
Image compression based on 2D Discrete Fourier 
Transform and matrix minimization algorithm

RASHEED, Mohammed H, SALIH, Omar M, SIDDEQ, Mohammed M and 
RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25961/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

RASHEED, Mohammed H, SALIH, Omar M, SIDDEQ, Mohammed M and 
RODRIGUES, Marcos (2020). Image compression based on 2D Discrete Fourier 
Transform and matrix minimization algorithm. Array. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Journal Pre-proof

Image compression based on 2D Discrete Fourier Transform and matrix minimization
algorithm

Mohammed H. Rasheed, Omar M. Salih, Mohammed M. Siddeq, Marcos A.
Rodrigues

PII: S2590-0056(20)30009-6

DOI: https://doi.org/10.1016/j.array.2020.100024

Reference: ARRAY 100024

To appear in: ARRAY

Received Date: 21 November 2019

Revised Date: 11 February 2020

Accepted Date: 6 March 2020

Please cite this article as: M.H. Rasheed, O.M. Salih, M.M. Siddeq, M.A. Rodrigues, Image compression
based on 2D Discrete Fourier Transform and matrix minimization algorithm, ARRAY (2020), doi: https://
doi.org/10.1016/j.array.2020.100024.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.array.2020.100024
https://doi.org/10.1016/j.array.2020.100024
https://doi.org/10.1016/j.array.2020.100024


CRediT Author Statement 

Mohammed H. Rasheed: Conceptualization, Methodology,  

Omar M. Salih: Data curation, Writing- Original draft preparation.  

Mohammed M. Siddeq: Visualization, software.  

Marcos A. Rodrigues: Supervision, Writing- Reviewing and Editing, 

 



1 
 

Image Compression based on 2D Discrete Fourier 
Transform and Matrix Minimization Algorithm 

Mohammed H. Rasheed1, Omar M. Salih1, Mohammed M. Siddeq1 and Marcos A. Rodrigues2 

 

1   Computer Engineering Dept., Technical College/Kirkuk, Northern Technical University, IRAQ 

2   Geometric Modeling and Pattern Recognition Research Group, Sheffield Hallam University, Sheffield, UK 

mhrjabary@gmail.com, omar.alsabaawi@gmail.com , mamadmmx76@gmail.com, M.Rodrigues@shu.ac.uk 

 

Abstract: In the present era of the internet and multimedia, image compression techniques are 

essential to improve image and video performance in terms of storage space, network bandwidth 

usage, and secure transmission. A number of image compression methods are available with 

largely differing compression ratios and coding complexity. In this paper we propose a new 

method for compressing high-resolution images based on the Discrete Fourier Transform (DFT) 

and Matrix Minimization (MM) algorithm. The method consists of transforming an image by DFT 

yielding the real and imaginary components. A quantization process is applied to both components 

independently aiming at increasing the number of high frequency coefficients. The real component 

matrix is separated into Low Frequency Coefficients (LFC) and High Frequency Coefficients (HFC). 

Finally, the MM algorithm followed by arithmetic coding is applied to the LFC and HFC matrices. 

The decompression algorithm decodes the data in reverse order.  A sequential search algorithm is 

used to decode the data from the MM matrix. Thereafter, all decoded LFC and HFC values are 

combined into one matrix followed by the inverse DFT. Results demonstrate that the proposed 

method yields high compression ratios over 98% for structured light images with good image 

reconstruction. Moreover, it is shown that the proposed method compares favorably with the JPEG 

technique based on compression ratios and image quality.     

