as

Pxd(f), is the periodic extension of the PSD of x(t), denoted as Px(f), with

Pxd(f) =
+∞∑

k=−∞
Px(f − kW ) (3.4)
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Since a propagation channel for a typical radio communication is actually effected

in the passband [fc −W/2, fc + W/2] (W < 2fc), with the values of fc and W under

certain spectrum allocation. A passband equivalent signal xp(t) can be converted from

the baseband chaotic waveform x(t) by [21]

xp(t) = <[x(t)ej2πfct] = x(t) cos(2πfct) (3.5)

The above mentioned baseband and passband equivalent signals have the same form

of spectral distribution envelope, with

Pxp(f) =
{
Px(f − fc)/2, |f − fc| < W/2

0, elsewhere
(3.6)

where Pxp(f) stands for the PSD of xp(t).

In the rest part of this thesis, without of notification, enhanced CCA of system

(2.1) will be used to short for CCA generated by system (2.1) applying the property

enhancement function as introduced in Section 2.4. As an example, the baseband

signal x(t) of the enhanced CCA-31 of system (2.1) is illustrated in Figure 3.1.(a), in

which the time axis is normalized by Ts. Its spectrum is correspondingly illustrated

in Figure 3.1.(b), with the frequency axis normalized by W/2. Similarly, the baseband

equivalent signal x(t) of the enhanced CCA-29 of system (2.1) in time domain as well

as in frequency domain are also illustrated in Figure 3.2. Remind that the above

signals x(t) are made zero mean and mean energy normalized, i.e., E(x(t)) = 0, and

E(x2(t)) = 1, with the former to drop the DC part which doesn’t transport information

(see Section 2.3), and the latter to keep the transmission energy statistically constant.

It is known that for the communication systems, the modulation and demodulation

are usually operated in the baseband. In other words, the data symbols are firstly mod-

ulated in the baseband [−W/2,W/2] by the basis function x(t), and then transformed

by the passband carrier to the RF band [fc−W/2, fc+W/2] as in equation (3.5), before

transmitted in the radio. In the receiver, the passband carrier of the received signal

yp(t) is removed before the demodulation, by

ỹ(t) = LPF{2yp(t)e−j2πfct} (3.7)

here LPF{·} stands for the lowpass filter. As all the signals in the passband, yp(t) can

be presented by its baseband complex envelope y(t) in the form of equation (3.5) as

yp(t) = <[y(t)ej2πfct]

= yI(t) cos(2πfct)− yQ(t) sin(2πfct) (3.8)
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Figure 3.1: (a) Waveform and (b) spectrum of the baseband signal x(t) of the enhanced
CCA-31 of system (2.1).
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Figure 3.2: (a) Waveform and (b) spectrum of the baseband signal x(t) of the enhanced
CCA-29 of system (2.1).
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where yI(t) and yQ(t) are the in-phase and quadrature components of the complex

envelope. Inserting equation (3.8) into (3.7) to get

ỹ(t) = yI(t) + jyQ(t)

= y(t) (3.9)

we can see that the passband carrier removing operation in equation (3.7) corresponds

to the complex envelope recovering.

The object of this thesis is concentrated on the modulation/demodulation of the

chaos-based systems, hence, in the later context, the discussion and analysis will be

operated in the baseband equivalent channel models without notification.

3.3 CCASK: A Chaos Shift Keying Utilizing CCA

Chaotic cyclic attractors shift keying (CCASK) is a modulation system concerned with

mapping data symbols to chaotic waveforms generated by CCA-q generators, of which

the periods q are differed by the values of data. The demodulation is done by estimating

one of the specific properties of these CCAs, which have been introduced in Section

2.3.

In this section, the modulation and demodulation schemes of CCASK using different

detections are presented, as well as the noise performance in AWGN and multipath

channel models.

3.3.1 Modulation Scheme of CCASK

An M -ary system is a system which transmits log2M bits of data in each symbol. As

a simplest case, a binary system transmits only one bit of data per symbol.

Let’s firstly talk about the general case. The M -ary CCASK uses chaotic signals

generated by M different CCA generators as basis functions. The CCA generators

differ by their periods qv (v ∈ {0, 1, ...,M − 1}). According to equation (3.1), the M

basis functions can be presented as

x(v)(t) =
∑
n

x(v)
n sinc(Wt− n) (3.10)
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where x(v)
n is the sample of the iterated sequence x(v) generated by CCA-qv. For the

sake of frequency interference reduction, the values of qv are chosen to be coprime to

each other, i.e., qv ⊥ qv′ , for v′ 6= v and v, v′ ∈ {0, 1, ...,M − 1}.
Define Tb as the bit time duration, and T as the symbol time duration, so that

T = Tb log2M . Suppose that each symbol is modulated by L samples of iteration of

CCA, then the symbol time duration can be given by T = LTs, with Ts being defined

to be the sampling period. In this thesis, L is also defined as the symbol modulation

rate since one symbol is modulated by L samples.

Under the above definitions, the modulated symbols of CCASK can be denoted by

s(t) =
∑
m

M−1∑
v=0

L∑
n=1

δdm,vx
(v)
mL+nsinc(Wt− (mL+ n)) (3.11)

where dm ∈ {0, 1, ...,M−1} is themth data symbol, and δi,j stands for the Kronecker’s

delta:

δi,j =
{

1, if i = j
0, if i 6= j

(3.12)

The Kronecker’s delta in equation (3.11) can be simply realized by a key shifting

among M different CCA generators, so comes the name of the system CCASK. The di-

agram of the baseband modulation in the M -ary CCASK transmitter can be illustrated

as in Figure 3.3

. . .

   CCA-      
  generator

q0

CCA-      
  generator

modulated symbol

data symbol

qM−1

x(0)(t)

x(M−1)(t)

s(t)

dm

Figure 3.3: Modulation structure in M -ary CCASK transmitter.

The equivalent sampled sequence of the mth modulated symbol s(t) (t ∈ [mT, (m+

1)T ]) can be denoted by sm = (sm[1], sm[2], ..., sm[L]), with

sm[n] = s(mT + nTs), n ∈ {1, 2, ..., L} (3.13)
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Comparing equation (3.11) with equation (3.13), we can get that sm[n] = x
(i)
mL+n when

dm = i (i ∈ {0, 1, ...,M − 1}) was transmitted.

Especially, in case of the simplest binary CCASK (M = 2), only two different CCA

generators are needed, i.e., a CCA-q0 generator when a data symbol ’0’ is transmitted,

and another CCA-q1 generator when a data symbol ’1’ is transmitted. Hence the

expression of the modulated symbols can be simplified as

s(t) =
∑
m

L∑
n=1

(
dmx

(1)
mL+n + (1− dm)x(0)

mL+n

)
sinc(Wt− (mL+ n)) (3.14)

where dm ∈ {0, 1}. For binary CCASK, the sampled sequence of the mth modulated

symbol is sm = (x(1)
mL+1, x

(1)
mL+2, ..., x

(1)
mL+L) when an ’1’ is transmitted, and sm =

(x(0)
mL+1, x

(0)
mL+2, ..., x

(0)
mL+L) when a ’0’ is transmitted.

The baseband modulated signal s(t) will be transferred to the RF band [fc −
W/2, fc + W/2] to form the passband signal sp(t) before the transmission, using the

operation in equation (3.5).

3.3.2 Demodulation Scheme of CCASK

As introduced in Section 2.3, the robust properties of CCA-q, such as the auto-correlation

property, the spectral property and the statistical property, can be determined as func-

tions of the period q. One of these properties can be observed to get the evaluating

factor for the received symbols, hence, a noncoherent detection can be realized as the

scheme of demodulation.

Denote the received passband signal by rp(t), and its equivalent complex envelope

by r(t). According to Section 3.2, a passband carrier removing operation in equation

(3.7) will be processed on rp(t) before the baseband demodulation. Let’s simply use

r(t) to stand for this baseband received signal without bringing the confusion, which is

also the input of the demodulation block.

Due to the imperfect transmission channel, the received signal rp(t) could be the

noised, filtered and/or multipath distorted result of the transmitted signal sp(t), so

that the mismatch of amplitude and phase can be happened between them. Although

the baseband equivalent transmitted signal s(t) is real valued, the baseband received
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signal r(t) could have complex values, owing to the phase distortion in the propaga-

tion channel. Hence, both the in-phase and quadrature components of r(t) should be

demodulated simultaneously.

Let’s consider the passband carrier removed signal of the mth received symbol: r(t)

(t ∈ [mT, (m+ 1)T ]). Since all the specific properties in Section 2.3 are analyzed in the

discrete-time domain, we sample the baseband signal r(t) at a sampling rate Ts to get

a sampled sequence rm = (rm[1], rm[2], ..., rm[L]), with

rm[n] = r(mT + nTs), n ∈ {1, 2, ..., L} (3.15)

In case of single user so that the interference from the other users does not exist, if the

transmission channel is noise and distortion free, as well as the ideal transmitting and

receiving antennas are applied, we can get rm[n] = sm[n]; or else, rm[n] differs from

sm[n], and can be presented by its in-phase and quadrature components as rm[n] =

rm,I [n] + jrm,Q[n].

In the following sub-sections, the detection methods using auto-correlation, spectral

and statistical properties will be introduced respectively. In sake of simplicity, the

detections will be discussed after the sampling operation, i.e., the detections of the

sampled sequence rm will be considered.

3.3.2.1 Auto-Correlation Detection

Firstly, remind that the basic schemes of CCASK using auto-correlation detection have

been published, see reference [67].

The auto-correlation detection of the M -ary CCASK relies on the quasi-periodic

auto-correlation property of each received symbol. Through applying the auto-correlation

operation on both the in-phase and quadrature components of the sampled symbol se-

quence rm, we can get:

Rrmrm,I [η] =
L∑

n=1+η

rm,I [n]rm,I [n− η] (3.16)

Rrmrm,Q[η] =
L∑

n=1+η

rm,Q[n]rm,Q[n− η] (3.17)

where η ∈ {0, 1, ..., L − 1}. Since rm is a length limited sequence, i.e., rm[n] = 0 for

n /∈ {1, 2, ..., L}, only L− η points of multiplications are concerned for each η. Adding
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the auto-correlation results of the in-phase and quadrature components to get

Rrmrm [η] = Rrmrm,I [η] +Rrmrm,Q[η] (3.18)

According to the auto-correlation property of CCA in Section 2.3.1, in the ideal

case that rm = sm, if an ’i’ (i ∈ {0, 1, ...,M − 1}) was transmitted, Rrmrm [`qv] (v ∈
{0, 1, ...,M − 1}, ` ∈ N) have relatively big values when v = i, and much smaller values

when v 6= i. Hence, for each qv, adding Rxxk [`qv] with all the possible ` ∈ N and

normalizing the sum by the total concerned points of multiplications to form

Cm[v] =
∑Lv

`=1Rrmrm [`qv]∑Lv
`=1(L− `qv)

(3.19)

where Lv = b Lqv c.
In a tolerably noisy and/or distortional channel, Cm can serve as the decision vari-

able for the mth received symbol, with the demodulated symbols d̂m (in base-M) given

by

d̂m = argmax
v

Cm[v] (3.20)

where argmax stands for the operation of finding argument of the maximum.

Especially, in case of the simplest binary CCASK using auto-correlation detection,

the decision variable for the mth received symbol can be simplified by the difference

between Cm[1] and Cm[0], as:

Cbm = Cm[1]− Cm[0]

=
∑L1

`=1Rrmrm [`q1]∑L1
`=1(L− `q1)

−
∑L0

`=1Rrmrm [`q0]∑L0
K=1(L− `q0)

(3.21)

while the consequently demodulated symbol d̂m can be represented by:

d̂m =
{

1, if Cbm ≥ 0
0, if Cbm < 0

(3.22)

The structure of baseband demodulation in binary CCASK receiver using auto-correlation

detection can be designed as shown in Figure 3.4.
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Figure 3.4: Demodulation structure in binary CCASK receiver using auto-correlation
detection.

3.3.2.2 Spectral Detection

The basic schemes of CCASK using spectral detection and the AWGN performance

evaluation have been published, see reference [68].

The spectral detection of the M -ary CCASK relies on the comb-like distribution

of the main frequency peaks of each received symbol. Since the Fourier transform can

be performed on a complex signal, without separating the in-phase and quadrature

component, we can directly apply qv-point DFT (v ∈ {0, 1, ...,M − 1}) on the sampled

symbol sequence rm to get the magnitudes of the observing frequencies as:

Avm[K] =
∣∣∣ L∑
n=1

rm[n]e−j2π
K
qv
n
∣∣∣ (3.23)

where v ∈ {0, 1, ...,M − 1}, and K ∈ {1, 2, ..., qv}.
According to the spectral property of CCA in Section 2.3.2, in the ideal case that

rm = sm, if a ’dm = i’ (i ∈ {0, 1, ...,M−1}) was transmitted, Avm[K] (K ∈ {1, 2, ..., qv})
have relatively large values when v = i, and much smaller values when v 6= i. Hence,
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for each v ∈ {0, 1, ...,M − 1}, the mean squared value of Avm[K] can be obtained, as

Dm[v] =
1
qv

qv∑
K=1

(
Avm[K]

)2
(3.24)

In a tolerably noisy and/or distortional channel, Dm can be observed as the decision

variable for the mth received symbol. Hence, the demodulated symbol d̂m (in base-M)

can be given by

d̂m = argmax
v

Dm(v) (3.25)

Especially, when binary CCASK using spectral detection is concerned, the decision

variable for the mth received symbol can be simplified by the difference between Dm[1]

and Dm[0], as:

Dbm = Dm[1]−Dm[0]

=
1
q1

q1∑
K=1

(
A1
m[K]

)2 − 1
q0

q0∑
K=1

(
A0
m[K]

)2
(3.26)

and the consequently demodulated symbol d̂m can be represented by:

d̂m =
{

1, if Dbm ≥ 0
0, if Dbm < 0

(3.27)

The structure of baseband demodulation of binary CCASK receiver using spectral

detection can be designed as shown in Figure 3.5.

3.3.2.3 Statistical Detection

The basic schemes of CCASK using statistical detection and the AWGN performance

evaluation will be published soon, see reference [69].

The statistical detection of the M -ary CCASK relies on the specific statistics of each

received symbol, i.e., the p-DMV as proposed in equation (2.19). Downsampling both

the in-phase and quadrature components of the sampled received symbol rm with factor

qv (v ∈ {0, 1, ...,M − 1}) and offset l − 1 (l ∈ {1, 2, ..., qv}) to get the sub-sequences

rmqv,l,I = (rm,I [l], rm,I [l + qv], ..., rm,I [l + Llvqv]) and rmqv,l,Q = (rm,Q[l], rm,Q[l +

qv], ..., rm,Q[l + Llvqv]), where Llv =
⌊
L−l
qv

⌋
. Define the variance value of the sub-

sequences rmqv,l and rmqv,Q as Var(rmqv,l,I) and Var(rmqv,l,Q), hence the qv-DMV of
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Figure 3.5: Demodulation structure in binary CCASK receiver using spectral detection.

rm,I and rm,Q can be presented as:

Vm,I [v] =
〈
Var(rmqv ,I)

〉
=

1
qv

qv∑
l=1

Var(rmqv,l,I) (3.28)

Vm,Q[v] =
〈
Var(rmqv ,Q)

〉
=

1
qv

qv∑
l=1

Var(rmqv,l,Q) (3.29)

Adding the qv-DMV of rm,I and rm,Q to get:

Vm[v] = Vm,I [v] + Vm,Q[v] (3.30)

According to the statistical property in Section 2.3.3, in the ideal case that rm = sm,

if a ’dm = i’ (i ∈ {0, 1, ...,M − 1}) was transmitted, qv-DMV (v ∈ {0, 1, ...,M − 1}) of

rm has relatively small value when v = i, and much bigger value when v 6= i.

Hence, in a tolerably noisy and/or distortional channel, Vm can be used as the

decision variable for the mth received symbol, and the demodulated symbol d̂m (in

base-M) can be given by:

d̂m = argmin
v

Vm(v) (3.31)

where argmin stands for the operation of finding argument of the minimum.
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Especially, in the simplest case of binary CCASK using statistical detection, the

decision variable for the mth received symbol can be simplified as the difference between

Vm[0] and Vm[1], as

Vbm = Vm[0]− Vm[1]

=
1
q0

q0∑
l=1

(
Var(rmq0,l,I) + Var(rmq0,l,Q)

)
− 1
q1

q1∑
l=1

(
Var(rmq1,l,I) + Var(rmq1,l,Q)

)
(3.32)

Consequently, the demodulated symbol d̂m of binary CCASK using statistical de-

tection can be represented by:

d̂m =
{

1, if Vbm ≥ 0
0, if Vbm < 0

(3.33)

The structure of baseband demodulation in binary CCASK receiver using statistical

detection can be designed as shown in Figure 3.6, in which the block modulo of q-DMV

stands for the operation of downsampled variance with factor q, as defined in Section

2.3.3.

3.3.3 AWGN Performance of CCASK

Noise performance of a system can be usually presented by the BER. Since that BER

is related to propagation conditions, different transmission channel models could be

considered. In this section, the AWGN performance of single user binary CCASK in

the simplest AWGN channel will be given by theoretical analysis as well as computer

simulations.

Conventionally, the BER of AWGN is a function of Eb/N0 as mentioned in Section

1.3.1, in which Eb is the energy of one bit transmitted information, while N0/2 is

the double-sided PSD of the added Gaussian noise. In other words, Eb/N0 is the

parameter of the passband transmission channel over [fc−W/2, fc+W/2]. However, the

modulation/demodulation schemes of CCASK are discussed in the equivalent baseband,

hence, it’s necessary to derive the bit energy and the PSD of the Gaussian noise in the

baseband equivalent model from Eb and N0 respectively.
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3.3.3.1 Baseband Equivalent AWGN Channel Model

AWGN channel is a simplest channel model in which only a linear addition of white

noise is considered as the impairment, which can be represented by

rp(t) = sp(t) + bp(t) (3.34)

where bp(t) is the Gaussian noise in the RF band with a double-sided PSD N0/2, i.e.,

Np(f) =
{
N0/2, |f ± fc| < W/2

0, elsewhere
(3.35)

and its variance can be obtained as σ2
p = N0W .

Define b(t) = bI(t) + jbQ(t) to be the complex envelope of bp(t) in the equivalent

baseband, with bI(t) and bQ(t) being the in-phase and quadrature components of b(t),

we have:

bp(t) = <(b(t)ej2πfct)

= bI(t) cos(2πfct)− bQ(t) sin(2πfct) (3.36)

Hence, the baseband equivalent AWGN channel model can be denoted by

r(t) = s(t) + b(t) (3.37)

According to reference [21], a complex Gaussian noise has the independent and

identically-distributed (i.i.d.) components. Let’s define the PSD of baseband equivalent

noise b(t) to be N(f), which has non-zero value only when |f | < W/2, so that the PSD

of both quadrature components equal to N(f)/2. By performing the Fourier transform

on equation (3.36), we can get:

Np(f) =
N(f + fc) +N(f − fc)

4
(3.38)

or

N(f) =
{

2N0, |f | < W/2
0, elsewhere

(3.39)

and the variance of b(t) can be obtained as σ2
c = 2N0W .

On the other side, b(t) can also be presented by the sampled sequence bn as

b(t) =
∑
n

bnsinc(Wt− n) (3.40)
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where bn = b(nTs) is the sampled sequence of b(t) in the sampling instant t = nTs using

the sampling rate 1/Ts, which can also be presented by its quadrature components as

bn = bn,I + jbn,Q. Therefore, the discrete-time baseband equivalent AWGN channel

model can be obtained as

rn = sn + bn (3.41)

Since the samples of a white Gaussian noise are independent, bn has the same variance

as b(t), i.e., σ2
d = σ2

c = 2N0W , and the variance of the quadrature components of bn,

i.e., bn,I and bn,Q, can be derived as

σ2 = σ2
d/2 = N0W (3.42)

Now, the relationship among the PSD of AWGN in the passband and the PSD of its

equivalent complex envelope in the baseband, as well as the variance of the sampled

complex envelope has been derived.

3.3.3.2 Symbol Energy in Passband and Equivalent Baseband

If the BER performance of a system on function of Eb/N0 is required, while the analysis

or simulation of modulation/demodulation is done in the equivalent baseband channel,

we need not only the power (variance) relationship of the equivalent additive Gaussian

noise in different band, but also the quantitive connection of the symbol energy of the

passband transmitted signal, its equivalent complex envelope, as well as the sampled

complex sequence.

When a binary system is considered, the symbol energy is equal to the bit energy.

