63,928 research outputs found

    Functional Data Analysis of Non-manual Marking of Questions in Kazakh-Russian Sign Language

    Get PDF
    This paper is a continuation of Kuznetsova et al. (2021), which described non-manual markers of polar and wh-questions in comparison with statements in an NLP dataset of Kazakh-Russian Sign Language (KRSL) using Computer Vision. One of the limitations of the previous work was the distortion of the 3D face landmarks when the head was rotated. The proposed solution was to train a simple linear regression model to predict the distortion and then subtract it from the original output. We improve this technique with a multilayer perceptron. Another limitation that we intend to address in this paper is the discrete analysis of the continuous movement of non-manuals. In Kuznetsova et al. (2021) we averaged the value of the non-manual over its scope for statistical analysis. To preserve information on the shape of the movement, in this study we use a statistical tool that is often used in speech research, Functional Data Analysis, specifically Functional PCA.publishedVersio

    Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm

    Get PDF
    In the present era of the internet and multimedia, image compression techniques are essential to improve image and video performance in terms of storage space, network bandwidth usage, and secure transmission. A number of image compression methods are available with largely differing compression ratios and coding complexity. In this paper we propose a new method for compressing high-resolution images based on the Discrete Fourier Transform (DFT) and Matrix Minimization (MM) algorithm. The method consists of transforming an image by DFT yielding the real and imaginary components. A quantization process is applied to both components independently aiming at increasing the number of high frequency coefficients. The real component matrix is separated into Low Frequency Coefficients (LFC) and High Frequency Coefficients (HFC). Finally, the MM algorithm followed by arithmetic coding is applied to the LFC and HFC matrices. The decompression algorithm decodes the data in reverse order. A sequential search algorithm is used to decode the data from the MM matrix. Thereafter, all decoded LFC and HFC values are combined into one matrix followed by the inverse DFT. Results demonstrate that the proposed method yields high compression ratios over 98% for structured light images with good image reconstruction. Moreover, it is shown that the proposed method compares favorably with the JPEG technique based on compression ratios and image quality
    • …
    corecore