Keywords: DFT, Matrix Minimization Algorithm, Sequential Search Algorithm 

 

1. Introduction 

The exchange of uncompressed digital images requires considerable amounts of storage space 

and network bandwidth. Demands for efficient image compression result from the widespread use 

of the Internet and data sharing enabled by recent advances in digital imaging and multimedia 

services. Users are creating and sharing images with increased size and quantity and expect quality 

image reconstruction. It is clear that sharing multimedia-based platforms such as Facebook and 

Instagram lead to widespread exchange of digital images over the Internet [1]. This has led to efforts 

to improve and fine-tune present compression algorithms along with new algorithms proposed by 

the research community to reduce image size whilst maintaining the best level of quality. For any 

digital image, it can be assumed that the image in question may have redundant data and can be 

neglected to a certain extent. The amount of redundancy is not fixed, but it is an assumed quantity 

and its amount depends on many factors including the requirements of the application to be used, 

the observer (viewer) or user of the image and the purpose of its use [2, 3]. Basically, if the purpose of 

an image is to be seen by humans then we can assume that the image can have a variable high level 

of redundant data. Redundant data in digital images come from the fact that pixels in digital images 

are highly correlated to a level where reducing this correlation cannot be noticed by the human eye 

(Human Visual System) [4, 5]. Consequently, most of these redundant, highly correlated pixels can 

be removed while maintaining an acceptable level of human visual quality of the image. Therefore, 

in digital images the Low Frequency Components (LFC) are more important as they contribute more 

to define the image contents than High Frequency Components (HFC). Based on this, the intension is 
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to preserve the low frequency values and shorten the high frequency values by a certain amount, in 

order to maintain the best quality with the lowest possible size [6,7]. 

Image frequencies can be determined through a number of transformations such as the Discrete 

Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Discrete Fourier Transform (DFT) 

[8]. In this study we will use DFT as a first step in the process to serialize a digital image for 

compression. Since its discovery, the DFT has been used in the field of image processing and 

compression. The DFT is used to convert an image from the spatial domain into frequency domain, 

in other words it allows us to separate high frequency from low frequency coefficients and neglect or 

alter specific frequencies leading to an image with less information but still with a convenient level 

of quality [8,9,10].  

We propose a new algorithm to compress digital images based on the DFT in conjunction with 

the Matrix Minimization method as proposed in [10,11]. The main purpose of matrix minimization is 

to reduce High Frequency Components (HFC) to 1/3 of its original size by converting each three 

items of data into one, a process that also increases redundant coefficients [11,12]. The main problem 

with Matrix Minimization is that it has a large probability data called Limited-Data [13,14,16]. Such 

probabilities are combined within the compressed file as indices used later in decompression. 

 Our previous research [13, 14] used the DCT combined with Matrix Minimization algorithm 

yielding over 98% compression ratios for structured light images and 95% for conventional images. 

The main justification to use DFT in the proposed method is to demonstrate that the Matrix 

Minimization algorithm is very effective in connection with a discrete transform and, additionally, 

to investigate the DFT for image compression.  

 

The contribution of this research is to reduce the relatively large probability table to two values 

only, minimum and maximum, rather than keeping the entire lookup table (referred to as 

Limited-Data in our previous research [10, 11, 12 and 13]). The main reason is to increase 

compression ratios by reducing the size of the compressed file header. The proposed compression 

algorithm is evaluated and analyzed through measures of compression ratios, RMSE (Root Mean 

Square Error) and PSNR (Peak Signal-to-Noise Ratio). It is demonstrated that the proposed method 

compares well with the popular JPEG technique.  

2. The Proposed Compression Algorithm  

The proposed compression method is illustrated in Figure 1. Initially, an original image is 

subdivided into non-overlapping blocks of size M x N pixels starting at the top left corner of the 

image. The Discrete Fourier transform (DFT) is applied to each M x N block independently to 

represent the image in the frequency domain yielding the real and imaginary components. The 

Matrix Minimization algorithm is applied to each component and zeros are removed. The resulting 

vectors are subjected to Arithmetic coding and represent the compressed data. 