Let’s talk about the CCA signals concerned in binary CCASK. According to equation

(3.5) and equation (3.14), the transmitted signal for data symbol ’i’ (i ∈ {0, 1}) in the

RF band can be presented by

x(i)
p (t) = x(i)(t) cos(2πfct) (3.43)
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The average power of this transmitted passband signal can be derived as

Pxp = lim
τ→∞

1
τ

∫ τ
2

− τ
2

(
x(i)(t) cos(2πfct)

)2
dt

=
1
2

lim
τ→∞

1
τ

∫ τ
2

− τ
2

x(i)2(t)dt+
1
2

lim
τ→∞

1
τ

∫ τ
2

− τ
2

x(i)2(t) cos(4πfct)dt

=
1
2

lim
τ→∞

1
τ

∫ τ
2

− τ
2

(∑
n

x(i)
n sinc(Wt− n)

)2
dt

=
1
2

lim
τ→∞

1
Wτ

∫ Wτ
2

−Wτ
2

(∑
n

x(i)
n sinc(t′ − n)

)2
dt′

=
1
2

lim
τ→∞

1
Wτ

dWτ
2
e∑

n=d−Wτ
2
e

x(i)2

n

=
1
2
〈x(i)2〉 (3.44)

In order to avoid the transmission of DC part of a signal, and keep the bit energy

symmetric for different data symbol ′i′, the iterated sequence x(i) (i ∈ {0, 1}) of CCA-

qi is assumed to be zero mean and normalized, i.e., 〈x(i)〉 = U (i) = 0, and 〈x(i)2〉 =

∆(i)2 = ∆2. Hence, the bit energy Eb in the RF band can be derived as

Eb = PxpT =
T

2
∆2 ==

L∆2

2W
(3.45)

Since the average power of the equivalent baseband signal s(t) (complex envelope)

can be presented by

Px = lim
τ→∞

1
τ

∫ τ
2

− τ
2

x(i)(t)2dt

= 2Pxp (3.46)

the bit energy of s(t) is twice the one of sp(t), i.e., Ebc = 2Eb = T∆2. As long as the

discrete-time equivalent baseband signal sn (sampled complex sequence) is concerned,

the bit energy can be given as

Ebd = L lim
N→∞

1
N

N∑
n=1

x(i)2

n

= L∆2

= 2WEb (3.47)
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where Ts = T/L is the sampling period, and L is the number of samples per symbol

(bit) as defined above.

Besides, let’s denote the statistics of the lth (l ∈ {1, 2, ..., qi}) zone of CCA-qi by

µ
(i)
l = lim

N→∞

1
N + 1

N∑
k=0

x
(i)
l+kqi

(3.48)

δ
(i)2

l = lim
Nl→∞

1
N

N∑
k=0

(
x

(i)
l+kqi

− µ(i)
l

)2
(3.49)

as well as several important mean values of these statistics by

〈µ2〉(i) =
1
qi

qi∑
l=1

µ
(i)2

l

〈δ2〉(i) =
1
qi

qi∑
l=1

δ
(i)2

l

〈µ4〉(i) =
1
qi

qi∑
l=1

µ
(i)4

l (3.50)

〈δ4〉(i) =
1
qi

qi∑
l=1

δ
(i)4

l

〈µ2δ2〉(i) =
1
qi

qi∑
l=1

µ
(i)2

l δ
(i)2

l

It can be obtained that 〈µ2〉(i) + 〈δ2〉(i) = ∆2, and the bit energy of the sampled

baseband signal of the CCA-qi modulated symbol can also be presented by its specific

statistics as

Ebd = L
(
〈µ2〉(i) + 〈δ2〉(i)

)
(3.51)

Until now, with the results in equation (3.42) and equation (3.47), we can finally

represent the parameter of the passband AWGN channel, i.e., Eb/N0, by the statistics

of sampled signal and noise in the baseband equivalent complex channel as follows:

Eb/N0 =
L∆2

2σ2
(3.52)

In this way, the BER performance of CCASK can also be obtained in the equivalent

baseband channel model.
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3.3.3.3 CCASK AWGN Performance Evaluation

Let’s talk about the performance evaluation in the AWGN channel. Since the baseband

modulation symbols of CCASK have real values, the real statistics of the equivalent

discrete-time baseband AWGN channel model in equation (3.41) are sufficient for the

detection, i.e.,

rn,I = sn + bn,I (3.53)

Note that the expressions of the decision variables in equation (3.21), (3.26) and

(3.32) have a similar structure: the average of a large number of identically distributed

uncorrelated quasi-random variables, and each of these variables has a finite mean

and variance value. By using the central limit theorem under the condition of large

modulation (L� q1, q0), it can be assumed that these detection variables, i.e., Cbm for

auto-correlation detection, Dbm for spectral detection and Vbm for statistical detection

respectively, are normally distributed random variables [23]. Define εm to generally

present these detection variables. Two cases need to be considered in order to evaluate

the noise performance of a system: when a ’0’ was transmitted (dm = 0), and when an

’1’ was transmitted (dm = 1), which can be denoted as{
ε

(0)
m = εm|dm=0

ε
(1)
m = εm|dm=1

(3.54)

According to reference [23], the BER of a binary system owning such observation vari-

able as εm can be given as

BER = P0Prob(ε(0)
m > 0) + P1Prob(ε(1)

m < 0) (3.55)

where P0 and P1 are the probabilities of a ’0’ and an ’1’ being transmitted, Prob(ε(0)
m >

0) is the probability of a transmitted ’0’ wrongly detected as ’1’, and Prob(ε(1)
m < 0) is

the probability of a transmitted ’1’ wrongly detected as ’0’. Generally, we can suppose

P0 = P1 = 1
2 , while Prob(ε(0)

m > 0) and Prob(ε(1)
m < 0) can be obtained by

Prob(ε(0)
m > 0) =

1
2

erfc

 −E(ε(0)
m )√

2Var(ε(0)
m )

 (3.56)

Prob(ε(1)
m < 0) =

1
2

erfc

 E(ε(1)
m )√

2Var(ε(1)
m )

 (3.57)
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Replacing εm by Cbm , Dbm or Vbm , the BER of binary CCASK using auto-correlation,

spectral and statistical detections can be respectively obtained. In this way, the ex-

pressions of the expectation and variance of each detection variable are indispensable.

During the performance evaluation of chaos-based systems, several hypothesis are

usually considered for quantifying the chaotic signals in communication systems, such

that the chaotic signals are usually supposed to be uncorrelated (although it’s valid only

if infinitely long chaotic sequences are considered), as proposed in reference [6] and also

presented in equation (1.17). As long as the iterated sequence of CCA-q is concerned, it

has been supposed that E(x) = U = 0. Here, we furthermore assume that the iteration

sequence x, which is collected averagely from all the q zones of CCA-q, is orthogonal;

meanwhile, xq,l (l ∈ {1, 2, ..., q}) is a chaotic sub-sequence with E(xq,l) = µl, so that the

sub-sequence of the iteration belonging to each zone will be assumed to be uncorrelated.

It should be noticed that CCA-q stands for all the CCAs of period q, which can

be generated by different dynamical systems with certain fixed parameters. Therefore,

the particular values of the specific statistics of CCA-q, e.g., µl and δ2
l , can vary among

different CCA-q generators. Hence, these statistics cannot be formulated, but only be

obtained by computer simulations for each particular dynamical system. For example,

the statistics of one of the realizations of CCA-31 and CCA-29 have been listed in

Table 3.1. These statistics are obtained by 106 points of computer simulation for the

enhanced CCA-31 and CCA-29 of system (2.1) as illustrated in Figure 3.1 and Figure

3.1. Remind that the simulated chaotic signals of both CCAs are made zero mean

and normalized, i.e., U = 0, and ∆2 = 1. Furthermore, the important mean values in

equation (3.50) of these simulated statistics are calculated from Table 3.1, and listed

in Table 3.2.

Since the probabilities in equations (3.56)-(3.57) are functions of unformulated

statistics, the performance can be obtained by the combination of the analytical and

numerical methods (or analytic-numerical method), using the statistics of certain

realization of CCAs, such as listed in Table 3.1; or else, approximations should be done

to get an approximated expression, which will be mentioned in the analysis. In addi-

tion, the Monte-Carlo simulations of binary CCASK with each detections will also be

operated to give a pure numerical performance. The same CCA generator realizations

for getting the statistics in Table 3.1 will be selected in the simulations, i.e., the en-
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CCA-31 CCA-29

l µl δ2
l l µl δ2

l

1 −0.3410 4.6283× 10−3 1 0.2661 2.1597× 10−3

2 0.7888 3.9186× 10−2 2 0.1572 7.1455× 10−6

3 −0.1724 3.6561× 10−6 3 −0.0706 4.6227× 10−3

4 2.4662 1.1582 4 0.1305 5.5897× 10−6

5 −0.1738 5.3843× 10−14 5 0.2042 1.0666× 10−3

6 −0.1740 3.8926× 10−8 6 0.3474 2.1850× 10−3

7 −0.0815 1.5581× 10−4 7 0.0670 8.8767× 10−4

8 1.0117 1.1200× 10−2 8 −0.8544 6.1898× 10−3

9 −0.1960 1.9568× 10−6 9 0.1537 8.7496× 10−6

10 −0.1738 1.6418× 10−10 10 −1.8195 2.6121× 10−1

11 0.5255 1.2930× 10−3 11 0.1512 1.3185× 10−14

12 0.1273 1.5372× 10−4 12 0.1513 3.2926× 10−9

13 −2.3597 2.7558× 10−2 13 0.2614 7.6038× 10−5

14 −0.1738 1.1893× 10−13 14 −1.0224 4.5165× 10−3

15 −0.5683 6.4848× 10−3 15 0.1217 7.5244× 10−8

16 −0.1733 9.5369× 10−8 16 0.1512 9.5158× 10−12

17 −0.1295 2.8309× 10−4 17 1.0558 3.4875× 10−4

18 −0.2067 1.0897× 10−5 18 −0.0570 3.1193× 10−6

19 −0.4849 7.0315× 10−3 19 −3.5883 6.6933× 10−3

20 −0.1146 1.9304× 10−4 20 0.1513 1.0014× 10−10

21 −0.1623 3.5183× 10−5 21 0.1209 9.9599× 10−6

22 −0.8359 7.8778× 10−4 22 0.1232 8.0869× 10−6

23 −0.2456 8.9109× 10−4 23 0.5512 1.4044× 10−4

24 3.6438 4.2529× 10−1 24 0.1853 4.6910× 10−6

25 −0.1738 3.0378× 10−17 25 0.1450 1.0692× 10−6

26 −0.1113 2.0207× 10−3 26 −0.3979 1.8087× 10−3

27 −0.1890 1.0666× 10−4 27 0.2583 6.0430× 10−6

28 −0.5696 2.9685× 10−2 28 2.9053 6.8106× 10−2

29 −0.1561 1.2623× 10−6 29 0.1512 4.2602× 10−15

30 −0.1489 5.7563× 10−4

31 −0.4475 1.0725× 10−2

Table 3.1: Statistics of CCA-31 and CCA-29 generated by the enhanced CCAs of system
(2.1), obtained by 106 points of computer simulations.
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CCA-31 CCA-29

∆2 1 1
〈µ2〉 0.9443 0.9877
〈δ2〉 0.0557 0.0124
〈µ4〉 7.9554 8.6579
〈δ4〉 0.0492 0.0025
〈µ2δ2〉 0.4161 0.0529

Table 3.2: Mean values of the statistics of CCA-31 and CCA-29 in Table 3.1.

hanced CCA-31 of system (2.1) will be the basis function for modulating data ’1’, while

the similar CCA-29 will be chosen for modulating data ’0’.

In the rest part of this section, the AWGN performance evaluation obtained by the

analytic-numerical method, the approximated analytical method, as well as the pure

numerical method will be given for each detection, and the results using different eval-

uation methods will be compared. In addition, the comparison of AWGN performance

of CCASK using different detections, as well as the comparison of AWGN performance

between CCASK and DCSK will also be discussed.

A. AWGN Performance Evaluation of CCASK Using Auto-Correlation De-
tection

It has been pointed out in the beginning of this section that the noise performance of

binary CCASK using auto-correlation detection is a function of the expectation and

variance of the detection variable Cbm . The analytical evaluation in case of single user

is given in Appendix A.1, and the result of the general expression of BER performance

is given as

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4q1−i
L(L− q1−i)

∆4

〈µ2〉(i)2

+
( 8(2L− qi)

3L(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

8qi
L(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

8q1−i
L(L− q1−i)

∆2

〈µ2〉(i)2
)
σ2

+
4
L

( qi
L− qi +

q1−i
L− q1−i

) σ4

〈µ2〉(i)2
)− 1

2
]

(3.58)
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which depends not only on the noise spectral density σ2 (determined by Eb/N0 if bit

energy is constant), but also on the symbol modulation rate L, the periods q0, q1 of the

taken CCAs, as well as the statistics of these CCAs.

Hence, the analytic-numerical noise performance will be a function of L and Eb/N0

if certain CCAs are chosen, i.e., q1, q0 as well as the statistics are fixed. For example,

when the CCA-29 and CCA-31 in Table 3.2 are considered, the analytic-numerical

BER of CCASK using auto-correlation detection versus L corresponding to certain

Eb/N0 is illustrated in Figure 3.7. The result shows that the AWGN noise performance

of CCASK using auto-correlation detection augments with the increase of number of

samples per symbol L.
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Figure 3.7: Analytic-numerical noise performance of binary CCASK using auto-
correlation detection versus the number of samples per symbol L, when the enhanced
CCA-29 and CCA-31 of system (2.1) are considered.

The Monte-Carlo simulations are done in order to verify the analytical AWGN per-

formance of binary CCASK using auto-correlation detection. During the simulations,

the enhanced CCA-29 and CCA-31 of system 2.1 are generated, in which the signals

are centered and energy normalized before the transmission. Under each modulation

rate L, 106 points of symbols are transmitted through 104 AWGN channels in parallel.
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Figure 3.8: Analytic-numerical result in Figure 3.7 with L = 400 and L = 1000, compared
with the approximated analytical and pure numerical results under the same conditions.

Figure 3.8 illustrates the pure numerical results with L = 400, 1000, together with the

corresponding analytic-numerical results. The comparison shows a good coincidence

between them, which affirms the procedure of analysis in A.1.

Furthermore, according to the performance analysis of auto-correlation detection,

it’s also possible to approximate the analytical result if the statistics of CCAs are not

acknowledged. A.1 gives the approximation under the conditions of large number of

samples per symbol, i.e., L� q0, q1, and relative small zones of CCAs:

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+ (qi + q1−i)

N2
0

E2
b

)− 1
2

]
(3.59)

which is a function of Eb/N0, as well as the periods q0, q1 of the CCAs. The compar-

ison between this approximated analytical result and the above mentioned analytic-

numerical result has sense only if L is large enough. Figure 3.8 also illustrates the

approximated analytical result (dashed line) with q0 = 29, q1 = 31. Notice that the

difference between the approximated analytical result and the analytic-numerical result

diminishes with the increase of L, because the approximation was made in case of large
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L. Furthermore, the difference will also diminish if the value of 〈δ2〉/〈µ2〉 decreases,

according to the conditions under which the approximation was done in A.1.

B. AWGN Performance Evaluation of CCASK Using Spectral Detection

The noise performance of binary CCASK using spectral detection is a function of the

expectation and variance of the detection variable Dbm . The procedure of this analysis

in case of single user is given in A.2, and the result of the general expression of BER

performance is given by

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4(L− q1−i)q2
i

L(L− qi)2q1−i

∆4

〈µ2〉(i)2

+
(8(2L− qi))

3L(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

8qi
L(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

8(L− q1−i)q2
i

L(L− qi)2q1−i

∆2

〈µ2〉(i)2
)
σ2

+
4
L

L(qi + q1−i)qi − 2q2
i q1−i

(L− qi)2q1−i

σ4

〈µ2〉(i)2
)− 1

2
]

(3.60)

which depends on the noise spectral density σ2, the symbol modulation rate L, the

periods q0, q1 of the taken CCAs, as well as the statistics of these CCAs.

Similarly as the auto-correlation detection, the analytic-numerical noise perfor-

mance of binary CCASK using spectral detection is also a function of L and Eb/N0

if certain CCAs are chosen, i.e., q1, q0 as well as the statistics are fixed. When the

CCA-29 and CCA-31 in Table 3.2 are considered, this analytic-numerical result with

L = 400 and L = 1000 are illustrated in Figure 3.9, which shows that the noise perfor-

mance using spectral detection also augments with the increase of number of samples

per symbol L.

The similar Monte-Carlo simulations as in auto-correlation detection are done in

order to verify the analytical AWGN performance of binary CCASK using spectral

detection. The pure numerical results with L = 400, 1000 are illustrated in Figure

3.9. The comparison shows a good agreement between the analytic-numerical and pure

numerical results, which means the correctness of the procedure of analysis in A.2.

Furthermore, according to the performance analysis of spectral detection, it’s also

possible to approximate the analytical result if the statistics of CCAs are not acknowl-
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Figure 3.9: Analytic-numerical noise performance of binary CCASK using spectral de-
tection with L = 400 and L = 1000 when the enhanced CCA-29 and CCA-31 of system
(2.1) are considered, as well as the approximated analytical and pure numerical results
under the same conditions.

edged. A.2 gives the approximation under the conditions of large number of samples

per symbol, i.e., L� q0, q1, and relative small zones of CCAs:

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+
(
qi +

q2
i

q1−i

)N2
0

E2
b

)− 1
2
]

(3.61)

which is also a function of Eb/N0 and q0, q1. The comparison between this approximated

analytical result and the above mentioned analytic-numerical result has sense only if

L is large enough. Figure 3.9 also illustrates the approximated analytical result with

q0 = 29, q1 = 31. Similarly, the difference between the approximated analytical result

and the analytic-numerical result using spectral detection diminishes with the increase

of L, and it will also diminish if the value of 〈δ2〉/〈µ2〉 decreases, according to the

conditions under which the approximation was done in A.2.

91



3. CCA-BASED MODULATION SYSTEMS

C. AWGN Performance Evaluation of CCASK Using Statistical Detection

The noise performance of binary CCASK using statistical detection is a function of the

expectation and variance of the detection variable Vbm . The procedure of this analysis

in case of single user is given in A.3, and the result of the general expression of BER

performance is given as

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4q1−i
L(L− q1−i)

∆4

〈µ2〉(i)2

+
(4(2L− qi)

3(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

4qi
(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

4q1−i
(L− q1−i)

∆2

〈µ2〉(i)2
)2σ2

L

+
( qi
L(L− qi) +

q1−i
L(L− q1−i)

) 4σ4

〈µ2〉(i)2
)− 1

2
]

(3.62)

which depends on the noise spectral density σ2, the symbol modulation rate L, the

periods q0, q1 of the taken CCAs, as well as the statistics of these CCAs.

Similarly as the other two detections, the analytic-numerical noise performance of

binary CCASK using statistical detection is also a function of L and Eb/N0 if certain

CCAs are chosen, i.e., q1, q0 as well as the statistics are fixed. When the CCA-29 and

CCA-31 in Table 3.2 are considered, this analytic-numerical result with L = 400 and

L = 1000 are illustrated in Figure 3.10, which shows that the noise performance of

statistical detection also augments with the increase of number of samples per symbol

L.

The similar Monte-Carlo simulations as in the other two detections are done in

order to verify the analytical AWGN performance of binary CCASK using statistical

detection. The pure numerical results with L = 400, 1000 are illustrated in Figure 3.10

for comparison. It shows a good coincidence between the analytic-numerical and pure

numerical results, which means the correctness of the procedure of analysis in A.3.

Furthermore, according to the performance analysis of statistical detection, it’s also

possible to approximate the analytical result if the statistics of CCAs are not acknowl-

edged. A.3 gives a method to approximate the performance under the conditions of

relative large number of samples per symbol, i.e., L � q, and relative small zones of
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Figure 3.10: Analytic-numerical noise performance of binary CCASK using statistical
detection with L = 400 and L = 1000 when the enhanced CCA-29 and CCA-31 of system
(2.1) are considered, as well as the approximated analytical and pure numerical results
under the same conditions.

