2,400 research outputs found

    Panoramic Depth Imaging: Single Standard Camera Approach

    Get PDF
    In this paper we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables stereo reconstruction. The camera is rotating on a circular path with a step defined by the angle, equivalent to one pixel column of the captured image. The equation for depth estimation can be easily extracted from the system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric pixel columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. The search space on the epipolar line can be additionaly constrained. The focus of the paper is mainly on the system analysis. Results of the stereo reconstruction procedure and quality evaluation of generated depth images are quite promissing. The system performs well for reconstruction of small indoor spaces. Our finall goal is to develop a system for automatic navigation of a mobile robot in a room

    Mosaiced-Based Panoramic Depth Imaging with a Single Standard Camera

    Get PDF
    In this article we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables the stereo reconstruction. The camera is rotating on a circular path with the step defined by an angle, equivalent to one column of the captured image. The equation for depth estimation can be easily extracted from system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. We focused mainly on the system analysis. Results of the stereo reconstruction procedure and quality evaluation of generated depth images are quite promissing. The system performs well in the reconstruction of small indoor spaces. Our finall goal is to develop a system for automatic navigation of a mobile robot in a room

    Capturing Panoramic Depth Images with a Single Standard Camera

    Get PDF
    In this paper we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables the stereo reconstruction. The camera is rotating on a circular path with the step defined by an angle equivalent to one column of the captured image. The equation for depth estimation can be easily extracted from system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. We focused mainly on the system analysis. The system performs well in the reconstruction of small indoor spaces

    A Robust Quasi-dense Matching Approach for Underwater Images

    Get PDF
    While different techniques for finding dense correspondences in images taken in air have achieved significant success, application of these techniques to underwater imagery still presents a serious challenge, especially in the case of “monocular stereo” when images constituting a stereo pair are acquired asynchronously. This is generally because of the poor image quality which is inherent to imaging in aquatic environments (blurriness, range-dependent brightness and color variations, time-varying water column disturbances, etc.). The goal of this research is to develop a technique resulting in maximal number of successful matches (conjugate points) in two overlapping images. We propose a quasi-dense matching approach which works reliably for underwater imagery. The proposed approach starts with a sparse set of highly robust matches (seeds) and expands pair-wise matches into their neighborhoods. The Adaptive Least Square Matching (ALSM) is used during the search process to establish new matches to increase the robustness of the solution and avoid mismatches. Experiments on a typical underwater image dataset demonstrate promising results

    The space of essential matrices as a Riemannian quotient manifold

    Full text link
    The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views, or do not fully take into account the geometric peculiarities of the epipolar constraint. We address these limitations with a characterization as a quotient manifold which can be easily interpreted in terms of camera poses. While our main focus in on theoretical aspects, we include applications to optimization problems in computer vision.This work was supported by grants NSF-IIP-0742304, NSF-OIA-1028009, ARL MAST-CTA W911NF-08-2-0004, and ARL RCTA W911NF-10-2-0016, NSF-DGE-0966142, and NSF-IIS-1317788

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Estimating Epipolar Geometry With The Use of a Camera Mounted Orientation Sensor

    Get PDF
    Context: Image processing and computer vision are rapidly becoming more and more commonplace, and the amount of information about a scene, such as 3D geometry, that can be obtained from an image, or multiple images of the scene is steadily increasing due to increasing resolutions and availability of imaging sensors, and an active research community. In parallel, advances in hardware design and manufacturing are allowing for devices such as gyroscopes, accelerometers and magnetometers and GPS receivers to be included alongside imaging devices at a consumer level. Aims: This work aims to investigate the use of orientation sensors in the field of computer vision as sources of data to aid with image processing and the determination of a scene’s geometry, in particular, the epipolar geometry of a pair of images - and devises a hybrid methodology from two sets of previous works in order to exploit the information available from orientation sensors alongside data gathered from image processing techniques. Method: A readily available consumer-level orientation sensor was used alongside a digital camera to capture images of a set of scenes and record the orientation of the camera. The fundamental matrix of these pairs of images was calculated using a variety of techniques - both incorporating data from the orientation sensor and excluding its use Results: Some methodologies could not produce an acceptable result for the Fundamental Matrix on certain image pairs, however, a method described in the literature that used an orientation sensor always produced a result - however in cases where the hybrid or purely computer vision methods also produced a result - this was found to be the least accurate. Conclusion: Results from this work show that the use of an orientation sensor to capture information alongside an imaging device can be used to improve both the accuracy and reliability of calculations of the scene’s geometry - however noise from the orientation sensor can limit this accuracy and further research would be needed to determine the magnitude of this problem and methods of mitigation
    corecore