 

Figure 1. The proposed compression method 
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To illustrate the process for each M x N (M=N=4) block in the original image, we represent a 4x4 

block in Figure 2 below: 

 

 

 

 

Matrix = 

4x4 

 

15 18 26 48 

14 19 27 31 

16 21 32 31 

16 25 35 32 

 

Convert Matrix to 

frequency 

domain by DFT 

Real= 

(Matrix) 

406 -59 -44 -59 

7 10 -21 0 

8 5 -14 5 

7 0 -21 10 

Imaginary= 

(Matrix) 

0 59 0 -59 

17 14 3 -26 

0 21 0 -21 

-17 26 -3 -14 

 

Figure 2. DFT applied to a 4x4 matrix of data 

 

 

A uniform quantization is then applied to both parts, which involves dividing each element by 

a factor called quantization factor Q followed by rounding the outcomes which results in an increase 

of high frequency coefficients probability thus reducing the number of bits needed to represent such 

coefficients. The result of this operation is that the compression ratio increases. Figure 3 illustrate the 

quantization and rounding off steps. For more information, the uniform quantization (Qr and Qi) 

are selected heuristically.  

 

Real= 

 

 

 

406 -59 -44 -59 

7 10 -21 0 

8 5 -14 5 

7 0 -21 10 
After quantization 

(real and imaginary is 

divided by Q = 20) 

Qr= 

 

 

 

20 -3 -2 -3 

0 1 -1 0 

0 0 -1 0 

0 0 -1 1 

Imaginary= 

0 59 0 -59 

17 14 3 -26 

0 21 0 -21 

-17 26 -3 -14 

Qi= 

0 3 0 -3 

1 1 0 -1 

0 1 0 -1 

-1 1 0 -1 

 

Figure 3. Quantization and rounding off the real and imaginary components 

 

 

Up to this point, two matrices (Qr and Qi) have been generated per block representing the real 

and the imaginary parts respectively. Regarding the real part, all low coefficient values (i.e. the DC 

values) are detached and saved into a new matrix called Low Frequency Coefficients (LFC-Matrix) 

and its substituted with a zero value in the quantized matrix. It is important to note that DC values 

are only found in the real parts which highly contribute to the main details and characteristics of the 

image. The generated LFC-Matrix size consists of all the DC values of the entire image can be 
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considered small compared to all other High Frequency Coefficients (HFC-Matrix) and can be 

represented with few bytes. Figure 4 illustrates the content of the generated three matrices. 

 

LFC-Matrix = [20,... etc] ( DC value for each block 4x4 saved in LFC-Matrix) 

 
HFCReal = [ 0 -3 -2 -3  0 1 -1 0  0  0 -1 0 0 0 -1 1] 

HFCImag=[ 0 3 0 -3 1 1 0 -1 0 1 0 -1 -1 1 0 -1] 

Figure 4. Each block (4x4) is divided to real and imaginary matrices (after applying DFT). The real 

matrix contains DC value at first location, these DC values are saved in a new matrix. The rest of 

high-frequency coefficients are saved in a different matrix as shown in contents of the LFC-Matrix, 

HFCReal and HFCImag. 

 

Since the size of the LFC-Matrix is small compared to HFC-Matrices, it is very obvious that HFC 

matrices for both real and imaginary parts need to be reduced to get a reasonable compression. 

Therefore, the algorithm called Matrix-Minimization suggested by Siddeq and Rodrigues [10] is 

applied. The algorithm is used to reduce the size of HFC matrices by contracting every three 

coefficients to a single equivalent value, which can be traced back to their original values in the 

decompression phase. The contraction is performed on each three consecutive coefficients using 

Random-Weight-Values. Each value is multiplied by a different random number (Ki) and then their 

summation is found, the value generated is considered a contracted value of the input values. Figure 

5 illustrates the Matrix Minimization applied to M x N matrix [11, 12]. 

 

 

 

 
 

Figure 5. The Matrix Minimization method for an m x n matrix [10,11,12]. 

 

It is important to note that in the decompression phase a search algorithm is required to find the 

three original values that are used to find the contracted value, therefore, the minimum and 

maximum values of the m x n block are stored. The idea behind this is to limit the range of values 

required to recover the original three values that made the contracted value hence increase the speed 

of the search algorithm at decompression stage.  