CCAs, with a simple expression as:

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+ (qi + q1−i)

N2
0

E2
b

)− 1
2

]
(3.63)

which is also a function of Eb/N0 and q0, q1. The comparison between this approximated

analytical result and the above mentioned analytic-numerical result has sense only

if L is large enough. Figure 3.10 also illustrates the approximated analytical result

with q0 = 29, q1 = 31. Similarly, the difference between the approximated analytical

result and the analytic-numerical result using statistical detection diminishes with the

increase of L, and it will also diminish if the value of 〈δ2〉/〈µ2〉 decreases, according to

the conditions under which the approximation was done in A.3.
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D. Comparison of Different Detection Schemes

Firstly, let’s compare the auto-correlation and spectral detections of CCASK. According

to Wiener-Khinchin theorem, the autocorrelation Rrr(τ) of a function r(t), i.e.,

Rrr(τ) =
∫ +∞
−∞ r∗(t)r(t+ τ)dt, can be simply given by the inverse Fourier transform of

the absolute square of r̂(k), here r̂(k) is the Fourier transform of r(t), i.e., r̂(k) = F[r(t)],

and Rrr(τ) = F−1[|r̂(k)|2]. The decision variable Cm[v] in equation (3.21) is a collection

of auto-correlation of rm, i.e., Rrmrm(`qv), i.e.. Meanwhile the decision variable Dm[v]

in equation (3.26) is a collection of the absolute square of DFT of received symbol

sequence rm, i.e., |r̂(Kqv )|2. Obviously, it can be found that Rrmrm [`qv] is the IDFT of

|r̂(Kqv )|2, with

Rrmrm [`qv] = ε(`)
qv∑
K=1

|r̂(K
qv

)|2ej2π Kqv `qv

= ε(`)
qv∑
K=1

|r̂(K
qv

)|2 (3.64)

where ε(`) stands for the coefficient caused by the finite length L of each symbol rm.

Inserting this relationship into the expression of the decision variable Cm[v] of auto-

correlation detection in (A.1) in section A.1, we can get

Cm[v]≈ 2qv
L(L− qv)

qv∑
l=1

Rrmrm [`qv]

=
2qv

L(L− qv)
Lv∑
`=1

ε(`)
qv∑
K=1

|r̂(K
qv

)|2

=
2q2
v

L(L− qv)
Lv∑
`=1

ε(`)Dm[v] (3.65)

Hence, the auto-correlation detection and spectral detection should have a similar per-

formance with slight difference in coefficient, which can be noticed by the comparison

of the AWGN performance expressions in equations (3.58) and (3.62), as well as the

simulation results in Figure 3.8 and Figure 3.9. Especially, the approximated analytical

results of both detections are identical, see equation (3.59) and (3.61), which is caused

by the approximations which have been done during the analysis. Actually, in order

to get the approximated analytical performance, it has been supposed that L� q0, q1,

hence several slight proportions of coefficients have been dropped to get the simpler
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expression, such as L ± qi ≈ L (see the details in Appendix A.1 and A.2). Hence, the

slight coefficient difference on performance between the auto-correlation detection and

the spectral detection have been dropped by the way.

As long as the auto-correlation and statistical detections is concerned, the relation-

ship can’t been explained directly. According to the performance analysis in section

A.3, the expression of the decision variable Vm[v] of statistical detection can be repre-

sented as in (A.30). However, it can be rewritten in another form as

Vm[v] ≈ 1
L

L∑
n=1

r2
n −

2qv(L+ qv)
L2(L− qv)

qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

rl+`qvrl+k′qv

`=k−k′======
1
L

L∑
n=1

r2
n −

2qv(L+ qv)
L2(L− qv)

qv∑
l=1

Llv∑
k=0

k∑
`=1

rl+`qvrl+(k−`)qv

=
1
L

L∑
n=1

r2
n −

2qv(L+ qv)
L2(L− qv)

qv∑
l=1

Llv∑
`=1

Llv∑
k=`

rl+`qvrl+(k−`)qv

=
1
L

L∑
n=1

r2
n −

2qv(L+ qv)
L2(L− qv)

qv∑
l=1

Rrmrm [`qv]

=
1
L

L∑
n=1

r2
n − (1 +

qv
L

)Cm[v] (3.66)

Therefore, the decision variable of binary CCASK using statistical detection can be

represented by

Vbm = Vm[0]− Vm[1]

= (1 +
q1

L
)Cm[1]− (1 +

q0

L
)Cm[0] (3.67)

Hence, the auto-correlation detection and statistical detection also have a similar

performance with slight difference in coefficient, which could be proven by the compar-

ison of the AWGN performance expressions in equations (3.58) and (3.62), as well as

the simulation results in Figure 3.8 and Figure 3.10.

Therefore, a conclusion can be given on the three detections of CCASK: though

the scheme as well as the circuit implementation in the receiver are different for each

detection, it has been proven by the analysis and simulations that they obtain similar

AWGN noise performance. Since that the expression of each decision variable has a

linear relationship with the others, naturally they will obtain a performance in almost

any channel model similar to each other.
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E. Comparison of AWGN Performance between CCASK and DCSK

As a chaotic signal direct modulation system, CCASK needs to own some strongpoints

compared with the other direct modulation systems, in order to outperform in certain

conditions. As a noncoherent system, neither CCASK nor DCSK requires the regen-

eration of the transmitted chaotic signals in the receiver, therefore the synchronization

between the transmitted signals and the received ones can be avoided. Furthermore,

they have the comparable complexity in the transceiver implementation. Above all,

DCSK is one of the most studied chaotic signal direct modulation system in the re-

search domain. Hence, we would like to make the comparison between CCASK and

DCSK.
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Figure 3.11: AWGN performance of DCSK versus the number of samples per symbol L.

The approximated analytical expression of AWGN performance of DCSK has been

given in equation (1.25), where 2Ms is the number of samples per symbol, hence L =

2Ms. The BER of DCSK versus the number of samples per symbol L can therefore be

illustrated as in Figure 3.11. From comparing Figure 3.11 with Figure 3.7, it can be

observed that for DCSK, the AWGN performance firstly enhanced with the increase

of L under the condition of small L, then it worsens with the increase of L when
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L is enough large. Meanwhile, the value of L for the optimal AWGN performance

changes with Eb/N0, and it is relatively small, e.g., L < 100. In contrary, the AWGN

performance of CCASK firstly enhances with the increase of the value of L, then it

keeps constant after a certain value of L.

For better comparison, the AWGN performance of DCSK and CCASK versus L

when Eb/N0 = 4dB, 10dB and 14dB are illustrated together in Figure 3.12. We can

see that in the AWGN channel with Eb/N0 <14dB, CCASK outperforms DCSK when

L > 100, and the improvement augments with the increase of L.
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Figure 3.12: Comparison of AWGN performance of DCSK and CCASK versus the num-
ber of samples per symbol L.

The AWGN performance of DCSK when L = 400 and 1000, as well as the analytic-

numerical performance of CCASK using different detections under the same conditions

are illustrated respectively in Figure 3.13. It shows that CCASK has an improvement

of about 3dB compared with DCSK in case of L = 400, while about 4dB in case of

L = 1000.

It has been defined that the symbol duration is related with the number of samples

per symbol as T = LTs. Under the condition of fixed sampling rate Ts (which equals
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Figure 3.13: Comparison of AWGN performance of DCSK and CCASK with different
detections, in case that L = 400 and 1000 respectively.

to the oscillation rate of the discrete-time chaotic generator), the larger value of L

means the longer symbol duration T . Therefore, if transmitting rate is considered,

DCSK outperforms CCASK. However, CCASK shows better noise performance in the

low-rate wideband applications.

3.3.4 Multipath Performance of CCASK

It has been discussed in the precedent section that the AWGN channel model con-

siders the additive noise as the only imperfection. However, in certain applications,

such as indoor wireless applications and mobile communications, the received signal is

composed by the components traveling via multiple paths with different propagation

delays, which may add destructively (or constructively) in the receiver. In such an

environment, it’s rather the multipath fading than the additive noise which decides the

performance of a system.
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Generally, the continuous-time multipath fading channel can be written as [21]

rp(t) =
∑
i

αi(f, t)sp(t− τi(f, t)) + bp(t) (3.68)

where αi(f, t) is the overall attenuation on frequency f (frequency dependent) at time t

from the transmitter to the receiver on path i, while τi(f, t) stands for the respectively

propagation delay.

In a special case that the transmission is over the RF band W relatively narrow to

the carrier frequency fc, and in addition, the transmitter, receiver and environment are

all stationary, the attenuation αi(f, t) and propagation delays τi(f, t) can be assumed

to be independent of the frequency f and time t. Hence, they can be denoted simply

by αi and τi, and the linear time-invariant multipath fading channel can be derived as

[21]

rp(t) =
∑
i

αisp(t− τi) + bp(t) (3.69)

and the total multipath power gain of this channel is as follows:

G =
∑
i

α2
i (3.70)

The baseband equivalent multipath channel model can be derived as

r(t) =
∑
i

αie
−j2πfcτis(t− τi) + b(t) (3.71)

as well as the discrete-time baseband equivalent model in terms of channel filter taps

as [21]

r[n] =
∑
`

h`[n]s[n− `] + b[n] (3.72)

where r[n] = r(n/W ), s[n] = s(n/W ), b[n] = b(n/W ) and

h`[n] =
∑
i

αie
−j2πfcτisinc[`− τiW ] (3.73)

Since the values of attenuation αi and propagation delay τi can’t be measured

exactly for each particular environment, channel models have been developed to present

the typical or average behavior of a channel [70]. Based on the fact that the CCA-based
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systems in this thesis use the chaotic signals generated by simple circuits which are

naturally wideband, they can be proposed to be a modulation scheme for the short

distance (or indoor) wireless communications. Hence, in the multipath analysis and

simulation parts, the two-ray multipath channel model will be considered, which is

simple and often considered for the indoor wireless environments.

3.3.4.1 Model of Two-Ray Multipath Channel

The two-ray channel model includes only a direct path with attenuation α1, and a

reflected path with attenuation α2 and propagation delay τd [71]. Hence, the mean

excess delay can be derived as τµ = τd/2. According to equation (3.69), the two-ray

multipath channel model can be presented as

rp(t) = α1sp(t) + α2sp(t− τd) (3.74)

Remind that the additive noise is not mentioned in this model, but once multipath

performance evaluation is required, an additive Gaussian noise will be added as in the

AWGN channel model. The path delay profile of this model is illustrated in Figure

3.14. This channel model can also be characterized by its frequency response as

delay time

at
te

nu
at

io
n

α

ττµ0

α1
α2

τd

Figure 3.14: Path delay profile of a two-ray channel model.

Hp(f) = F
(
α1δ(t) + α2δ(t− τd)

)
= α1 + α2e

−j2πτdf (3.75)

Suppose that the attenuation in the channel is only caused by the multipath trans-

mission, in other words, the power loss in the channel will not be considered, so that
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the total channel power gain is G = 1, we get α2
1 + α2

2 = 1. Hence, in case of equal at-

tenuation, i.e., α2
1 = α2

2 = 1/2, the magnitude of the frequency response of the two-ray

multipath channel model in equation (3.75) can be derived as |Hp(f)|2 = 1+cos(2πτdf),

which is illustrated in Figure 3.15.
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Figure 3.15: Magnitude of frequency response of the two-ray multipath channel model
with equal attenuation α2

1 = α2
2 = 1/2.

The frequency response of the equal attenuation two-ray multipath channel shows

intuitively the multipath-related nulls caused by the cancellation (destructively add)

between two paths, locating in the equally spaced frequency points

fnull,p =
2m− 1

2τd
, m ∈ N (3.76)

where the attenuation becomes infinitely large [72], and the distance between two

mulipath-related nulls is

∆fnull,p =
1
τd

(3.77)

In contrary, the multipath related maximal gains caused by the constructively add

between two paths can also be observed in the channel frequency response, locating in

fmaxgain = m/τd (m ∈ N).

For the narrow-band communication systems, the worst case in the two-ray mul-

tipath channel is that when the channel has equal attenuation, and the parts of the
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signal energy distributed in the two paths cancel each other completely on the carrier

frequency, i.e., fc = (m− 1/2)/τd (m ∈ N).

As long as the analysis in the baseband is concerned, the equivalent baseband model

of the two-ray multipath channel can be derived from equation (3.71) and (3.74) as

r(t) = α1s(t) + α2e
−j2πfcτds(t− τd) (3.78)

Similarly, the channel frequency response in the equivalent baseband can also be de-

rived, i.e.,

H(f) = α1 + α2e
−j2πτd(f+fc) (3.79)

In case of equal attenuation, the equivalent multipath-related nulls in the baseband
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Figure 3.16: Magnitude of frequency response of the two-ray multipath channel model
in the equivalent baseband, with equal attenuation α2

1 = α2
2 = 1/2.

locates in the following equally spaced frequency points

fnull =
2m− 1

2τd
− fc, m ∈ R (3.80)

which can be illustrated as in Figure 3.16. The distance between two multipath-related

nulls is

∆fnull =
1
τd

(3.81)
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and the number of multipath-related nulls in the baseband [−W/2,W/2] could be dWτde
or bWτdc.

Similarly, the discrete-time baseband equivalent model of the two-ray channel can

be derived from equation (3.72) as

r[n] =
∑
`

(
α1sinc[`] + α2e

−j2πfcτdsinc[`− τdW ]
)
s[n− `]

= α1s[n] + α2e
−j2πfcτd

∑
`

sinc[`− τdW ]s[n− `] (3.82)

3.3.4.2 Qualitative Multipath Performance of CCASK in the Two-Ray
Channel

The spread spectrum systems usually possess a large RF band around the center fre-

quency, so that at least part of the spectrum doesn’t locate in the multipath-related

nulls of the channel frequency response in Figure 3.15. Hence, the spread spectrum sys-

tems are often considered to outperform the narrowband systems under the multipath

channel models.

Since that CCASK utilizes a spectral or spectrum-determined (e.g., auto-correlation

and variance) detection in baseband, its performance in the two-ray channel model

can be qualitatively evaluated by the spectrum attenuation of the received signal in

baseband. Let’s take an applicable scenario to quantify the attenuation. Suppose

that CCASK is implemented in one of the three channels in the 2.4 GHz industrial,

scientific and medical (ISM) band [73][72], with fc ∈ [2.400, 2.412] GHz, W = 17 MHz.

As reported in reference [73], the typical values of propagation delay for the applications

in this band are τd = 91 ns for large warehouses and τd = 75 ns for office buildings,

hence, ∆fnull = 10.989 MHz for large warehouses and ∆fnull = 13.333 MHz for office

buildings. In both environments, there could be only one or two multipath-related nulls

in the band.

Let’s consider the environment of office buildings. The frequency response of the

equal attenuation two-ray multipath channel in the equivalent baseband with τd = 75 ns

can be illustrated in Figure 3.17, which the RF center frequency equals to 2.4 GHz,

2.406 GHz and 2.412 GHz respectively. The channel frequency response shows that

the power attenuation for a transmitted signal with a flat spread spectrum varies for
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Figure 3.17: Magnitude of frequency response of the equal attenuation two-ray multipath
channel model in the equivalent baseband of the 2.4 GHz ISM band, with propagation delay
τd = 75 ns, and RF center frequency fc = 2.4 GHz, 2.406 GHz, 2.412 GHz.

different value of fc: if the 10dB bandwidth is considered, the most attenuation happens

when fc=2.4 GHz.

However, for the same RF band, if the propagation delay is reduced to τd = 50 ns,

there could be only zero or one multipath-related null. The corresponding frequency

response of the equal attenuation two-ray multipath channel in the equivalent baseband

is illustrated in Figure 3.18, which the RF center frequency equals to 2.4 GHz, 2.406

GHz and 2.410 GHz respectively. In this case, when fc=2.4 GHz, there exists the least

spectrum attenuation, while the most attenuation happens when fc=2.410 GHz.

Generally speaking, the worst case for a signal with a flat spread spectrum in base-

band [−W/2,W/2] transmitted in the two-ray multipath channel with the propagation

delay τd is that, the attenuation of both rays have equal value, and the value of centered

frequency fc makes dWτde number of multipath-related nulls locating in the baseband,

and the nulls are symmetric. Hence, dWτde is even, such as the situation in Figure

3.17, the worst case happens if cos(2πfcτd) = 1, i.e., fc = m/τd (m ∈ N); or else, if

dWτde is odd, the worst case is that when cos(2πfcτd) = −1, i.e., fc = (m − 0.5)/τd

(m ∈ N). Furthermore, it can be observed from Figure 3.17-3.18 that, the smaller τd a
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Figure 3.18: Magnitude of frequency response of the equal attenuation two-ray multipath
channel model in the equivalent baseband of the 2.4 GHz ISM band, with propagation delay
τd = 50 ns, and RF center frequency fc = 2.4 GHz, 2.406 GHz, 2.412 GHz.

channel has, the more energy a transmitted flat spread spectrum signal could lose.

Although a CCA signal is not strictly a flat spread spectrum, its spectrum is indeed

spread, with the energy distributed in lots of frequency points equally located in the

baseband. We expect that the total spectrum attenuation of a CCA signal is not worse

than a signal with strictly flat spread spectrum, at least in some particular application

environments.

Take the CCAs generated by system (2.1) for example. The comparison of the

spectra between the equivalent baseband signal generated by the enhanced CCA-31

and the received signal after transmitting in the channel with fc=2.4 GHz in Figure

3.17 is given in Figure 3.19.(a). The spectra comparison of the transmitted and received

signal of the similar CCA-29 is also given in Figure 3.19.(b). It can be obtained from

both comparisons that, although the magnitudes of several main frequency points are

deeply attenuated because of the deconstructive add of the signal components of two

rays, the magnitudes of several other main frequency points increase thanks for the

constructive add. We expect that the total loss in energy is tiny, and the performance

loss is still acceptable for certain applications.
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Figure 3.19: Spectra of the transmitted and received baseband signal of enhanced CCA-q
of system (2.1) through the equal-attenuation two-ray channel model in Figure 3.17 with
fc=2.4 GHz, and (a) q=31, (b) q=29.
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3.3.4.3 Quantitative Multipath Performance of CCASK in the Two-Ray
Channel

In order to quantify the multipath performance, the channel model under certain envi-

ronment parameters are required, such as RF band W , center frequency fc, as well as

the propagation delay τd. We have realized the matlab simulation using the discrete-

time baseband equivalent two-ray multipath channel model in equation (3.82), with

different power gain on two rays, i.e., equal power gain α2
1 = α2

2 = 1/2 and 10dB differ-

ence power gain α2
1 = 10/11, α2

2 = 1/11. The environment parameters are chosen to fit

the 2.4 GHz ISM band, with RF bandwidth W = 17 MHz (sampling rate Ts = 1/W ),

and τd = 75 ns for office buildings application. The center frequency fc varies from 2.4

GHz to 2.412 GHz in step of 3 MHz.

The binary CCASK is designed using the enhanced CCA-31 and CCA-29 of system

(2.1), and the modulated symbols are transmitted through the above designed multi-

path channels, in which the additive Gaussian noise is added with the same amount as

in the AWGN channel without multipath. The number of samples per symbol is chosen

to be L=400, as we have discussed in Section 3.3.3.3 that CCASK performs better than

DCSK when L is large. In this case, the symbol duration is T = L/W = 23.5µs, hence,

the data transmission rate is 42.6 kbps.

For each realization, a Monte-Carlo simulation is operated using the spectral de-

tection, with 106 symbols transmitted through 104 i.i.d. channels. For comparison,

the simulations of DCSK in the same channels are also done, using the chaotic signals

generated by the logistic map g(x) = 4x(1−x) as introduced in Section 1.2.1, with the

same configuration on the symbol design (symbol duration, sampling rate, etc.).

The simulation result of the noise performance of CCASK and DCSK in the two-

ray multipath channel, with both equal power gain and unequal power gain with 10dB

difference, are illustrated in Figure 3.20, together with their AWGN performance with-

out multipath. From the comparison, we can see that the worst case for both CCASK

and DCSK is when fc=2.4 GHz, which corresponds with the qualitative analysis in the

above sub-section. The worst performance loss is about 2dB for CCASK and 2.5dB

for DCSK in the two-ray multipath channel with equal power gain, and still 0.5dB less

for both systems in case of unequal gain with 10dB difference. This result shows that

CCASK can have a good multipath performance just as the other spread spectrum

systems in certain indoor application environments.
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Figure 3.20: Noise performance of CCASK and DCSK in the two-ray channel model
with: (a) equal power gain; (b) unequal power gain with 10dB difference. The channel
parameter is: τd=75ns, W=17MHz, and the value of fc differed by forms: 2.4 GHz (+),
2.403 GHz (4), 2.406 GHz (∗), 2.409 GHz (♦) 2.4012 GHz (×). For comparison, the
AWGN performance without multipath is also given (lines without form).
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3.4 CCAFSK: A Frequency Shift Keying Utilizing CCA

In binary CCASK, the spectrum of CCA-qv (v ∈ {0, 1}) with coprime periods is quasi-

orthogonal to each other thanks for the comb-like spectral distribution differed by qv.