Because in previous work the range of the search space are limited in the array for easy 

searching and this was encoded in the header file to be used at decompression stage. However, it is 

possible that complex images may generate large arrays which, in turn, will impair compression 

(make it more computationally demanding). For this reason, we suggested another method in this 

paper using DFT and reduced limited search area (i.e. search area contains just two values [MIN, 

MAX]). Such bounding makes searching for the sought values easier and faster. Any further detailed 

information about Matrix Minimization can be found in the references [11,12,16]. These three 
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references show with examples how the Matrix Minimization works with keys and how the limited 

search is used for decoding.  

After the Matrix-Minimization algorithm has been applied, the produced HFC-Matrix for both 

real and imaginary parts are examined and it is possible to see a high probability in the number of 

zero values than any other values in the matrix. Therefore, separating zero from non-zero values will 

remove redundant data and hence increase the efficiency of the arithmetic coding compression [9,10, 

13,14]. 

The implementation of the method is by isolating all zero values from the matrix while 

preserving all non-zero values in a new array called Value Matrix. The total number of zeros 

removed between each non-zero value in the HFC-Matrix is counted during the process. A new 

array called Zero Matrix is then created in which we append a zero value whenever we have a 

non-zero value at the same index in the original HFC-Matrix followed by an integer that represents 

the total number of zeros between any two non-zero values. Figure 6 demonstrates the process of 

separating zeros and non-zero values [14, 15,16]. 

 

 

 

 

 

Figure 6. Separating zeros and nonzero from HFC matrix and coding zero and non-zero values into 

Zero and Value matrices. 

 
The zero values in the Zero-Matrix reflect the actual non-zero values in sequences in the 

original matrix. Likewise, the integer values reflect the total number of zeros that come thereafter. 

Finally, the two matrices are ready for compression by a coding method which in our case is 

arithmetic coding [6, 7]. It is important to note that the proposed method described above is also 

applied to the LFC-Matrix which contains the low frequency coefficients values of the real part. Up 

to this point, the Value-Matrix and Zero-Matrix in our case are considered headers and used in the 

decompression process to regenerate the original HFC and LFC matrices. 

 

3. The Decompression Algorithm 

The decompression algorithm is a counter compression operation which performs all functions 

of the compression but in reverse order. The steps to decompression start by decoding the 

LFC-Matrix, Value-Matrix and Zero-Matrix using arithmetic decoding followed by reconstructing a 

unified array based on Value and Zero matrices and reconstruct the HFC-Matrix for both parts. 

Siddeq and Rodrigues proposed a novel algorithm called Sequential Search Algorithm [10,11,12,13], 

which is based on three pointers working sequentially to regenerate the three values that constitute 

the contracted values with assistance of the MIN and MAX values which were preserved during the 

compression process. The MIN and MAX values are considered to be the limited space search values 

used to restore the actual HFC for both parts (real and imaginary) [14,15,16,17,18]. Finally, an inverse 

quantization and DFT is applied to each part to reconstruct the compressed digital image. Figure 7 

illustrates the decompression steps. 

 

  0 , 3, 0,  5, 0, 2, 0, 9, 0, ...etc Zero-Matrix = 

   5 , 0.3, -1, 2.4,  3.7, ...etc   Value -Matrix = 

5,0,0,0,0.3,0,0,0,0,0,-1,0,0,2.4,0,0,0,0,0,0,0,0,0,3.7HFC-Matrix = 
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Figure 7. Decompression steps. 

 

4. Experimental Results  

Experimental results shown here demonstrate the efficacy of the proposed compression 

technique. Our proposed method was implemented in MATLAB R2014a running on an Intel Core 

i7-3740QM microprocessor (8-CPUs). For clarity, we divide the results into two parts:  

 

• The method applied to general 2D images of different sizes and assess their visual quality with 

RMSE [1,3]. Also, we applied Peak Signal-to-Noise Ratio (PSNR) for measuring image quality. 

This measurement widely used in digital image processing [23]. Tables 1 and 2 show the first 

part of results by applying the proposed compression/decompression method to six selected 

images whose details are shown in Figures 8 and 9. 