However, the considered detections are not strictly antipodal for different symbols.

Take the spectral detection of binary CCASK for example. Most of the bit energy is

collected either from the observed q0 frequency points using q0-point DFT, or from the

observed q1 frequency points using q1-point DFT, depending on which data symbol

was transmitted. Most of the bit energy means how much? The proportion can’t

be quantified precisely. In fact, it is determined by the specific trajectory of CCA-qv

in the phase plane, hence not possible to be guaranteed identical between different qv.

The similar situation also exists for the other two detection methods. Hence, the not

exactly antipodal observing variables, such as Cmb , Dmb and Vmb , which are detected

by a ’0’ threshold, lead to the not optimal performance.

Undoubtedly, if only one CCA generator is used for each user, the above considered

shortcoming will disappear. Since all the detections of CCASK discussed in Section

3.3 utilize the specific properties of CCA-qv differed by qv, these detections can’t func-

tion anymore if the same CCA is taken for different data symbols. Hence, some new

parameters which could differ the data symbols should be introduced to the modula-

tion. Here comes an example to generate frequency quasi-orthogonal signals by only

one CCA generator.

Suppose that a CCA-q is considered with q being odd. As discussed in Section 2.3.2,

the signal sequence x = (x1, x2, ..., xL) of CCA-q owns a comb-like spectral distribution

with q equally spaced main angular frequencies locating in {Wq 2π, 2W
q 2π, ..., 2π}, and

the power distributed on them can be simply obtained by a q-point DFT. In other

words, if the sequence of CCA-q is transformed by a 2q-point DFT, we can get

X[K] =
L∑
n=1

xne
−j2π K

2q
n
, K ∈ [1, 2q] (3.83)

Let’s define |X[K] | as the even index spectrum magnitude if K = 2K1 (K1 ∈ [1, q]),

as well as the odd index spectrum magnitude if K = 2K1 − 1 for the 2q-point DFT.

Hence, the even index spectrum magnitudes of CCA-q are relatively large compared to

the odd index spectrum magnitudes.
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On the other side, a signal sequence x̆ = (x̆1, x̆2, ..., x̆L) can be created from the

CCA-q signal sequence x by changing the sign of each second xn as

x̆n = (−1)nxn

=
{
xn, n is even
−xn, n is odd

(3.84)

Define this operation as second-sign-changing, hence, x̆ is a signal sequence of

second-sign-changed CCA-q. Transforming x̆ also by a 2q-point DFT to get

X̆[K] =
L∑
n=1

x̆ne
−j2π K

2q
n
, K ∈ {1, 2, ..., 2q} (3.85)

Therefore, the relationship between the 2q-point DFT of the original sequence x and

the second-sign-changed sequence x̆ can be derived as

X̆[K] =
L∑
n=1

(−1)nxne
−j2π K

2q
n

=
L∑
n=1

ejnπxne
−j2π K

2q
n

=
L∑
n=1

xne
−j2πK−q

2q
n

= X[K − q mod q]

=
{
X[K + q], if K ∈ [1, q]
X[K − q], if K ∈ [q + 1, 2q]

(3.86)

where K ∈ [1, 2q]. It’s known that in case of q being odd, K ± q is odd when K is even

with K = 2K1 (K1 ∈ [1, q]), while K ± q is even when K is odd with K = 2K1 − 1.

Hence, the even index spectrum magnitudes of x̆ correspond to the odd index spectrum

magnitudes of x; and conversely, the odd index spectrum magnitudes of x̆ correspond

to the even index spectrum magnitudes of x.

Therefore, the signal sequence of the original CCA-q and the signal sequence of the

second-sign-changed CCA-q are quasi-orthogonal in the frequency domain, with the

quasi-orthogonality defined as: one has the dominant even index spectrum magnitudes,

while the other has the dominant odd index spectrum magnitudes, and both dominant

parts own an antipodal proportion.

Take the enhanced CCA-31 in Figure 2.19 for example, the magnitudes of 62-

point DFT of both original and second-sign-changed signal sequences are illustrated in
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Figure 3.21: Normalized magnitude of 2q-point DFT of both the original (blue square)
and second-sign-changed (red square) signals of the enhanced CCA-q of system (2.1) with
(a) q=31, (b) q=29. PSD are carried out for the sequences with length L = 104.
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Figure 3.21.(a), where the quasi-orthogonality can be observed clearly. Similar spectral

distributions can be found after the 58-point DFT for the sequence of the enhanced

CCA-29 of system (2.1), as shown in Figure 3.21.(b).

This quasi-orthgonal spectral distributions between the original signal and second-

sign-changed signal of CCA-q will be applied in another CCA-based modulation system:

chaotic cyclic attractors frequency-shift keying (CCAFSK). CCAFSK is concerned with

mapping data symbols of one user to the chaotic waveforms generated by the CCA-q

generator, while the data symbols are differed by operating or not operating the second-

sign-changing on the iterations, hence, differed by the quasi-orthogonal spectra. The

demodulation of CCAFSK could be realized by applying 2q-point DFT on the received

symbols.

As long as multiplexing is considered, CCAs of different periods can be allocated

for different users, with the periods coprime to each other.

3.4.1 Modulation Scheme of CCAFSK

In the simplest case of binary CCAFSK, two basis signals generated by one CCA-q

generator with two different sign-changing operations are needed: the original signal

and the second-sign-changed signal. Remind that the original signal generated by the

CCA-q generator is x(t) =
∑

n xnsinc(Wt − n), hence the second-sign-changed signal

x̆(t) can be presented by

x̆(t) =
∑
n

(−1)nxnsinc(Wt− n)

= x(t)ũ(t) (3.87)

in which x̆(n/W ) = (−1)nxn is the value of the sample at the sampling instant n/W ,

and ũ(t) is the square wave:

ũ(t) =
∑
n

(−1)n u (t− nTs) (3.88)

with u(t) denoting the rectangular function.

Suppose that the basis function for modulating data symbol ’0’ is x(t), while the

basis function for modulating data symbol ’1’ is x̆(t). Then, the modulated symbols in

the baseband can be derived as

s(t) =
∑
m

L∑
n=1

(
dmxmL+n + (1− dm)x̆mL+n

)
sinc(Wt− (mL+ n)) (3.89)
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where dm ∈ {0, 1} denotes the mth data symbol.

The equivalent sampled sequence of the mth modulated symbol s(t) (t ∈ [mT, (m+

1)T ]) can be denoted as sm = (sm[1], sm[2], ..., sm[L]), with

sm[n] = s(mT + nTs), n ∈ {1, 2, ..., L} (3.90)

hence, sm[n] = xmL+n if a data symbol dm = 1 is transmitted, and sm[n] = x̆mL+n if a

data symbol dm = 0 is transmitted.

The diagram of baseband modulation in binary CCAFSK transmitter is illustrated

in Figure 3.22.

   CCA-     
  generator modulated symbol

dm

q

data symbol

x(t)

s(t)

+1

-1

Tsclock

x̆(t)

Figure 3.22: Modulation structure in binary CCAFSK transmitter.

3.4.2 Demodulation Scheme of CCAFSK

According to the introduced quasi-orthogonality in spectrum of the original signal

and second-sign-changed signal of CCA-q, a noncoherent detection can be realized for

CCAFSK using 2q-point DFT. As in the demodulation scheme of CCASK, we consider

the passband carrier removed signal of the mth received symbol r(t) (t ∈ [mT, (m+1)T ])

in the demodulation, the sampled sequence of which is rm = (rm[1], rm[2], ..., rm[L]),

with rm[n] = r(mT + nTs) (n ∈ {1, 2, ..., L}). Therefore, the detection will be realized

in the discrete-time domain.

In case of single user application so that the interference from the other users

doesn’t exist, if the transmission channel is noise and distortion free, as well as the

ideal transmitting and receiving antennas are applied, we can get rm[n] = sm[n]; or
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else, rm[n] differs from sm[n], and can be presented by its in-phase and quadrature

components as rm[n] = rm,I [n] + jrm,Q[n].

Similarly to the spectral detection of CCASK, the detection of binary CCAFSK

relies on the comb-like frequency distribution of each received symbol. Through ap-

plying 2q-point DFT on the sampled sequence rm, the magnitudes of the observing

frequencies can be easily obtained by:

Am[K] =
∣∣∣ L∑
n=1

rm(n)e−j2π
K
2q
n
∣∣∣ (3.91)

where K ∈ {1, 2, ..., 2q}.
According to the discussion in the beginning of this section, in the ideal case that

rm = sm, if a ’0’ was transmitted, the even index spectrum magnitudes Am[2K1] (K1 =

1, 2, ..., q) have relative large values compared to the odd index spectrum magnitudes

Am[2K1 − 1]; in contrary, if an ’1’ was transmitted, the odd ones have relative large

values compared to the even ones. Hence, in a tolerably noisy and/or distortional

channel, the decision variable for the mth received symbol could simply be the difference

between the mean squared value of Am[2K1−1] and the mean squared value of Am[2K1],

denoted as

Bbm =
1
q

q∑
K1=1

(
A2
m[2K1 − 1]−A2

m[2K1]
)

(3.92)

Consequently, the demodulated data symbol d̂m can be represented as follows:

d̂m =
{

1, if Bbm ≥ 0
0, if Bbm < 0

(3.93)

The structure of the baseband demodulation in binary CCAFSK receiver can be de-

signed as shown in Figure 3.23.

3.4.3 AWGN Performance of CCAFSK

In this section, the AWGN performance of binary CCAFSK in case of single-user and

multi-user applications will be given. The single-user noise performance will be analyzed

as well as simulated, while the multi-user noise performance will be given only by

simulation. The comparison of AWGN performance between CCAFSK and CCASK,

as well as between CCAFSK and DCSK will also be discussed.
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Figure 3.23: Demodulation structure in binary CCAFSK receiver.

A. AWGN Performance Evaluation in Single User Application

The AWGN noise performance of binary CCAFSK is a function of the expectation and

variance of the detection variable Bbm . The detail of the performance analysis in case

of single user is given in Appendix B, with the result of the general expression of BER

performance obtained as

BERCCAFSK =
1
4

1∑
i=0

erfc

[(
2(4L2 + 16Lq + 15q2)

3(L− q)(L+ q)2

〈µ2δ2〉
〈µ2〉2 +

8q
(L2 − q2)

〈δ4〉
〈µ2〉2

+
(4(4L2 + 4Lq + 3q2)

3(L− q)(L+ q)2

〈µ2〉
〈µ2〉2 +

16q
(L2 − q2)

〈δ2〉
〈µ2〉2

)
σ2

+
8q

(L2 − q2)
σ4

〈µ2〉2
)− 1

2
]

(3.94)

which depends on the noise spectral density σ2, the symbol modulation rate L, the

period q of the taken CCA, as well as the specific statistics of the CCA as defined in

Section 3.3.3.

Hence, the analytic-numerical AWGN performance of CCAFSK is a function of

L and Eb/N0 for a given CCA, i.e., the period q as well as the statistics are fixed.
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Figure 3.24: Analytic-numerical AWGN performance of binary CCAFSK versus the
number of samples per symbol L, when the statistics of the enhanced CCA-29 of system
(2.1) are considered.

For example, when the statistics of CCA-29 in Table 3.2 are considered, the analytic-

numerical BER of CCAFSK versus L corresponding to certain Eb/N0 is illustrated

in Figure 3.24. The result shows that, the AWGN performance of CCAFSK firstly

aemliorates with the increase of the number of samples per symbol L when L < 200 is

small; and the performance keeps more or less constant when L > 200. This analytic-

numerical AWGN performance of CCAFSK with L = 100 and L = 400 is illustrated in

Figure 3.25.

The Monte-Carlo simulation of single user binary CCAFSK using the enhanced

CCA-29 of system (2.1) are also done, and the pure numerical results with L = 100

and L = 400 are illustrated in Figure 3.25, each of which is obtained by 106 symbols

transmitted through 104 i.i.d. AWGN channels. The results show a good correspon-

dence between the analytic-numerical and pure numerical results.

Furthermore, based on the analytical expression in equation (3.94), the AWGN per-

formance of CCAFSK can also be approximated to a certain degree if the statistics of
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Figure 3.25: Analytic-numerical AWGN performance of binary CCAFSK using the en-
hanced CCA-29 of system (2.1), with L = 100 and L = 400, compared to the approximated
analytical and pure numerical results under the same conditions.

CCA are not acknowledged. Appendix B gives a method to approximate the perfor-

mance under the conditions of relative large number of samples per symbol, i.e., L� q,

and relative small zones of CCAs, with a simple expression as:

BERCCAFSK ≈ 1
2

erfc

[(
8
3
N0

Eb
+ 2q

N2
0

E2
b

)− 1
2
]

(3.95)

Though this approximated analytical performance doesn’t depend on L, the comparison

between it and the above mentioned analytic-numerical result has sense only if L is large

enough. The approximated analytical result with q = 29 is also illustrated in Figure

3.25 for comparison. Since the analytic-numerical results in Figure 3.24 shows that

the noise performance of CCAFSK keeps constant when L > 200, the approximated

analytical result in Figure 3.25 is a good approximation of the optimal performance of

CCAFSK.
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B. AWGN Performance Evaluation in Dual-User Application

It’s mentioned in the beginning of Section 3.4 that the multiplexing of CCAFSK can

be realized simply by allocating coprime periods of CCAs to different users. Since
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Figure 3.26: Comparison of AWGN performance of CCAFSK using CCA-29 between
single user and dual-user cases, with L = 100 and L = 400 respectively. The CCA-31
generator is used for the modulation of the interference user.

the spectra of signals of CCAs of coprime periods are quasi-orthogonal as discussed in

Section 2.3, generally speaking, the multi-user interference won’t make the performance

much worse, just as the other multiplexing systems.

In order to quantify the multiple-access performance of CCAFSK, a Monte-Carlo

simulation of dual-user CCAFSK is operated, using the enhanced CCA-29 of system

(2.1) for user-1, and the similar CCA-31 for user-2. 106 independent symbols of each

user are transmitted simultaneously through 104 i.i.d. AWGN channels, and the result

is illustrated in Figure 3.26 with L = 100 and L = 400, together with the single

user performance under the same conditions. From the comparison, we can see that

CCAFSK can prevent the interference from the other users when number of samples per
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symbol L is large, with only little loss in BER performance; however, with the decrease

of the value of L, the multi-user interference can make the detection very difficult.

C. AWGN Performance Comparison between CCAFSK and CCASK

In order to better compare the AWGN performance of CCASK and CCAFSK, part
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Figure 3.27: Comparison of performance versus L between CCASK using CCA-31 and
CCA-29 and spectral detection, and CCAFSK using CCA-29.

of the performance in Figure 3.7 and Figure 3.24 are illustrated together in Figure

3.27. From the comparison, we can see clearly the performance gain of CCAFSK

over CCASK, which diminishes with the increase of the value of L. For example, the

performance of CCASK with L = 700 can be obtained by CCAFSK with L = 100. It

means that, CCAFSK is more efficiency than CCASK when certain BER is required,

since the former needs smaller number of samples per symbol compared with the latter.

D. AWGN Performance Comparison between CCAFSK and DCSK

Similarly, in order to better compare the AWGN performance of DCSK and CCAFSK,

part of the performance in Figure 3.11 and Figure 3.24 are illustrated together in Figure
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3.28. We can see that in the AWGN channel with Eb/N0 <14dB, CCAFSK outperforms
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Figure 3.28: Comparison of AWGN performance of DCSK and CCASK versus the num-
ber of samples per symbol L.

DCSK when L > 50, and the gain of CCAFSK over DCSK increases with the increase

of L.

The theoretical AWGN performance of DCSK and the analytic-numerical perfor-

mance of CCAFSK with L = 100 and L = 400 are illustrated respectively in Figure

3.29. It shows that when BER is 10−4, CCAFSK has an improvement of about 2dB

compared with DCSK in case of L = 100, and an improvement of about 3.5dB in case

of L = 400. Hence, CCAFSK has better AWGN performance in the low-rate wideband

applications.

3.4.4 Multipath Performance of CCAFSK

The quantitative multipath performance in Section 3.3.4.2 is analyzed generally and

roughly for the CCA-based systems. Indeed, it’s an advantage that shared by all the

spread spectrum systems. Since both CCASK and CCAFSK are CCA-based systems

using spectral detection, both of them should possess a similar multipath performance,
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Figure 3.29: Comparison of AWGN performance of DCSK and CCAFSK with L = 100
and L = 400 respectively.

or a comparable performance loss compared with their AWGN performance without

multipath.

In order to quantify the multipath performance of CCAFSK, binary CCAFSK is

designed using the enhanced CCA-29 of system (2.1), and the modulated symbols

are transmitted through the same two-ray multipath channels designed for CCASK in

Section 3.3.4.3. According to Section 3.4.3, for obtaining certain BER, CCAFSK can

realize with a much smaller number of symbols than DCSK. Hence, we chose L=100

for the CCAFSK multipath performance evaluation. In this case, the symbol duration

is T = L/W = 5.88µs, which results a more efficient data transmission rate, i.e., 170

kbps.

The Monte-Carlo simulations are operated with 106 symbols transmitted through

104 i.i.d. two-ray channels, in case of both equal power gain and unequal power gain

with 10dB difference. The results are illustrated in Figure 3.30, together with the

AWGN performance of CCAFSK without multipath. From the comparison of CCAFSK

noise performance in the channels with and without multipath, we can see that the
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Figure 3.30: Noise performance of CCAFSK in the two-ray channel model with: (a)
equal power gain; (b) unequal power gain with 10dB difference. The channel parameter is:
τd=75ns, W=17MHz, and the value of fc differed by forms: 2.4 GHz (+), 2.403 GHz (4),
2.406 GHz (∗), 2.409 GHz (♦) 2.4012 GHz (×). For comparison, the AWGN performance
without multipath is also given (line without form).
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3.5 Conclusion

worst performance loss is about 2dB in the two-ray multipath channel with equal power

gain, and 1.5dB in case of unequal gain with 10dB difference. This result shows that

CCAFSK has a similar multipath performance as CCASK. However, based on the fact

that CCAFSK has a generally better noise performance, especially for small L, we can

say that it outperforms CCASK.

3.5 Conclusion

In this chapter, the modulation/demodulation schemes of two CCA-based systems have

been introduced, called CCASK and CCAFSK.

CCASK utilizes different period values of CCAs for modulating different data sym-

bols, and the demodulation can be realized by the detection of the auto-correlation

property, the spectral property, or the statistical property of the received symbols.

Since CCA signals can be generated by simple electronic circuits, with the period con-

trolled simply by the value of bifurcation parameters, the transceiver of CCASK is

considered to have low-complexity, hence, low-cost. Besides, CCASK shows a good

AWGN performance in case of large number of samples per symbol, i.e., lower bit

transmission rate if the RF frequency band is fixed. Meanwhile, its multipath perfor-

mance in the two-ray channel model is comparable to that of DCSK, in other words,

much better than the narrow-band systems. Hence, we propose CCASK to be used for

the short-range indoor applications with low-complexity, low-cost transceivers.

However, the detections of CCASK are not strictly antipodal for different data

symbols, since coprime periods are required to make the quasi-orthogonality on spec-

trum. CCAFSK is actually an improvement of CCASK. It uses only one CCA for each

user, with the data symbols differed by a second-sign-changing operation on the CCA

iteration, which introduces the quasi-orthogonality on spectrum with a same number

of observed frequency points. The modulation/demodulation schemes of CCAFSK is

similar to that of CCASK, and to obtain the certain noise performance, the former re-

quires a shorter symbol duration than the latter. Besides, both of them have a similar

multipath performance. Furthermore, a simple evaluation of multi-user performance

has been done for CCAFSK, which shows the possibility and the robust performance

on multi-access. Hence, CCAFSK can serve in the short-range, low-rate muti-user

applications.
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Conclusion and Perspective

Recently, the quickly expanding field of wideband communications has encountered lots

of developments, innovations as well as challenges, which will doubtlessly continue in

the predictable future. From the point of view of signal processing, the chaotic signals

are statistically uncorrelated in the time domain, and have naturally large-band in the

frequency domain, both of them are in contrary to the periodic signals. Hence, the

application of chaos in the wideband communication systems sounds attractive and

practical, which has formed a research field called chaos-based wideband communica-

tions in the past twenty years.