 

• We apply the proposed compression technique to structured light images (i.e. a type of image 

used for reconstruct 3D surfaces - see Section 5).  

Table 1: Results for grey images 

Image 
Image 

Size (MB) 
Quantization 

After 

Compression 

(KB) 

(Bit/Pixel) 

bpp 
RMSE PSNR 

 

Lena 

 

1.0  

10 260  0.253 1.2 47.3 
25 138.2  0.134 2.4 44.3 
45 88.1  0.086 3.9 42.2 

Lion 1.37  

25 201  0.143 2.5 44.1 
60 108.4  0.077 5.0 41.1 

100 71.4  0.05 8.1 39.0 
 

Apples 

 

1.37  

 10 228  0.162 1.2  47.3 
 30  91.7  0.065 2.6  43.9 
 60 47.8  0.034 4.6  41.5 

 

Table 2: Results for colour images 

Image 

Image 

Size 

(MB) 

Quantization 

for each 

layer in 

After 

Compression 

(KB) 

(Bit/Pixel) 

bpp 
RMSE PSNR 
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R,G,B 

 

Boeing 

777 

 

6.15  

10 437.4  0.069 2.1 44.9 

25 182.8  0.029 3.9 
42.2 

 

Girl 

 

 

4.29  

10 641.1  0.145 3.9  42.2 

25  315.6  0.071 5.5  40.7 

 

Baghdad 

 

 

8.58  

25  426.3  0.097 4.4  41.6 
35  309.8  0.07 5.6  40.6 

 

 
260 KB               138.2 KB                  88.1 KB 

Quantization value=10     Quantization value=25        Quantization value=45 

(a) Decompressed Lena image, dimension = 1024 x 1024 

 

 

201 KB                          108.4 KB                  71.4 KB 

Quantization value=25         Quantization value=60       Quantization value=100 

(b) Decompressed Lion image, dimension = 1200 x 1200 
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228 KB                    91.7 KB                    47.8 KB 

Quantization value=10               Quantization value=30            Quantization value=60 

 (c) Decompressed Apple image, dimension = 1200 x 1200    

Figure 8. (a) , (b) and (c) Lena, Lion and Apple images status are compressed by our proposed 

method using different quantization values  

 
 

 

437.4 KB                                               182.8 KB 

Quantization value=10                                Quantization value=25 

(a) Decompressed Boeing777 image, dimension = 1800 x 1196 

 
 

 
641.1 KB                                            315.6 KB 

Quantization value=10                            Quantization value=25 

(b) Decompressed Girl image, dimension = 1500 x 1001 

 

 

 
426.3 KB                                           309.8 KB 

Quantization value=25                             Quantization value=35 
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(c) Decompressed Baghdad image, dimension = 2000 x 1500 

Figure 9. (a), (b) and (c) Boeing777, Girl and Baghdad colour images are compressed by our proposed 

method using different quantization values.  

 

5. Results for Structured Light Images and 3D Surfaces 

A 3D surface mesh reconstruction method was developed by Rodrigues [8,19] with a team 

within the GMPR group at Sheffield Hallam University. The working principle of the 3D mesh 

scanner is that the scene is illuminated with a stripe pattern whose 2D image is then captured by a 

camera. The relationship between the light source and the camera determines the 3D position of the 

surface along the stripe pattern. The scanner converts a surface to a 3D mesh in a few milliseconds 

by using a single 2D image [19,20] as shown in Figure 10. 

The significance of using such 2D images is that, if the compression method is lossy and results 

in a noisy image, the 3D algorithms will reconstruct the surface with very noticeable artefacts, that is, 

the 3D surface becomes defective and degraded with problem areas easily noticeable. If, on the other 

hand, the 2D compression/decompression is of good quality, then the 3D surface is reconstructed 

well and there are no visible differences between the original reconstruction and the reconstruction 

with the decompressed images. 