The state of the art in the first chapter has been given in two research branches of

chaos-based wideband communications: the application of chaos in the chaotic spec-

trum spreading, or the direct chaotic signal modulation. The latter can be realized

by low-complexity transceivers, based on the possibility of generating wideband signals

directly by simple electronic circuits of the dynamical systems. The synchronization

of chaotic signals is another research subject, which has been proved to be difficult to

achieve in the wireless transmissions. Hence, for the direct chaotic signal modulation

systems, a noncoherent (or differential) detection is preferred. DCSK has been widely

studied and considered to be the most practical chaos-based modulation scheme when

the radio propagation environment is concerned.

Our study has been carried out in two steps. In the first step, the sinusoidal

two-dimensional discrete-time dynamical system has been selected, and its periodic

behaviors have been studied based on the fundamental knowledge of chaos theory.

Variety of attractors have been derived, including CCA. CCA is a type of attractors

processing simultaneously the chaoticity and cyclicity, and different periods of CCAs

can be obtained easily by changing the parameter values of the dynamical system.

The specific characteristics of CCAs have been analyzed, including the auto-correlation
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property, the spectral property, and the statistical property. All the three properties are

functions of the period q. In the frequency domain, CCA-q has a comb-like spectrum,

with q main frequency points equally spaced in the band. The presentation on this

part of work can be found in Chapter 2.

The second step of the work has been concentrated on the application of CCA

properties in the wideband communications. Two CCA-based modulation schemes have

been proposed. The first one is a CCA-based chaos shift keying, called CCASK. The

modulation scheme of CCASK is mapping data symbols to CCA signals with different

periods, and the detection can be realized by observing one of the introduced properties.

The second one is a CCA-based frequency shift keying, called CCAFSK. It comes from

the fact that the second-sign-changed signal of CCA has a spectrum quasi-orthogonal

to the one of the original signal. It’s considered to be an improvement of CCASK. The

performance evaluation of each CCA-based system in the AWGN channel has been

theoretically analyzed and simulated. The AWGN performance has been compared

between CCASK/CCAFSK and DCSK, which shows that the former systems have

better noise performance than the latter, in case of long symbol duration with fixed

radio frequency band. The performance evaluation in the basic multipath channel

model shows that CCASK/CCAFSK have the comparable multipath performance to

DCSK in the 2.4 GHz ISM environment. Furthermore, a simple evaluation of multi-

user performance has been simulated for CCAFSK, which shows the possibility of

multiple access for the CCA-based systems. In a conclusion, the CCA-based modulation

systems can serve in the short-range, low-rate muti-user applications which require

low-complexity transceivers, such as local personal applications. Chapter 3 has given

in detail the this second part of work.

As a PhD study of a period of three years, our work is far from being complete. A

lot of further studies can be done for the CCA-based modulation systems, here we give

several examples:

1. The multipath performance of CCASK/CCAFSK in this thesis have been dis-

cussed in the two-ray multipath channel, which is the simplest linear time-invariant

model. However, in a large RF band, the attenuation and propagation delay

of each path could be frequency selective and time dependent, hence, the per-

formance evaluation of CCA-based systems in more complex multipath channel

models will make sense, with a raised complexity in analysis and simulations.
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2. Based on the quasi-orthogonal spectrum of different period of CCA, the multiple

access of CCA-based systems could be an advantage compared to the other chaos-

based systems, such as DCSK. The performance of multiple access in this thesis

is simply evaluated for CCAFSK by the simulations of dual-user applications.

Hence, the noise performance in case of multiple access could be theoretically

analyzed, and the applications of more users could be considered.

3. Inspired by the reference [74], the sign-changing operation on the signal of CCA

for modulating different data symbol of CCAFSK equals to a multiplication of a

pair of Walsh-code-similar codes with length L (number of samples per symbol),

i.e., ’1 1 1 1...’ and ’1 −1 1 −1 ...’ . Then, if L is selected to be L = m2M

(m,M ∈ N), M signals with quasi-orthogonal spectrum between each other can be

generated by cyclically multiplying the signal of CCA by the first M Walsh codes

with length 2M . The scheme of M -ary CCAFSK could be considered by mapping

the data symbols to one of these generated signals. Hence, the further analysis

on this scheme, as well as the performance evaluation, may lead to interesting

results.

4. During the study of dynamical systems, we have always taken sinusoidal two-

dimensional discrete-time system in equation (2.1). The other dynamical systems

could be interesting, if the similar CCAs can be generated by simpler generator,

or the CCAs with better properties can be generated.

There is a proverb: throw a sprat to catch a whale, which means a modest spur to

induce others to come forward with valuable contributions. We hope that our study

can serve as a sprat for some further researches.
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Appendix A

Analytical Evaluation of AWGN

Noise Performance of CCASK

In this appendix, the analytical evaluation of noise performance of CCASK using differ-

ent detections in the discrete-time baseband equivalent AWGN channel will be given.

All the analysis are based on the passband carrier removed signal of the mth received

symbol r(t) = s(t) + b(t) (t ∈ [mT, (m + 1)T ]). The equivalent sampled sequence of

the observed signal is rm = (rm[1], rm[2], ..., rm[L]), with rm[n] = sm[n] + bm[n]

(n ∈ {1, 2, ..., L}). For the sake of simplification in notations, the index m will be

dropped, hence rn, sn, xn and bn will be used to stand for rm[n], sm[n], xm[n] and

bm[n], without loss of generality.

It should be reminded that CCASK use the real valued basis functions generated by

the dynamical systems. According to Section 3.3.3.3, the real statistics of the equivalent

discrete-time baseband AWGN channel model is sufficient for the detection of the real

valued baseband modulated symbols, i.e., rn,I = sn + bn,I (n ∈ {1, 2, ..., L}), where bn,I

stands for the in-phase component of the sampled complex envelope of the additive

Gaussian noise. Again, for the reason of simplification in notations, rn and bn will

be used to present rn,I and bn,I in Sections A.1, A.2 and A.3. In other words, bn in

these sections won’t stand for the sampled complex envelope of additive noise, but for

its real component, with the variance equal to σ2 as defined in equation (3.42); and

similarly, rn is real valued, so that the part of the observation variables collected from

the quadrature component of r(t) in Section 3.3.2 will be neglected without notification.

129



A. ANALYTICAL EVALUATION OF AWGN NOISE PERFORMANCE
OF CCASK

A.1 Performance of Auto-Correlation Detection

According to equations (3.55)-(3.57), the general expression of noise performance of

the binary CCASK using auto-correlation detection can be obtained as a function of

the expectation and variance of the detection variable Cbm in equation (3.21). Hence,

the analysis of these two statistics are indispensable.

The normalized sum of the auto-correlation elements Rrmrm [`qv] (` ∈ N) of rm, as

defined in equation (3.19), can be written under the form of equation (2.18) as

Cm[v] =
∑Lv

`=1Rrmrm [`qv]∑Lv
`=1(L− `qv)

= Qv

Lv∑
`=1

L∑
n=1+`qv

rnrn−`qv

= Qv

qv∑
l=1

Lv∑
`=1

ζ(qv, l) (A.1)

where v ∈ {0, 1}, Lv = b Lqv c, Qv = 2
2LLv−Lv(Lv+1)qv

, and ζ(qv, l) =
∑Llv

k=` rl+`qvrl+(k−`)qv

with Llv =
⌊
L−l
qv

⌋
. The elements

∑Lv
`=1 ζ(qv, l) in (A.1) can be extended as

Lv∑
`=1

ζ(qv, l) =
Lv∑
`=1

Llv∑
k=`

(sl+`qv + bl+`qv)(sl+(k−`)qv + bl+(k−`)qv)

=
Lv∑
`=1

Llv∑
k=`

sl+`qvsl+(k−`)qv +
Lv∑
`=1

Llv∑
k=`

bl+`qvbl+(k−`)qv

+
Lv∑
`=1

Llv∑
k=`

(sl+`qvbl+(k−`)qv + sl+(k−`)qvbl+`qv)

(A.2)

Inserting (A.1) and (A.2) into equation (3.21), we can get the extended expression of
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decision variable Cbm as

Cbm = Q1

q1∑
l=1

L1∑
`=1

Ll1∑
k=`

sl+kq1sl+(k−`)q1 −Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

sl+kq0sl+(k−`)q0

+Q1

q1∑
l=1

L1∑
`=1

Ll1∑
k=`

bl+kq1bl+(k−`)q1 −Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

bl+kq0bl+(k−`)q0

+Q1

q1∑
l=1

L1∑
`=1

Ll1∑
k=`

(sl+kq1bl+(k−`)q1 + sl+(k−`)q1bl+kq1)

−Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

(sl+kq0bl+(k−`)q0 + sl+(k−`)q0bl+kq0)

(A.3)

In order to simplify the notations, under the condition that L � q1, q0, we can

define Lv = 1
qv

∑qv
l=1 L

l
v to approximate Llv (l ∈ {1, 2, ..., qv}), which agrees with L =

(Lv + 1)qv. In case that dm = i (i ∈ {0, 1}) was transmitted, the expectation of C(i)
bm

can be calculated as:

E(C(i)
bm

)

= Q1

q1∑
l=1

L1∑
`=1

Llv∑
k=`

E(sl+kq1sl+(k−`)q1)−Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

E(sl+kq0sl+(k−`)q0)

+Q1

q1∑
l=1

L1∑
`=1

Ll1∑
k=`

E(bl+kq1bl+(k−`)q1)−Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

E(bl+kq0bl+(k−`)q0)

+Q1

q1∑
l=1

L1∑
`=1

Ll1∑
k=`

E(sl+kq1bl+(k−`)q1 + sl+(k−`)q1bl+kq1)

−Q0

q0∑
l=1

L0∑
`=1

Ll0∑
k=`

E(sl+kq0bl+(k−`)q0 + sl+(k−`)q0bl+kq0)

= (−1)i+1Qi

 qi∑
l=1

Li∑
`=1

Lli∑
k=`

〈
x(i)
qi,l

〉2 −Q1−i

q1−i∑
l=1

L1−i∑
`=1

Ll1−i∑
k=`

〈
x(i)
q1−i,l

〉2


= (−1)i+1〈µ2〉(i) (A.4)
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As long as the variance of C(i)
bm

is considered, the following expression can be given:

Var(C(i)
bm

)

= Q2
1Var

( q1∑
l=1

L1∑
`=1

Ll1∑
k=`

sl+kq1sl+(k−`)q1

)
+Q2

0Var
( q0∑
l=1

L0∑
`=1

Ll0∑
k=`

sl+kq0sl+(k−`)q0

)

+Q2
1Var

( q1∑
l=1

L1∑
`=1

Ll1∑
k=`

bl+kq1bl+(k−`)q1

)
+Q2

0Var
( q0∑
l=1

L0∑
`=1

Ll0∑
k=`

bl+kq0bl+(k−`)q0

)

+Q2
1Var

( q1∑
l=1

L1∑
`=1

Ll1∑
k=`

(sl+kq1bl+(k−`)q1 + sl+(k−`)q1bl+kq1)
)

+Q2
0Var

( q0∑
l=1

L0∑
`=1

Ll0∑
k=`

(sl+kq0bl+(k−`)q0 + sl+(k−`)q0bl+kq0)
)

(A.5)

The variances of the auto-correlations of sm in (A.5) can be extended as

Var
( qv∑
l=1

Lv∑
`=1

Llv∑
k=`

sl+`qvsl+(k−`)qv

)

=
qv∑
l=1

Llv∑
k=1

Var
(
sl+`qv

k∑
K=1

sl+(k−`)qv

)

=
qv∑
l=1

Llv∑
k=1

[
E
(
s2
l+`qv(

k∑
K=1

sl+(k−`)qv)
2
)
− E2

(
sl+`qv

k∑
K=1

sl+(k−`)qv

)]

=
qv∑
l=1

Llv∑
k=1

[
E
(
s2
l+`qv

)
E
(

(
k∑

K=1

sl+(k−`)qv)
2
)
− E2

(
sl+`qv

)
E2
( k∑
K=1

sl+(k−`)qv

)]

=

{
Li(Li+1)(Li+2)

3

∑qi
l=1(µ(i)2

l + 3
2Li+4

δ
(i)2

l )δ(i)2

l , v = i
LL1−i

2 ∆4 v 6= i

=

{
L
3 (L

2

q2i
− 1)〈µ2δ2〉(i) + L

2 ( Lqi − 1)〈δ4〉(i), v = i
L
2 ( L

q1−i
− 1)∆4 v 6= i

(A.6)

where the extensions of the elements can be obtained from:

E
(
s2
l+`qv

)
=

{ 〈
x(i)2

qi,l

〉
, v = i〈

x(i)2

q1−i,l

〉
, v 6= i

=

{
µ

(i)2

l + δ
(i)2

l , v = i
∆2, v 6= i

(A.7)

E2
(
sl+`qv

)
=

{ 〈
x(i)
qi,l

〉2
, v = i〈

x(i)
q1−i,l

〉2
, v 6= i

=

{
µ

(i)2

l , v = i
0, v 6= i

(A.8)
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E
(

(
k∑

K=1

sl+(k−`)qv)
2
)

= E
( k∑
K=1

s2
l+(k−`)qv +

k∑
K=1

k∑
K′=1
K′ 6=K

sl+(k−`)qvsl+(k−K′)qv

)

=

{
k
〈
x(i)2

qi,l

〉
+ k(k − 1)

〈
x(i)
qi,l

〉2
, v = i

k
〈
x(i)2

q1−i,l

〉
+ k(k − 1)

〈
x(i)
q1−i,l

〉2
, v 6= i

=

{
k(µ(i)2

l + δ
(i)2

l ) + k(k − 1)µ(i)2

l , v = i
k∆2, v 6= i

(A.9)

E2
( k∑
K=1

sl+(k−`)qv

)
=

{
k2
〈
x(i)
qi,l

〉2
, v = i

k2
〈
x(i)
q1−i,l

〉2
, v 6= i

=

{
k2µ

(i)2

l , v = i
0, v 6= i

(A.10)

In the similar way, the variance of the auto-correlation of bm, as well as the variance

of the cross-correlation between sm and bm in equation (A.5), can also be extended as

Var
( qv∑
l=1

Lv∑
`=1

Llv∑
k=`

bl+`qvbl+(k−`)qv

)
=
L

2
(
L

qv
− 1)σ4 (A.11)

Var
( qv∑
l=1

Lv∑
`=1

Llv∑
k=`

(sl+`qvbl+(k−`)qv + sl+(k−`)qvbl+`qv)
)

=

{ (
L
3 ( Lqi − 1)(2 Lqi − 1)〈µ2〉(i) + L( Lqi − 1)〈δ2〉(i)

)
σ2, v = i

L( L
q1−i
− 1)∆2σ2, v 6= i

(A.12)

Furthermore, Qv = 2
2LLv−Lv(Lv+1)qv

≈ 2qv
L(L−qv) . Hence, inserting (A.6), (A.11) and

(A.12) into (A.5), the expression of the variance of C(i)
bm

can be obtained as

Var(C(i)
bm

) =
4(L+ qi)

3L(L− qi)〈µ
2δ2〉(i) +

2qi
L(L− qi)〈δ

4〉(i) +
2q1−i

L(L− q1−i)
∆4

+
( 4(2L− qi)

3L(L− qi)〈µ
2〉(i) +

4qi
L(L− qi)〈δ

2〉(i) +
4q1−i

L(L− q1−i)
∆2
)
σ2

+
2
L

( qi
L− qi +

q1−i
L− q1−i

)
σ4

(A.13)

Consequently, replacing E(ε(i)) and Var(ε(i)) in equations (3.55)-(3.57) by E(C(i)
bm

)

and Var(C(i)
bm

) in (A.4) and (A.13) respectively, the BER performance of the binary

133



A. ANALYTICAL EVALUATION OF AWGN NOISE PERFORMANCE
OF CCASK

CCASK using auto-correlation detection can be presented as

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4q1−i
L(L− q1−i)

∆4

〈µ2〉(i)2

+
( 8(2L− qi)

3L(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

8qi
L(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

8q1−i
L(L− q1−i)

∆2

〈µ2〉(i)2
)
σ2

+
4
L

( qi
L− qi +

q1−i
L− q1−i

) σ4

〈µ2〉(i)2
)− 1

2
]

(A.14)

In case of large number of samples per symbol and relative small zones of CCAs

are considered, i.e., L� q0, q1, and 〈δ2〉(i) � 〈µ2〉(i), it’s reasonable to do the approx-

imations as Ebd = L∆2 = L(〈µ2〉(i) + 〈δ2〉(i)) ≈ L〈µ2〉(i). Furthermore, according to

equation (3.47) and equation (3.42), Eb = Ebd/(2W ) and N0 = Wσ2. Under these

conditions, the BER performance the binary CCASK using auto-correlation detection

in (A.14) can be approximated in function of Eb/N0 as

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+ (qi + q1−i)

N2
0

E2
b

)− 1
2

]
(A.15)
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A.2 Performance of Spectral Detection

According to equations (3.55)-(3.57), the general expression of noise performance of the

binary CCASK using spectral detection can be obtained as a function of the expectation

and variance of the detection variable Dbm in equation (3.26). Hence, the analysis of

these two statistical values are indispensable.

The mean squared value of the observed spectra magnitudes of rm, as defined in

equation (3.24), can also be written under the form of equation (2.18) as

Dm[v] =
1
qv

qv∑
K=1

(
Avm[K]

)2

=
1
qv

qv∑
K=1

∣∣∣ L∑
n=1

rne
−j2π K

qv
n
∣∣∣2

=
1
qv

qv∑
K=1

∣∣∣ qv∑
l=1

ξ(qv, l)e
−j2π K

qv
l
∣∣∣2

=
qv∑
l=1

ξ2(qv, l) (A.16)

where ξ(qv, l) =
∑Llv

k=0(sl+`qv + bl+`qv) with Llv =
⌊
L−l
qv

⌋
. Furthermore, the element

ξ2(qv, l) in (A.16) can be extended as

ξ2(qv, l) =
Llv∑
k=0

Llv∑
k′=0

(sl+`qv + bl+`qv)(sl+k′qv + bl+k′qv)

=
Llv∑
k=0

(sl+`qv + bl+`qv)
2 +

Llv∑
k=0

Llv∑
k′=0
k′ 6=k

(sl+`qv + bl+`qv)(sl+k′qv + bl+k′qv)

=
Llv∑
k=0

(sl+`qv + bl+`qv)
2

+2
Llv∑
k=0

k−1∑
k′=0

(
sl+`qvsl+k′qv + bl+`qvbl+k′qv + sl+`qvbl+k′qv + bl+`qvsl+k′qv

)
(A.17)

Inserting (A.16) and (A.17) into equation (3.26), we can get the extended expression
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of decision variable Dbm as

Dbm = 2
q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(
sl+kq1sl+k′q1 + bl+kq1bl+k′q1 + sl+kq1bl+k′q1 + bl+kq1sl+k′q1

)
−2

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(
sl+kq0sl+k′q0 + bl+kq0bl+k′q0 + sl+kq0bl+k′q0 + bl+kq0sl+k′q0

)
(A.18)

In order to simplify the notations, under the condition that L � q1, q0, Lv =
1
qv

∑qv
l=1 L

l
v can be defined to approximate Llv (l ∈ {1, 2, ..., qv}), which agrees with

L = (Lv + 1)qv. In case that dm = i (i ∈ {0, 1}) was transmitted, the expectation of

D
(i)
bm

can be calculated as:

E(D(i)
bm

) = 2
q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

E
(
sl+kq1sl+k′q1 + bl+kq1bl+k′q1 + sl+kq1bl+k′q1 + bl+kq1sl+k′q1

)
−2

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

E
(
sl+kq0sl+k′q0 + bl+kq0bl+k′q0 + sl+kq0bl+k′q0 + bl+kq0sl+k′q0

)
= 2

q1∑
l=1

L1∑
k=0

k−1∑
k′=0

E
(
sl+kq1sl+k′q1

)− 2
q0∑
l=1

L0∑
k=0

k−1∑
k′=0

E
(
sl+kq0sl+k′q0

)
= (−1)i+1

(
LLi
qi

qi∑
l=1

〈
x(i)
qi,l

〉2 − LL1−i
q1−i

q1−i∑
l=1

〈
x(i)
q1−i,l

〉2

)

= (−1)i+1L(
L

qi
− 1)〈µ2〉(i) (A.19)

As long as the variance of D(i)
bm

is considered, the following expression can be given:

Var(D(i)
bm

) = 4Var
( q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

sl+kq1sl+k′q1

)
+ 4Var

( q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

sl+kq0sl+k′q0

)

+4Var
( q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

bl+kq1bl+k′q1

)
+ 4Var

( q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

bl+kq0bl+k′q0

)

+4Var
( q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1bl+k′q1 + bl+kq1sl+k′q1)
)

+4Var
( q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0bl+k′q0 + bl+kq0sl+k′q0)
)

(A.20)
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The variances of the auto-correlation of sm in (A.20) can be extended as

Var
( qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

sl+`qvsl+k′qv

)

=
qv∑
l=1

Llv∑
k=0

Var
(
sl+`qv

k−1∑
k′=0

sl+k′qv

)

=
qv∑
l=1

Llv∑
k=0

[
E
(
s2
l+`qv(

k−1∑
k′=0

sl+k′qv)
2
)
− E2

(
sl+`qv

k−1∑
k′=0

sl+k′qv

)]

=
qv∑
l=1

Llv∑
k=0

[
E(s2

l+`qv)E
(

(
k−1∑
k′=0

sl+k′qv)
2
)
− E2(sl+`qv)E

2
( k−1∑
k′=0

sl+k′qv

)]

=

{
Li(Li+1)(Li+2)

3

∑qi
l=1(µ(i)2

l + 3
2Li+4

δ
(i)2

l )δ(i)2

l , v = i
LL1−i

2 ∆4, v 6= i

=

{
L
3 (L

2

q2i
− 1)〈µ2δ2〉(i) + L

2 ( Lqi − 1)〈δ4〉(i), v = i
L
2 ( L

q1−i
− 1)∆4, v 6= i

(A.21)

where the extensions of the elements E(s2
l+`qv

) and E2(sl+`qv) in (A.21) have been given

in (A.7)-(A.8), and the extensions of the other two elements in A.21 can be given as

E
(

(
k−1∑
k′=0

sl+k′qv)
2
)

= E
( k−1∑
k′=0

s2
l+k′qv +

k−1∑
k′=0

k−1∑
k′′=0
k′′ 6=k′

sl+k′qvsl+k′′qv

)

=

{
k
〈
x(i)2

qi,l

〉
+ k(k − 1)

〈
x(i)
qi,l

〉2
, v = i

k
〈
x(i)2

q1−i,l

〉
+ k(k − 1)

〈
x(i)
q1−i,l

〉2
, v 6= i

=

{
k2µ

(i)2

l + kδ
(i)2

l , v = i
k∆2, v 6= i

(A.22)

E2
( k−1∑
k′=0

sl+k′qv

)
=

{
k2
〈
x(i)
qi,l

〉2
, v = i

k2
〈
x(i)
q1−i,l

〉2
, v 6= i

=

{
k2µ

(i)2

l , v = i
0, v 6= i

(A.23)

In the similar way, the variance of the auto-correlation of bm, as well as the cross-

correlation between sm and bm in (A.20), can also be extended and represented by

Var
( qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

bl+`qvbl+k′qv

)
=
L

2
(
L

qv
− 1)σ4 (A.24)
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Var
( qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

(sl+`qvbl+k′qv + bl+`qvsl+k′qv)
)

=

{
L
3 ( Lqi − 1)(2L

qi
− 1)〈µ2〉(i)σ2 + L( Lqi − 1)〈δ2〉(i)σ2, v = i

L( L
q1−i
− 1)∆2σ2, v 6= i

(A.25)

Inserting (A.21), (A.24) and (A.25) into (A.20), the expression of the variance of D(i)
bm

can therefore be obtained as

Var(D(i)
bm

) =
4L
3

(
L2

q2
i

− 1)〈µ2δ2〉(i) + 2L(
L

qi
− 1)〈δ4〉(i) + 2L(

L

q1−i
− 1)∆4

+
(8L

3
(
L

qi
− 1)(

L

qi
− 1

2
)〈µ2〉(i) + 4L(

L

qi
− 1)〈δ2〉(i) + 4L(

L

q1−i
− 1)∆2

)
σ2

+2L
(L
qi

+
L

q1−i
− 2
)
σ4

(A.26)

Consequently, replacing E(ε(i)) and Var(ε(i)) in equations (3.55)-(3.57) by E(D(i)
bm

)

and Var(D(i)
bm

) in (A.19) and (A.26) respectively, the BER performance of the binary

CCASK using spectral detection can be presented as

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4(L− q1−i)q2
i

L(L− qi)2q1−i

∆4

〈µ2〉(i)2

+
(8(2L− qi))

3L(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

8qi
L(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

8(L− q1−i)q2
i

L(L− qi)2q1−i

∆2

〈µ2〉(i)2
)
σ2

+
4
L

L(qi + q1−i)qi − 2q2
i q1−i

(L− qi)2q1−i

σ4

〈µ2〉(i)2
)− 1

2
]

(A.27)

In case of large number of samples per symbol and relative small zones of CCAs

are considered, i.e., L � q0, q1, and 〈δ2〉(i) � 〈µ2〉(i), it’s reasonable to do the ap-

proximations as Ebd = L∆2 = L(〈µ2〉(i) + 〈δ2〉(i)) ≈ L〈µ2〉(i). Since Eb = Ebd/(2W )

and N0 = Wσ2 according to equation (3.47) and equation (3.42), the expression of

BER performance the binary CCASK using spectral detection in (A.27) can also be

approximated and represented in function of Eb/N0 as

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+
(
qi +

q2
i

q1−i

)N2
0

E2
b

)− 1
2
]

(A.28)

138



A.3 Performance of Statistical Detection

A.3 Performance of Statistical Detection

According to equations (3.55)-(3.57), the general expression of noise performance of

the binary CCASK using statistical detection can be obtained as a function of the

expectation and variance of the detection variable Vbm in equation (3.32). Hence, the

analysis of these two statistical values are required.

Since Vbm is the difference between q1-DMV and q0-DMV of the the received symbol

rm, the qv-DMV (v ∈ {0, 1}) of rm should be analyzed firstly. Downsample rm with fac-

tor qv and offset l (l ∈ {1, 2, ..., qv}) to get the sub-vector rqv ,l = (rl, rl+qv , ..., rl+Llvqv),

with rl+kqv = sl+kqv + bl+kqv (k ∈ {0, 1, ..., Llv}, Llv =
⌊
L−l
qv

⌋
). Denote 〈rqv ,l〉 =

1
Llv+1

∑Llv
k=0 rl+`qv , so that the variance of the sub-vector rqv ,l can be represented as

Var(rqv ,l) =
1
Llv

Llv∑
k=0

(rl+`qv − 〈rqv ,l〉)2

=
1
Llv

Llv∑
k=0

(
r2
l+`qv − 2 〈rqv ,l〉 rl+`qv + 〈rqv ,l〉2

)

=
1
Llv

Llv∑
k=0

r2
l+`qv − 2 〈rqv ,l〉

1
Llv

Llv∑
k=0

rl+`qv + 〈rqv ,l〉2

=
1
Llv

Llv∑
k=0

r2
l+`qv −

Llv + 2
Llv

〈rqv ,l〉2

=
1
Llv

Llv∑
k=0

r2
l+`qv −

Llv + 2
Llv(Llv + 1)2

( Llv∑
k=0

r2
l+`qv +

Llv∑
k=0

Llv∑
k′=0
k′ 6=k

rl+`qvrl+k′qv

)

=
Ll

2

v + Llv − 1
Llv(Llv + 1)2

Llv∑
k=0

r2
l+`qv −

2(Llv + 2)
Llv(Llv + 1)2

Llv∑
k=0

k−1∑
k′=0

rl+`qvrl+k′qv (A.29)

Hence, the expression of qv-DMV of rm can be obtained as

Vm[v] =
1
qv

qv∑
l=1

Var(rqv ,l)

=
1
qv

qv∑
l=1

1
Llv

Llv∑
k=0

r2
l+`qv −

1
qv

qv∑
l=1

Llv + 2
Llv

〈rqv ,l〉2

=
1
qv

qv∑
l=1

Ll
2

v + Llv − 1
Llv(Llv + 1)2

Llv∑
k=0

r2
l+`qv −

2
qv

qv∑
l=1

Llv + 2
Llv(Llv + 1)2

Llv∑
k=0

k−1∑
k′=0

rl+`qvrl+k′qv
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Again, in order to simplify the notations, under the condition that L � q1, q0,

Lv = 1
qv

∑qv
l=1 L

l
v can be defined to approximate Llv (l ∈ {1, 2, ..., qv}), which agrees

with L = (Lv + 1)qv. Therefore, Vm(v) can be represented by

Vm[v] =
Lv

2 + Lv − 1

L(Lv
2 + Lv)

qv∑
l=1

Llv∑
k=0

r2
l+`qv −

2qv
L2

Lv + 2
Lv

qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

rl+`qvrl+k′qv

≈ 1
L

L∑
n=1

r2
n −

2qv(L+ qv)
L2(L− qv)

qv∑
l=1

Llv∑
k=0

k−1∑
k′=0

rl+`qvrl+k′qv (A.30)

Therefore, the detection variable Vbm can be represented by

Vbm = Vm[0]− Vm[1]

=
2q1(L+ q1)
L2(L− q1)

q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

rl+kq1rl+k′q1

−2q0(L+ q0)
L2(L− q0)

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

rl+kq0rl+k′q0

=
2q1(L+ q1)
L2(L− q1)

q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1 + bl+kq1)(sl+k′q1 + bl+k′q1)

−2q0(L+ q0)
L2(L− q0)

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0 + bl+kq0)(sl+k′q0 + bl+k′q0)

=
2q1(L+ q1)
L2(L− q1)

q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1sl+k′q1 + bl+kq1bl+k′q1)

+
2q1(L+ q1)
L2(L− q1)

q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1bl+k′q1 + bl+kq1sl+k′q1)

−2q0(L+ q0)
L2(L− q0)

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0sl+k′q0 + bl+kq0bl+k′q0)

−2q0(L+ q0)
L2(L− q0)

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0bl+k′q0 + bl+kq0sl+k′q0)

(A.31)
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A.3 Performance of Statistical Detection

Therefore, the expectation of Vbm can be obtained as

E(Vbm) =
2q1(L+ q1)
L2(L− q1)

q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

E(sl+kq1sl+k′q1)

−2q0(L+ q0)
L2(L− q0)

q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

E(sl+kq0sl+k′q0)

= (−1)i+1
(L+ qi

Lqi

qi∑
l=1

〈
x(i)
qi,l

〉2 − L+ q1−i
Lq1−i

q1−i∑
l=1

〈
x(i)
q1−i,l

〉2
)

= (−1)i+1(1 +
qi
L

)〈µ2〉(i)) (A.32)

As long as the variance of Vbm is considered, firstly, it could be expanded as

Var(Vbm) =
4q2

1(L+ q1)2

L4(L− q1)2
Var
( q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1sl+k′q1 + bl+kq1bl+k′q1)
)

+
4q2

1(L+ q1)2

L4(L− q1)2
Var
( q1∑
l=1

Ll1∑
k=0

k−1∑
k′=0

(sl+kq1bl+k′q1 + bl+kq1sl+k′q1)
)

+
4q2

0(L+ q0)2

L4(L− q0)2
Var
( q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0sl+k′q0 + bl+kq0bl+k′q0)
)

+
4q2

0(L+ q0)2

L4(L− q0)2
Var
( q0∑
l=1

Ll0∑
k=0

k−1∑
k′=0

(sl+kq0bl+k′q0 + bl+kq0sl+k′q0)
)

(A.33)

Since the extensions of the other elements of Var(Vbm) have been done in (A.21)-(A.25),

inserting them into (A.33), the expression of Var(Vbm) can be obtained as

Var(Vbm) =
4(L+ qi)3

3L3(L− qi)〈µ
2δ2〉(i) +

2qi(L+ qi)2

L3(L− qi) 〈δ
4〉(i) +

2q1−i(L+ q1−i)2

L3(L− q1−i)
∆4

+
((L+ qi)2(2L− qi)

3L3(L− qi) 〈µ2〉(i) +
qi(L+ qi)2

L3(L− qi) 〈δ
2〉(i) +

q1−i(L+ q1−i)2

L3(L− q1−i)
∆2
)

4σ2

+
(qi(L+ qi)2

L3(L− qi) +
q1−i(L+ q1−i)2

L3(L− q1−i)

)
2σ4

(A.34)

Consequently, replacing E(ε(i)) and Var(ε(i)) in equations (3.55)-(3.57) by E(V (i)
bm

)

and Var(V (i)
bm

) in (A.32) and (A.34) respectively, the BER performance of the binary
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CCASK using statistical detection can be presented as

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4q1−i
L(L− q1−i)

∆4

〈µ2〉(i)2

+
(4(2L− qi)

3(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

4qi
(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

4q1−i
(L− q1−i)

∆2

〈µ2〉(i)2
)2σ2

L

+
( qi
L(L− qi) +

q1−i
L(L− q1−i)

) 4σ4

〈µ2〉(i)2
)− 1

2
]

(A.35)

In case of large number of samples per symbol and relative small zones of CCAs

are considered, i.e., L� q0, q1, and 〈δ2〉(i) � 〈µ2〉(i), it’s reasonable to do the approx-

imations as Ebd = L∆2 = L(〈µ2〉(i) + 〈δ2〉(i)) ≈ L〈µ2〉(i). Furthermore, according to

equation (3.47) and equation (3.42), Eb = Ebd/(2W ) and N0 = Wσ2 can be inserted

in (A.35), and the expression of BER performance the binary CCASK using statistical

detection can also be approximated in function of Eb/N0 as

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+ (qi + q1−i)

N2
0

E2
b

)− 1
2

]
(A.36)
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Appendix B

Analytical Evaluation of AWGN

Noise Performance of CCAFSK

Similarly as in Appendix A, the analytical evaluation of the noise performance of

CCAFSK in AWGN channel will be talked about in the discrete-time baseband equiva-

lent AWGN channel model. The analysis will be done on the passband carrier removed

signal of the mth received symbol r(t) = s(t) + b(t) (t ∈ [mT, (m+ 1)T ]), and the sam-

pled sequence of which is rm = (rm[1], rm[2], ..., rm[L]), with rm[n] = sm[n] + bm[n]

(n ∈ {1, 2, ..., L}). The index m will be dropped for the sake of simplification, and rn,

sn, xn and bn will be used to stand for rm[n], sm[n], xm[n] and bm[n], without loss of

generality.

Remind that for binary CCAFSK, the baseband modulated symbols also have real

values: sn = xn when a ’0’ was transmitted, while sn = (−1)nxn when an ’1’ was

transmitted. In other words, sn = (−1)nixn when an ′i′ was transmitted. Hence,

the real statistics of the equivalent discrete-time baseband AWGN channel model is

sufficient for the detection of the real valued baseband modulated symbols, with rn,I =

sn + bn,I (n ∈ {1, 2, ..., L}) Again, rn and bn will be used to present the real valued

terms rn,I and bn,I for the simplification, with the variance of bn equal to σ2 as defined

in equation (3.42).

According to equations (3.55)-(3.57), the general expression of noise performance

of the binary CCAFSK can be obtained as a function of the expectation and variance

of the detection variable Bbm in equation (3.92). Hence, the expression of the two

statistics should be analyzed firstly.
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Let’s start with the analysis of the squared magnitudes of 2p-point DFT of rm in

equation (3.91), which can be extended as

A2
m[K] =

∣∣∣ L∑
n=1

rne
−j2π K

2q
n
∣∣∣2

=
( L∑
n=1

rn cos(2π
K

2q
n)
)2

+
( L∑
n=1

rn sin(2π
K

2q
n)
)2

(B.1)

where K ∈ {1, 2, ..., 2q}. The mean of (B.1) in case that the value of K is even, i.e.,

K = 2K1 with K1 ∈ {1, 2, ..., q}, can be extended in the form of equation (2.18) as

1
q

q∑
K1=1

A2
m[2K1]

=
1
q

q∑
K1=1

[( L∑
n=1

rn cos(2π
2K1

2q
n)
)2

+
( L∑
n=1

rn sin(2π
2K1

2q
n)
)2]

=
1
q

q∑
K1=1

( q∑
l=1

Ll∑
k=0

rl+kq cos(2π
2K1

2q
(l + kq))

)2

+
1
q

q∑
K1=1

( q∑
l=1

Ll∑
k=0

rl+kq sin(2π
2K1

2q
(l + kq))

)2

=
1
q

q∑
K1=1

[( q∑
l=1

Ll∑
k=0

rl+kq cos(
2K1

q
lπ)
)2

+
( q∑
l=1

Ll∑
k=0

rl+kq sin(
2K1

q
lπ)
)2]

=
1
q

q∑
K1=1

[( q∑
l=1

ξ(q, l) cos(
2K1

q
lπ)
)2

+
( q∑
l=1

ξ(q, l) sin(
2K1

q
lπ)
)2]

=
1
q

q∑
K1=1

q∑
l=1

ξ2(q, l) +
1
q

q∑
K1=1

q∑
l=1

q∑
l′=1
l′ 6=l

ξ(q, l)ξ(q, l′) cos
(K1

q
(l − l′)2π

)

=
1
q

q∑
K1=1

q∑
l=1

ξ2(q, l) +
1
q

q∑
l=1

q∑
l′=1
l′ 6=l

ξ(q, l)ξ(q, l′)
[ q∑
K1=1

cos
(K1

q
(l − l′)2π

)]

=
q∑
l=1

ξ2(q, l) (B.2)

where Ll =
⌊
L−l
q

⌋
, and ξ(q, l) =

∑Ll
k=0 rl+kq. Similarly, the mean of (B.1) in case that

the value of K is odd, i.e., K = 2K1 − 1 with K1 ∈ {1, 2, ..., q} can be also extended
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and written in the same form as

1
q

q∑
K1=1

A2
m[2K1 − 1]

=
1
q

q∑
K1=1

( q∑
l=1

Ll∑
k=0

(−1)krl+kq cos(
2K1 − 1

q
lπ)
)2

+
1
q

q∑
K1=1

( q∑
l=1

Ll∑
k=0

(−1)krl+kq sin(
2K1 − 1

q
lπ)
)2

=
1
q

q∑
K1=1

[( q∑
l=1

ξ̆(q, l) cos(
2K1 − 1

q
lπ)
)2

+
( q∑
l=1

ξ̆(q, l) sin(
2K1 − 1

q
lπ)
)2]

=
1
q

q∑
K1=1

q∑
l=1

ξ̆2(q, l) +
1
q

q∑
K1=1

q∑
l=1

q∑
l′=1
l′ 6=l

ξ̆(q, l)ξ̆(q, l′) cos
(2K1 − 1

q
(l − l′)π

)

=
q∑

K1=1

q∑
l=1

ξ̆2(q, l)

+
1
q

q∑
l=1

q∑
l′=1
l′ 6=l

ξ̆(q, l)ξ̆(q, l′) cos
(1
q

(l − l′)π
)[ q∑

K1=1

cos
(K1

q
(l − l′)2π

)]

+
1
q

q∑
l=1

q∑
l′=1
l′ 6=l

ξ̆(q, l)ξ̆(q, l′) sin
(1
q

(l − l′)π
)[ q∑

K1=1

sin
(K1

q
(l − l′)2π

)]

=
q∑
l=1

ξ̆2(q, l) (B.3)

where ξ̆(q, l) =
∑Ll

k=0(−1)krl+kq. Remind that the expansions in (B.2) and (B.3) have

used the following results:

q∑
K1=1

cos
(K1

q
(l − l′)2π

)
= 0 (B.4)

q∑
K1=1

sin
(K1

q
(l − l′)2π

)
= 0 (B.5)

Therefore, the decision variable Bbm of CCAFSK in equation (3.92) can be extended
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and represented by

Bbm =
q∑
l=1

[
ξ̆2(q, l)− ξ2(q, l)

]

=
q∑
l=1

Ll∑
k=0

Ll∑
k′=0

(
(−1)k+k′ − 1

)
rl+kqrl+k′q

= 2
q∑
l=1

Ll∑
k=0

k−1∑
k′=0

(
(−1)k+k′ − 1

)
rl+kqrl+k′q

= −4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

rl+kqrl+(k−2∆k−1)q (B.6)

Since it was supposed that q is odd, it can be obtained that sl+kq = (−1)(l+kq)ixl+kq =

(−1)(l+k)ixl+kq. Hence, the decision variable Bbm in (B.6) can be expanded as

Bbm = −4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(
sl+kq + bl+kq

)(
sl+(k−2∆k−1)q + bl+(k−2∆k−1)q

)

= −4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(
(−1)(l+k)ixl+kq + bl+kq

)
×
(

(−1)(l+k−2∆k−1)ixl+(k−2∆k−1)q + bl+(k−2∆k−1)q

)
= −4

q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)ixl+kqxl+(k−2∆k−1)q

−4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k)ixl+kqbl+(k−2∆k−1)q

−4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k−1)isl+(k−2∆k−1)qbl+kq

−4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

bl+kqbl+(k−2∆k−1)q

(B.7)

In order to simplify the notations, let’s define L = 1
q

∑q
l=1 Ll to approximate all the

Ll (l ∈ {1, 2, ..., q}), which agrees with L = (L + 1)q. Hence, the expectation of Bbm
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when an ′i′ was transmitted can be presented by these statistical values as

E(B(i)
bm

) = −4
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

E
[
(−1)ixl+kqxl+(k−2∆k−1)q

]

= (−1)i+14
q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

〈
xq,l
〉2

= (−1)i+1L(L+ 2)
q∑
l=1

µ2
l

= (−1)i+1(L− q)(L
q

+ 1)〈µ2〉 (B.8)

Similarly, the variance of Bbm when an ′i′ was transmitted can be extended as

Var(B(i)
bm

) = 16Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(
sl+kq + bl+kq

)(
sl+(k−2∆k−1)q + bl+(k−2∆k−1)q

)]

= 16Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

xl+kqxl+(k−2∆k−1)q

]

+16Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k)ixl+kqbl+(k−2∆k−1)q

]

+16Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k)ixl+(k−2∆k−1)qbl+kq

]

+16Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

bl+kqbl+(k−2∆k−1)q

]
(B.9)

The further extensions of the elements of Var(Bbm) in (B.9) can be operated as

Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

xl+kqxl+(k−2∆k−1)q

]

=
q∑
l=1

Ll∑
k=1

Var
[
xl+kq

b k−1
2
c∑

∆k=0

xl+(k−2∆k−1)q

]
=

L

12

q∑
l=1

(
(L2 + 6L+

35
4

)µ2
l + 3(L+ 2)δ2

l

)
δ2
l

=
L− q

12

(L2

q2
+ 4

L

q
+

15
4

)
〈µ2δ2〉+

L− q
4

(L
q

+ 1
)
〈δ4〉 (B.10)
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Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k)ixl+kqbl+(k−2∆k−1)q

]

= Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

(−1)(l+k)ixl+(k−2∆k−1)qbl+kq

]
=

L

12

q∑
l=1

(
(L2 + 3L+

11
4

)µ2
l + 3(L+ 2)δ2

l

)
σ2

=
L− q

12

(L2

q2
+
L

q
+

3
4

)
〈µ2〉σ2 +

L− q
4

(L
q

+ 1
)
〈δ2〉σ2 (B.11)

Var
[ q∑
l=1

Ll∑
k=1

b k−1
2
c∑

∆k=0

bl+kqbl+(k−2∆k−1)q

]
=
L(L+ 2)

4
qσ4

=
L− q

4

(L
q

+ 1
)
σ4 (B.12)

Therefore, inserting (B.10)-(B.12) into (B.9), the expression of variance of Bbm
using the statistics of signal and noise can be obtained as

Var(B(i)
bm

) =
4
3

(L− q)
(L2

q2
+ 4

L

q
+

15
4

)
〈µ2δ2〉+ 4(L− q)

(L
q

+ 1
)
〈δ4〉

+
8
3

(L− q)
(L2

q2
+
L

q
+

3
4

)
〈µ2〉+ 8(L− q)(L

q
+ 1)〈δ2〉

)
σ2 (B.13)

+4(L− q)(L
q

+ 1)σ4

Consequently, replacing E(ε(i)) and Var(ε(i)) in equations (3.55)-(3.57) by E(B(i)
bm

)

and Var(B(i)
bm

) in (B.8) and (B.13) respectively, the BER performance of the binary

CCAFSK can be presented as

BERCCAFSK =
1
4

1∑
i=0

erfc

[(
2(4L2 + 16Lq + 15q2)

3(L− q)(L+ q)2

〈µ2δ2〉
〈µ2〉2 +

8q
(L2 − q2)

〈δ4〉
〈µ2〉2

+
(4(4L2 + 4Lq + 3q2)

3(L− q)(L+ q)2

〈µ2〉
〈µ2〉2 +

16q
(L2 − q2)

〈δ2〉
〈µ2〉2

)
σ2

+
8q

(L2 − q2)
σ4

〈µ2〉2
)− 1

2
]

(B.14)
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In case of large number of samples per symbol and relative small zones of CCA

are considered, i.e., L � q, and 〈δ2〉 � 〈µ2〉, it’s reasonable to do the approximations

as Ebd = L∆2 = L(〈µ2〉 + 〈δ2〉) ≈ L〈µ2〉. Similarly, the channel statistics derived

in equation (3.47) and equation (3.42), i.e., Eb = Ebd/(2W ) and N0 = Wσ2, can be

inserted in (B.14), and the expression of BER performance the binary CCAFSK can

be approximated in function of Eb/N0 as

BERCCAFSK ≈ 1
2

erfc

[(
8
3
N0

Eb
+ 2q

N2
0

E2
b

)− 1
2
]

(B.15)
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• Y. XU, P. CHARGÉ, D. FOURNIER-PRUNARET, A.K.TAHA ”A Digital En-

coding Method Using Chaos”, IEEE International Workshop on Nonlinear Maps

and their Applications (NOMA 07) Toulouse, France, IEEE (December 2007)

• Y. XU, D. FOURNIER-PRUNARET, P. CHARGÉ ”Utilisation du Chaos dans
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Résumé

Au cours de la dernière décennie, des changements importants sont apparus concernant

les transmissions sans fil ; de nouvelles technologies ont été introduites qui permettent

de transmettre des données de natures très diverses [1]. Dans ce contexte, non seule-

ment la nature de l’information transmise a changé, mais aussi une grande variété

d’échelle des réseaux de communications est apparue. En d’autres termes, en fonction

des données à transmettre (parole, données multimédias,...) les réseaux sans fil peu-

vent être très étendus (wireless wide-area networks, WWAN), comme par exemple les

réseaux de téléphonie mobile [1]; ces réseaux sans fil peuvent être déployés localement

(wireless local area networks, WLAN) [2], comme IEEE 802.11a/b/g/n ; ces réseaux

peuvent aussi avoir une portée très réduite et l’on parle alors de réseaux personnels

sans fil (wireless personal area networks, WPAN) [3], etc. Devant une si grande diver-

sité des données et des réseaux de communication sans fil, de nombreux systèmes de

transmission ont été proposés afin de répondre à des contraintes de débit, de sécurité,

mais aussi à des contraintes de complexité, de consommation et de coût des disposi-

tifs d’émission/réception. De manière très générale, une communication consiste à

véhiculer une information par l’émission d’un signal à travers un canal de transmission.

Ce signal porteur d’information est bien souvent périodique mais peut tout aussi bien

être chaotique ou aléatoire.

En particulier, l’idée d’utiliser des signaux chaotiques pour les télécommunications

est apparue dans les années 1980. Suite à un rapport scientifique de l’US Army Re-

search Office, cette idée révolutionnaire à l’époque s’est rapidement développée. La

génération et la synchronisation de signaux chaotiques par des circuits électroniques

simples ont été intensivement étudiées [4] [5]. Depuis, l’application du chaos au do-

maine des télécommunications continue de susciter beaucoup d’intérêt de la part des

universitaires et des industriels. Ainsi, de nombreux procédés de modulation par chaos
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ont été proposés jusqu’à ce jour. En effet, les signaux chaotiques possèdent a priori

des propriétés particulièrement attractives pour les télécommuncations. Parmi ces pro-

priétés on citera les suivantes : un signal chaotique est potentiellement large bande,

non périodique, déterministe mais semble aléatoire. En raison de ces propriétés, beau-

coup de travaux ont porté sur l’adaptation des techniques de modulation classiques

aux signaux chaotiques, l’étalement de spectre par signaux chaotiques, ou encore le

cryptage ou la sécurisation des transmissions par chaos. En outre, des signaux chao-

tiques peuvent être générés à l’aide de circuits électroniques simples. Cette capacité a

rendu dernièrement l’attractivité du chaos encore plus forte en raison de l’intérêt que

l’on porte aujourd’hui aux petits systèmes communicants de faible complexité, faible

consommation, et faible coût.

La première motivation de cette thèse est d’étudier un système dynamique permettant

de générer des signaux chaotiques, afin de déterminer quelques propriétés intéressantes

pour les transmissions. Il s’agit ensuite de proposer de nouveaux procédés de modu-

lation et de détection non cohérente qui utilisent les propriétés des signaux générés.

Le domaine d’application des systèmes proposés est donc celui des transmissions large-

bande en général, sans focaliser sur un type de données ou un réseau en particulier.

Par conséquent, dans ce travail nous ne considérons pas le contrôle de puissance ou

le respect de gabarit spectral d’émission. L’organisation de ce résumé de thèse est la

suivante :

• Au chapitre 1, nous présentons l’état de l’art des systèmes de communication par

chaos. Dans un premier temps, nous définissons les systèmes dynamiques chao-

tiques, puis nous présentons le principe des communications basées sur l’utilisation

de signaux chaotiques.

• Dans le chapitre 2, nous proposons une structure de générateur de chaos, puis

une étude théorique de ce système nous permet d’identifier des attracteurs aux

propriétés spécifiques. En particulier nous focalisons notre attention sur certains

signaux chaotiques ayant une composante période ; on parle alors d’Attracteur

Chaotique Cyclique (CCA).

• Enfin, au chapitre 3 les signaux chaotiques CCA identifiés au chapitre précédent

sont utilisés au sein de procédés de transmission sur une large bande de fréquence.

La détection, au niveau du récepteur, se fait par exploitation des propriétés
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spécifiques de ces CCA. En particulier, deux systèmes de modulation basés sur le

CCA avec détection non-cohérente sont proposés. Les performances des ces deux

systèmes sont évaluées pour des canaux de bruit additif et des canaux multi-trajet.

Chapitre 1: Communications par signaux chaotiques

Le premier chapitre de cette thèse est consacré globalement à l’utilisation de signaux

chaotiques pour transmettre de l’information. La première partie du chapitre est alors

naturellement dédiée aux systèmes dynamiques pouvant générer des signaux chaotiques,

ainsi qu’aux méthodes d’analyse de ces systèmes. Plusieurs définitions fondamentales

concernant les systèmes dynamiques sont données afin de décrire ces derniers de manière

très générale. Puis de manière plus particulière, l’accent est mis sur les transforma-

tions ponctuelles non linéaires puisque le générateur de chaos qui sera utilisé dans les

chapitres 2 et 3 entre dans cette catégorie.

La seconde partie du chapitre permet de faire un état de l’art des techniques de modu-

lation large-bande. Selon le canal de propagation, nous illustrons l’intérêt que présente

une transmission sur une large bande par rapport à une transmission dite bande étroite

classique.

Enfin, ce chapitre se termine en évoquant les techniques de modulation/démodulation

de la littérature qui utilisent des signaux chaotiques. Concernant les communications

par chaos sur une large bande de fréquence, deux procédés peuvent être identifiés :

l’étalement de spectre par signaux chaotiques et la modulation directe de signaux por-

teurs chaotiques à large bande. Parmi les techniques mentionnées dans cette fin de

chapitre, la modulation dite ”Differential Chaos Shift Keying (DCSK)” est aujourd’hui

considérée comme la modulation par chaos la plus appropriée pour un canal de propa-

gation radio-fréquence réaliste.

Chapitre 2: Attracteurs cycliques chaotiques

Dans ce chapitre, un système dynamique discret bidimensionnel a été choisi comme

générateur de signaux chaotiques. Ce système dynamique peut être présenté par

l’équation suivante :

g(x, y) =
(

sin(aπx+ bπy), x
)

(B.16)
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où g : R2 → R2 est une fonction continue, et (a, b) sont des paramètres à valeurs réelles.

Le schéma de ce système est donné dans la figure B.1, où (xk, yk) est le vecteur d’état

aπ

bπ

z−1

sin(·)

xk

yk

xk+1

z−1

Figure B.1: Schéma du système (B.16).

à l’itération k.

Les comportements périodiques du système (B.16) ont été étudiés, en faisant l’analyse

des bifurcations pour les points fixes définis au chapitre 1. Le diagramme de bifurcation

dans le plan des paramètres (a, b) ∈ [−1, 0] est illustré dans la figure B.2, où la zone

bleue représente la région de paramètres correspondant à l’existence de points fixes.

Au centre de la figure B.2, on peut remarquer plusieurs régions colorées en forme de

Figure B.2: Régions de paramètre du système (B.16) correspondant à l’existence de
cycles, dont les périodes sont indiquées par le code des couleurs. Les lignes à tirets et
tiret-pointillées représentent les iscolines avec θ = 2π/3 et θ = 2π/8.

langues (ou de triangles). Ces zones correspondent à une structure de bifurcation, et
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s’appellent des langues d’Arnold [65]. Chaque langue d’Arnold correspond à un ensem-

ble de paramètres produisant un attracteur cyclique, dont la période est donnée par la

couleur de la langue. Cette structure de bifurcation est très particulière dans la mesure

où en choisissant des paramètres à proximité de ces langues, on observe des attacteurs

chaotiques (non périodiques) qui présentent néanmoins une composante cyclique de

même période que celle de la langue d’Arnold voisine. Ces attracteurs chaotiques sont

alors qualifiés d’Attracteurs Chaotiques Cycliques (CCA). Un CCA est un attracteur

pour lequel les états successifs passent périodiquement par plusieurs zones, mais la

valeur précise de l’état dans chaque zone est parfaitement chaotique. En ce sens, un

attracteur CCA est un véritable attracteur chaotique.

Dans notre étude, nous noterons CCA-q un CCA de période q, avec q égal au nom-

bre de zones cycliques (déterminé par les paramètres du système). La figure B.3

montre un CCA-31 du système (B.16), qui est obtenu en choisissant les paramètres

(a, b) = (0, 3590,−0, 6184). La séquence produite est de moyenne nulle 〈x〉 = 0, avec

〈·〉 l’opérateur de moyennage et x = (x1, x2, ...) la séquence des itérations (valeurs

successives de l’état du système).
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Figure B.3: CCA-31 du système (B.16): représentation des états du système, dans le
plan de phase ( à gauche) et selon l’indice d’itération (axe du temps) (à droite).

En analysant la séquence chaotique x = (x1, x2, ...) d’un CCA-q, les propriétés

spécifiques suivantes du CCA peuvent être observées :

• Propriété d’autocorrélation : l’autocorrélation de la séquence chaotique du CCA-

q, Rxx[m] =
∑

n xnxn−m, a une valeur relativement importante si m est mul-
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tiple de q. En d’autres termes, CCA-q possède une propriété quasi-cyclique

d’autocorrélation, qui est semblable à une séquence périodique de période q.

• Propriété spectrale : l’amplitude du spectre de la forme d’onde du CCA-q a une

distribution en forme de peigne, dans laquelle la majorité de la puissance est

distribuée sur q fréquences angulaires équiréparties ω = K
q 2π (K ∈ {1, 2, ..., q}),

alors que la minorité restante est distribuée sur les autres fréquences ω 6= K
q 2π

(ω ∈ (0, 2π]).

• Propriété statistique : la variance moyenne des sequences sous-échantillonnées

d’un facteur p (p-downsampled mean variance, p-DMV) de la séquence chaotique

du CCA-q a une valeur minimale lorsque p = `q (`∈N).

En outre, nous avons proposé un opérateur d’amélioration des propriétés des séquences

CCA produitee par le système (B.16). Cet opérateur est le suivant :

f3(x) = (sgn(x)− x)3

La séquence du CCA-31 amélioré est représentée dans la figure B.4, et ses propriétés

d’autocorrélation, spectrales et statistiques sont visualisées dans la figure B.5.
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Figure B.4: Séquence CCA-31 améliorée après application de l’opérateur f3(x) dans le
plan de phase (gauche), et selon l’indice d’itération (droite).

Au regard de la figure B.5, le spectre en forme de peigne d’un signal de CCA

peut être traité comme un signal large-bande. En outre, il est facile de produire des

séquences CCA de différentes périodes en changeant les valeurs des paramètres. Il

apparait surtout que les trois propriétés des CCA-q sont facilement observables, et
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Figure B.5: Propriétés du CCA-31 amélioré : (a) autocorrélation ; (b) amplitudes nor-
malisées de la p-point DFT avec p = 31, 29, 35 ; (c) p-DMV en fonction du facteur p de
sous-échantillonnage.
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nous offrent donc la possibilité de proposer des principes de détection originaux de

ces séquences CCA-q sans recourir à aucune synchronisation (détection non cohérente).

Par conséquent, dans le chapitre 3, nous allons exploiter cette possibilité d’identification

simple de la période d’un CCA en proposant deux principes de modulation large bande

par signaux CCA, ainsi que les techniques de détection associées.

Chapitre 3: Systèmes de modulation basés sur les CCA

Dans le dernier chapitre de cette thèse, nous proposons deux méthodes de modula-

tion basées sur l’utilisation des propriétés de signaux chaotiques CCA, accompagnées

de leurs méthodes de détection non-cohérente. Dans ce chapitre, nous faisons de plus

l’analyse des performances de ces systèmes de transmission pour un canal de bruit

additif ainsi que pour un canal multi-trajet. La première méthode de modulation est

appelée Chaotic Cyclic Attractors Shift Keying (CCASK) et consiste à utiliser plusieurs

séquences CCA de différentes périodes que l’on envoie selon la donnée à transmettre. La

seconde méthode n’utilise qu’un seul CCA et consiste à décaler le spectre de fréquence

de ce dernier selon l’information à transmettre, cette méthode est appelée Chaotic

Cyclic Attractors Frequency Shift Keying (CCAFSK).

Concernant les systèmes de communication actuels, la modulation et la démodulation

sont bien souvent réalisées en bande de base. Les séquences chaotiques produites

par le système dynamique proposé (B.16) sont à valeurs réelles et à temps discret.

Selon le théorème de l’échantillonnage, un signal occupant la bande de fréquence

[−W/2,W/2] peut être produit à l’aide d’un signal à temps discret, la largeur de bande

étant déterminée par la période d’échantillonnage du signal discret, W = fs = 1/Ts.

On peut alors écrire [21] :

x(t) =
∑
n

xnsinc(Wt− n)

où xn est la séquence chaotique.

H Technique de modulation/démodulation CCASK

La technique de modulation CCASK consiste à faire un codage en associant les différents

symboles à transmettre des attracteurs CCA de différents ordres. Pour transmettre Q
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symboles différents, il est nécessaire de pouvoir générer Q CCA de périodes distinctes.

La démodulation est faite en détectant l’ordre des CCA reçus. Cette détection est

possible puisque les CCA possèdent les propriétés spécifiques mentionnées au chapitre

2.

I Principe de la modulation

Le CCASK binaire emploie les signaux chaotiques produits par deux générateurs de

CCA différents. Ces CCA sont en quelque sorte des fonctions de base : un générateur

de CCA-q0 pour moduler le symbole de données ”0” , et un générateur différent de

CCA-q1 pour moduler le symbole de données ”1”. Les valeurs de q0 et de q1 sont

sélectionnées pour être des nombres premiers entre eux. Cette contrainte est essentielle

afin d’assurer la discrimination des ordres des deux CCA. L’expression des symboles

modulés est la suivante :

s(t) =
∑
m

L∑
n=1

(
dmx

(1)
mL+n + (1− dm)x(0)

mL+n

)
sinc(Wt− (mL+ n))

où dm ∈ {0, 1} est le mième symbole de données, T est la durée du symbole, et L

représente la longueur de la séquence chaotique CCA par symbole. Le diagramme de

la modulation CCASK en bande de base est illustré dans la figure B.6.

 CCA-         
generator

modulated symbol

data symbol

x(0)(t)

s(t)

dm

q1 x(1)(t)

 CCA-         
generator

q0

Figure B.6: Structure du modulateur CCASK binaire.

I Principe de la démodulation

On notera r(t) le signal reçu au récepteur. De manière très générale, à cause du canal

de propagation, r(t) peut être à valeurs complexes. La propriété d’autocorrélation,

la propriété spectrale ou encore la propriété statistique, présentées au chapitre 2,
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peuvent être exploitées pour permettre l’opération de démodulation sur r(t). Par

conséquent, trois techniques de détections non-cohérentes différentes peuvent être ap-

pliquées pour démoduler l’information. Afin de procéder à une analyse temporelle,

nous devons échantillonner le mième symbole reçu r(t) (t ∈ [mT, (m+ 1)T ]) à un taux

d’échantillonage Ts pour obtenir la séquence suivante rm = (rm[1], rm[2], ..., rm[L]),

avec rm[n] = rm,I [n] + jrm,Q[n] = r(mT + nTs) (n ∈ {1, 2, ..., L}).

– Détection par autocorrélation des CCA[67]

La détection par autocorrélation du signal modulé CCASK binaire, comme son nom

l’indique, exploite la propriété d’autocorrélation quasi-périodique de chaque symbole

reçu. En additionnant l’autocorrélation des composantes en phase et en quadrature du

signal rm, nous pouvons obtenir :

Rrmrm [η] =
L∑

n=1+η

(
rm,I [n]rm,I [n− η] + rm,Q[n]rm,Q[n− η]

)
où η ∈ {0, 1, ..., L− 1}.

Pour chaque qv (v ∈ {0, 1}), en ajoutant les résultats de toutes les autocorrélations

possibles telles que Rxxk [`qv] avec ` ∈ N, puis en normalisant cette somme par le nombre

de points concernés, on obtient la quantité suivante :

Cm[v] =
∑Lv

`=1Rrmrm [`qv]∑Lv
`=1(L− `qv)

où Lv = b Lqv c. Selon la propriété d’autocorrélation des CCA, la variable de décision

pour le mième symbole reçu peut être donnée par la différence entre Cm[1] et Cm[0] :

Cbm = Cm[1]− Cm[0]

Une estimation du symbole transmis d̂m est alors obtenue par :

d̂m =
{

1, si Cbm ≥ 0
0, si Cbm < 0

La structure de cette démodulation CCASK binaire en bande de base par autocorrélation

est illustrée dans la figure B.7.

– Détection spectrale [68]

La détection spectrale du signal modulé CCASK binaire repose sur l’analyse spectrale
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Figure B.7: Structure de démodulation CCASK binaire utilisant la détection par auto-
corrélation.

des CCA. Comme indiqué au chapitre 2, le spectre des CCA est en forme de peigne et

la position des raies en fréquence dépend de l’ordre de chaque CCA, et par conséquent

du symbole transmis. L’amplitude du spectre du signal reçu peut alors être estimée en

appliquant une transformée de Fourier discrète à qv points (qv-point DFT) (v ∈ {0, 1}) :

Avm[K] =
∣∣∣ L∑
n=1

rm[n]e−j2π
K
qv
n
∣∣∣

où K ∈ {1, 2, ..., qv}. La quantité suivante peut alors être obtenue :

Dm[v] =
1
qv

qv∑
K=1

(
Avm[K]

)2

Selon la répartition des raies du spectre du CCA (propriété spectrale du CCA), une

variable de décision concernant le mième symbole reçu est donnée par la différence entre

Dm[1] et Dm[0] :

Dbm = Dm[1]−Dm[0]
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Une estimation du symbole transmis d̂m est alors obtenue par :

d̂m =
{

1, si Dbm ≥ 0
0, si Dbm < 0

La structure de cette démodulation CCASK binaire en bande de base par détection

A1
m A0

m

Dbm

     -point 
DFT

Serial
to

Parallel

     -point 
DFT

L

rm
q1

+ −

d̂m

q0

Mean 
squared

L1 L0

Mean 
squared

r(t)

Sampling

r(nTs)

Dm[0]Dm[1]

Figure B.8: Structure de démodulation CCASK binaire utilisant la détection par analyse
spectrale.

spectrale peut être conçue suivant le schéma de la figure B.8.

– Détection statistique [69]

La détection statistique du signal modulé CCASK binaire est faite en utilisant la quan-

tité p-DMV de chaque symbole reçu. Par décimation des séquences d’un symbole

reçu (partie réelle et partie imaginaire de rm) d’un facteur qv (v ∈ {0, 1, ...,M − 1})
avec le décalage l − 1 (l ∈ {1, 2, ..., qv}), nous obtenons les sous-séquences suivantes

rmqv,l,I = (rm,I [l], rm,I [l + qv], ..., rm,I [l + Llvqv]) et rmqv,l,Q = (rm,Q[l], rm,Q[l +

qv], ..., rm,Q[l + Llvqv]), où Llv =
⌊
L−l
qv

⌋
. Notons la variance de rmqv,l et de rmqv,Q par

Var(rmqv,l,I) et Var(rmqv,l,Q). Ainsi, la quantité suivante peut être calculée:

Vm[v] =
1
qv

qv∑
l=1

(
Var(rmqv,l,I) + Var(rmqv,l,Q)

)
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Selon la propriété statistique du CCA indiquée au chapitre 2, la variable de décision

pour l’estimation dumième symbole transmis peut être obtenue en effectuant la différence

entre Vm[0] et Vm[1] :

Vbm = Vm[0]− Vm[1]

En conséquence, une estimation du symbole transmis d̂m est alors obtenue par :

Vbm

+−

d̂m

Vm[0]Vm[1]

+

+

Serial
to

Parallel

L
rm,I

     -DMVq1      -DMVq0

Serial
to

Parallel

L

     -DMVq1      -DMVq0

rm,Q

Sampling

rI(t) rQ(t)

Sampling

Figure B.9: Structure de démodulation CCASK binaire utilisant la détection par analyse
statistique.

d̂m =
{

1, si Vbm ≥ 0
0, si Vbm < 0

La structure de cette démodulation CCASK binaire en bande de base par détection

statistique peut être conçue suivant le schéma de la figure B.9.

I Evaluation des performances

Les performances du système CCASK utilisant les trois principes de détection précédement

présentés, dans le cas d’un canal de bruit additif Gaussien (additive white Gaussian
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noise, AWGN) ont été étudiées par des analyses théoriques et par des simulations

numériques. En outre, la performance dans le cas multi-trajet a été évaluée par simu-

lations numériques dans le modèle de canal à deux trajets.

Le théorème de Wiener-Khinchine permet d’établir la relation entre la densité

spectrale de puissance d’un signal et sa fonction d’autocorrélation par transformée de

Fourier. En outre, le théorème de Parseval énonce le rapport entre la variance et

l’autocorrélation d’un signal. Nous avons ainsi montré les liens forts entre les trois

principes de détection proposés. Ainsi ces trois techniques de démodulation CCASK

présentent des performance équivalentes. Bien que ces trois techniques soient différentes

en termes de principes et de structures, il a été montré analytiquement et par simu-

lations que les performances pour une canal AWGN sont semblables. Par conséquent,

dans ce résumé nous évoquerons seulement les performances de la démodulation CCASK

par analyse spectrale.

– Performances pour un canal AWGN

Dans le cadre de cette analyse théorique des performances, nous avons supposé que les

séquences CCA-qi sont de moyenne nulle 〈x(i)〉 = 0 et Var(x(i)) = ∆2. De plus, les

statistiques des échantillons appartenant à la lième (l ∈ {1, 2, ..., qi}) zone du CCA-qi

sont données par µ(i)
l = 〈x(i)

qi,l
〉 et δ(i)2

l = Var(x(i)
qi,l

). Nous définissons aussi les mo-

ments statistiques suivants : 〈µ2〉(i) = 1
qi

∑qi
l=1 µ

(i)2

l , 〈δ2〉(i) = 1
qi

∑qi
l=1 δ

(i)2

l , 〈µ4〉(i) =
1
qi

∑qi
l=1 µ

(i)4

l , 〈δ4〉(i) = 1
qi

∑qi
l=1 δ

(i)4

l et 〈µ2δ2〉(i) = 1
qi

∑qi
l=1 µ

(i)2

l δ
(i)2

l .

L’expression général du taux d’erreurs binaire (bit error rate, BER) de la démodulation

CCASK par analyse spectrale est alors donnée par :

BERCCASK

=
1
4

1∑
i=0

erfc

[(
8(L+ qi)

3L(L− qi)
〈µ2δ2〉(i)
〈µ2〉(i)2 +

4qi
L(L− qi)

〈δ4〉(i)
〈µ2〉(i)2 +

4(L− q1−i)q2
i

L(L− qi)2q1−i

∆4

〈µ2〉(i)2

+
(8(2L− qi))

3L(L− qi)
〈µ2〉(i)
〈µ2〉(i)2 +

8qi
L(L− qi)

〈δ2〉(i)
〈µ2〉(i)2 +

8(L− q1−i)q2
i

L(L− qi)2q1−i

∆2

〈µ2〉(i)2
)
σ2

+
4
L

L(qi + q1−i)qi − 2q2
i q1−i

(L− qi)2q1−i

σ4

〈µ2〉(i)2
)− 1

2
]

où σ2 est la densité spectrale de bruit.
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100 100050 200 400 60030080
10−5

10−4

10−3

10−2

10−1

100

L samples per symbol

B
E

R

 

 

DCSK: Eb/N0=6dB
DCSK: Eb/N0=10dB
DCSK: Eb/N0=14dB
CCASK: Eb/N0=6dB
CCASK: Eb/N0=10dB
CCASK: Eb/N0=14dB

Figure B.10: Performance analytico-numérique de la démodulation CCASK en fonction
de L, avec les CCA-29 et CCA-31 améliorés du système (B.16). La performance analytique
du DCSK est donnée pour comparaison.

Puisque cette expression générale du BER est fonction de différents moments statis-

tiques des séquences CCA, la performance du système peut être obtenue en calculant

numériquement ces moments. En prenant par exemple les statistiques du CCA-31 et du

CCA-29 améliorés, les performances de la démodulation CCASK en fonction de L sont

illustrées dans la figure B.10. Par comparaison, les performances du système DCSK

[48] sont également données. Nous pouvons alors constater de manière globale que le

système CCASK proposé est meilleur que les DCSK. Les simulations numériques ont

été réalisées en utilisant le CCA-31 et le CCA-29 améliorés du système (B.16) pour

moduler ”1” et ”0” respectivement. Les performances numériques pures du CCASK

lorsque L = 400 et L = 1000 sont illustrées dans la figure B.11. Les performances

analytico-numériques ont été calculées dans les mêmes conditions. La comparaison

montre une bonne concordance entre les résultats analytico-numériques et purement

numériques.

En outre si les valeurs des statistiques des CCA ne sont pas connues, une expression

approchée du BER du CCASK peut être obtenue. En effet, en considérant que le

nombre des échantillons par symbole est très grand (L � q0, q1), et que les zones des
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Figure B.11: Performances AWGN du CCASK quand L = 400 et L = 1000, avec CCA-29
et CCA-31 améliorés.

CCA sont relativement petites, le BER peut être estimé par :

BERCCASK ≈ 1
4

1∑
i=0

erfc

[(
8
3
N0

Eb
+
(
qi +

q2
i

q1−i

)N2
0

E2
b

)− 1
2
]

Cette performance purement analytique approchée pour q0 = 29, q1 = 31 est également

illustrée dans la figure B.11.

– Performance pour un canal multi-trajet

Nous avons étudié par simulation le comportement du système CCASK dans le cas

d’un canal à deux trajets. Les paramètres choisis sont les suivants : une transmission

autour de 2,4 GHz, une largeur de bande W = 17 MHz, et un retard de propagation

typique de τd = 75 ns. La fréquence centrale fc varie de 2,4 GHz à 2,412 GHz par pas

de 3 MHz.

Les résultats des simulations des performances du CCASK (CCA-31 et CCA-29

améliorés) avec L = 400 sont illustrés dans la figure B.12. Deux configurations du canal

double trajet sont considérées, d’une part lorsque les deux trajets sont de puissance

égale et d’autre part lorsque le rapport de puissance des deux trajets est de 10dB.

A travers ces simulations, nous pouvons constater que la dégradation des perfor-

mances la plus forte est de environ 2 dB pour le CCASK et de 2.5 dB pour le DCSK,
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Figure B.12: Performances du CCASK et du DCSK dans un canal double trajets avec :
(a) trajets de gain égal ; (b) trajets de gains différents de 10dB. Les paramètres du canal
sont : τd=75ns, W=17MHz, et fc varie : 2,4 GHz (+), 2,403 GHz (4), 2,406 GHz (∗),
2,409 GHz (♦) 2,4012 GHz (×).

dans le cas du canal à deux trajets un gain égal. Ce résultat montre que le système

CCASK proposé offre de bonnes performances dans le cas de canaux multi-trajet.

H Technique de modulation/démodulation CCAFSK

En appliquant une transformée de Fourier discrète à 2q points (2q-point DFT) à la

séquence CCA-q, q étant impair, nous obtenons:

X[K] =
L∑
n=1

xne
−j2π K

2q
n
, K ∈ [1, 2q]

Notons |X[K]| le module du spectre d’indice pair si K = 2K1 (K1 ∈ [1, q]), et aussi du

spectre d’indice impair si K = 2K1 − 1. En raison de la propriété spectrale du CCA,

les amplitudes du spectre d’indice pair du CCA-q sont relativement grandes comparées

aux amplitudes du spectre d’indice impair.

Une nouvelle séquence x̆ = (x̆1, x̆2, ..., x̆L) peut étre créée à partir de la séquence

initiale x du signal CCA-q, en changeant simplement le signe d’un élément sur deux de

cette dernière :

x̆n = (−1)nxn =
{
xn, n est paire
−xn, n est impaire
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En appliquant maintenant la transformée de Fourier discrète à 2q points (2q-point

DFT) à la nouvelle séquence x̆, on obtient :

X̆[K] =
L∑
n=1

x̆ne
−j2π K

2q
n
, K ∈ {1, 2, ..., 2q}

Par conséquent, la relation entre la transformée de Fourier discrète à 2q points (2q-point

DFT) de la séquence originale x et de la séquence modifiée x̆ est donnée par :

X̆[K] =
{
X[K + q], si K ∈ [1, q]
X[K − q], si K ∈ [q + 1, 2q]

où K ∈ [1, 2q]. Les amplitudes du spectre d’indice pair de x̆ correspondent aux am-

plitudes du spectre d’indice impair de x. Réciproquement, les amplitudes du spectre

d’indice impair de x̆ correspondent aux amplitudes du spectre d’indice pair de x.

En conclusion, la séquence originale du signal CCA-q et sa version modifiée sont

quasi-orthogonales dans le domaine des fréquences. Le système CCAFSK proposé ici

est un système de modulation par séquence chaotique CCA, dont le principe repose sur

cette quasi-orthogonalité des séquences. Selon le symbole à transmettre, la séquence

CCA-q originale ou la séquence modifiée est envoyée. La démodulation du CCAFSK est

naturellement faite par analyse spectrale à l’aide de la transformée de Fourier discrète

à 2q points (2q-point DFT). Si l’on considère plusieurs utilisateurs sur le même canal,

des CCA de différentes périodes doivent être choisis pour chacun (avec la contrainte

pour les périodes des CCA d’être des nombres premiers entre eux).

I Principe de la modulation

Dans le cas du CCAFSK binaire, un seul générateur CCA-q est nécessaire pour produire

une séquence CCA originale et obtenir sa séquence modifiée. Rappelons que le signal

en bande de base du CCA-q est x(t) =
∑

n xnsinc(Wt − n), par conséquent le signal

modifié x̆(t) s’écrit :

x̆(t) =
∑
n

(−1)nxnsinc(Wt− n) = x(t)ũ(t)

où x̆(n/W ) = (−1)nxn est la valeur de l’échantillon à l’instant n/W , et ũ(t) est définie

par :

ũ(t) =
∑
n

(−1)n u (t− nTs)
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avec u(t) la fonction rectangle. Les symboles modulés en bande de base sont alors

donnés par :

s(t) =
∑
m

L∑
n=1

(
dmxmL+n + (1− dm)x̆mL+n

)
sinc(Wt− (mL+ n))

où dm ∈ {0, 1} est le mième symbole d’information. Le diagramme de la modulation en

bande de base du système CCAFSK binaire est illustré figure B.13.

   CCA-     
  generator modulated symbol

dm

q

data symbol

x(t)

s(t)

+1

-1

Tsclock

x̆(t)

Figure B.13: Structure du modulateur CCAFSK binaire.

I Principe de la démodulation

Considérons le mième symbole reçu en bande de base r(t) (t ∈ [mT, (m + 1)T ]). La

séquence échantillonnée est rm = (rm[1], rm[2], ..., rm[L]), avec rm[n] = r(mT + nTs)

(n ∈ {1, 2, ..., L}).
En appliquant la transformée de Fourier discrète à 2q points (2q-point DFT) à la

séquence rm, on détermine les amplitudes du spectre du signal reçu :

Am[K] =
∣∣∣ L∑
n=1

rm(n)e−j2π
K
2q
n
∣∣∣

oùK ∈ {1, 2, ..., 2q}. La variable de décision dumième symbole reçu peut être déterminée

de la manière suivante :

Bbm =
1
q

q∑
K1=1

(
A2
m[2K1 − 1]−A2

m[2K1]
)

Une estimation du symbole transmis d̂m est alors obtenue par l’expression suivante :

d̂m =
{

1, si Bbm ≥ 0
0, si Bbm < 0
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La structure du démodulateur CCAFSK binaire en bande de base peut être conçue

suivant le schéma de la figure B.14.

+ −

d̂m
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     - point 
DFT

2q

odd evenSerial
to

Parallel

L

rm

Mean 
squared
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squared

r(t)

Sampling
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Figure B.14: Structure de démodulateur CCAFSK binaire.

I Evaluation des performances

Les performances du système CCAFSK proposé dans le canal AWGN ont été évaluées

par des analyses théoriques et par des simulations numériques. Les performances dans

le cas d’un canal double trajet ont été simulées.

– Performances pour un canal AWGN

L’expression générale suivante du BER du système CCAFSK a été obtenue :

BERCCAFSK =
1
4

1∑
i=0

erfc

[(
2(4L2 + 16Lq + 15q2)

3(L− q)(L+ q)2

〈µ2δ2〉
〈µ2〉2 +

8q
(L2 − q2)

〈δ4〉
〈µ2〉2

+
(4(4L2 + 4Lq + 3q2)

3(L− q)(L+ q)2

〈µ2〉
〈µ2〉2 +

16q
(L2 − q2)

〈δ2〉
〈µ2〉2

)
σ2

+
8q

(L2 − q2)
σ4

〈µ2〉2
)− 1

2
]

La figure B.15.(a) représente le BER du système CCAFSK en fonction de L, avec

un CCA-29 amélioré. La performance de CCASK est aussi illustrée dans cette figure.
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Figure B.15: (a) Performances analytico-numériques du CCAFSK en fonction de L avec
un CCA-29 amélioré. Les performances du CCASK de la figure B.10 sont rappelées pour
comparaison. (b) Performances du CCAFSK quand L = 100 et L = 400.

Ces résultats montrent globalement que le système CCAFSK est meilleur que le

système CCASK. Des simulations numériques du système CCAFSK ont été réalisées,

avec un CCA-29 amélioré. Ces performances purement numériques quand L = 100 et

L = 400 sont illustrées dans la figure B.15.(b).

Si les valeurs des statistiques du CCA ne sont pas connues, une expression approchée

du BER du CCAFSK peut être obtenue. En effet, en considérant que le nombre

des échantillons par symbole est très grand (L � q), et que les zones des CCA sont

relativement petites, le BER peut être exprimé par :

BERCCAFSK ≈ 1
2

erfc

[(
8
3
N0

Eb
+ 2q

N2
0

E2
b

)− 1
2
]

Ce BER analytique approché du système CCAFSK avec q = 29 est également illustré

dans la figure B.15.(b).

– Performance pour un canal multi-trajet

Afin d’évaluer les performances du système CCAFSK dans le cas d’un canal multi-

trajet, des simulations numériques ont été effectuées, avec une séquence CCA-29 améliorée

du système (B.16). Le même modèle de canal à deux trajets que pour l’évaluation du

CCASK est utilisé. Le BER du CCAFSK avec L = 100 est illustré dans la figure
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B.16. L’analyse de ces résultats de simulation indique que le système CCAFSK offre

des performances généralement meilleures que CCASK.
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Figure B.16: Performances du CCAFSK pour canal double trajet avec : (a) trajets de
gain égal ; (b) trajets de gains différents de 10dB. Les paramètres du canal sont identiques
à ceux de la figure B.12.

H Conclusion

Puisque des signaux de CCA peuvent être produits par des circuits électroniques

simples, avec un contrôle de leur période par un simple changement des valeurs des

paramètres des circuits, les dispositifs émetteurs-récepteurs des systèmes de modula-

tion basés sur les CCA sont considérés comme ayant une très faible complexité.

La technique CCASK montre de bonnes performances pour un canal AWGN en

prenant de longues séquences chaotiques pour chaque symbole, c’est-à-dire à faible

débit de transmission. Par comparaison avec CCASK, la technique CCAFSK nécessite

une durée de symbole beaucoup plus courte pour d’obtenir de bonnes performances.

En outre, les deux techniques, CCASK et CCAFSK, ont des performances similaires

pour des canaux double trajet. Dans le cas d’un canal multi-trajet, les performances

obtenues par les méthodes proposées sont comparables à celles du DCSK. En d’autres

termes, ces performance sont bien meilleures que celles des systèmes à bande-étroite.
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