 

 

 

(a)                             (b)                                       (c) 

Figure 10. (a) The 3D Scanner developed by the GMPR group, (b) a 2D picture captured by the 

camera, (c) 2D image converted into a 3D surface patch. 

 

Figure 10 (left) depicts the GMPR scanner together with an image captured by the camera 

(middle) which is then converted into a 3D surface and visualized (right). Note that only the 

portions of the image that contain patterns (stripes) can be converted into 3D; other parts of the 

image are ignored by the 3D reconstruction algorithms [21, 22]. The original images used in this 

research are shown in Figure 11 (Corner, Face1 and Face2). The three images shown in Figure 11 

were compressed by the method described in this paper whose compressed sizes with RMSE and 

PSNR are shown in Table 3. After decompression, the images were subjected to 3D reconstruction 

using the GMPR method and compared with 3D reconstruction of the original images. The 

reconstructed 3D surfaces are shown in Figures 12, 13 and 14. 
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Corner (1280x1024) Face1 (1392x1040) Face2 (1392x1040) 

Figure 11. Original 2D images with different dimensions used by our proposed compression 

method. 

 
Table 3: Compressed 2D structured light images 

Image 
Image 

Size (MB) 
Quantization 

After Compression 

(KB) 

(bit/Pixel) 

bpp 
RMSE PSNR 

Corner 1.25  
60 35.4  0.027 4.7 41.4 

100 17.8  0.013 15.5 36.2 

Face1  

1.37  

100 34.0  0.024 8.4  38.8 

160  18.1  0.012 11.5  37.5 

Face2  

1.37  

50  46.2  0.032 6.7  39.8 

150  20.1  0.014 9.9  38.1 
 

 

 

   (left) 2D decompressed Corner image with RMSE=4.7, (middle and right) converted the 2D 

Corner's image to 3D surface by GMPR method at compressed size = 35.4 KB. 
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(a): Zooming in the decompressed 2D Corner's image (RMSE=4.7) converted to 3D mesh 

reconstructed successfully by the GMPR method without significant distortions. (Compressed size 

was 35.4 KB)    

 

 

 
(left) 2D decompressed Corner image with RMSE=15.5, (middle and right) converted the 2D 

Corner's image to 3D surface by the GMPR method at compressed size = 17.8 KB. 

 

 

(b): Zooming in to the decompressed 2D Corner's image (RMSE=15.5) converted to 3D mesh 

reconstructed successfully by the GMPR method without significant distortions at higher 

compression ratio (compressed size was 17.8 KB)    

Figure 12. (a) and (b): shows the 2D decompressed for Corner's image, that used in 3D application to 

reconstruct 3D mesh surface. The 3D mesh (3D vertices and triangles) is successfully reconstructed 

without significant distortion at high compression ratios up to 98.6%.  
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(left) 2D decompressed Face1 image with RMSE=8.4, (middle and right) converted the 2D Face1 

image to 3D surface by the GMPR method at compressed size =34 KB. 

 

 
(a): Zooming in the decompressed 2D Face1 image (RMSE=8.4) used to reconstruct 3D vertices and 

mesh successfully without significant distortion (3D surface visualized by MeshLab software) 

 

(left) 2D decompressed Face1 image with RMSE=11.5, (middle and right) converted the 2D Face1 

image to 3D surface by the GMPR method at compressed size =18.1 KB. 
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(b): Zooming in the decompressed 2D Face1 image (RMSE=11.5) used to reconstruct 3D vertices and 

mesh successfully without significant distortion (3D surface visualized by MeshLab software) 

Figure 13. (a) and (b): shows decompressed for Face1 2D image, that used in the 3D application to 

reconstruct 3D mesh surface. The 3D mesh is successfully reconstructed without significant 

distortion at high compression ratios of 98.6%.  

 
 
 

 
(left) 2D decompressed Face2 image with RMSE=6.7, (middle and right) converted the 2D Face2 

image to 3D surface by GMPR group at compressed size =46.2 KB. 
 

 

(a): Zooming in the decompressed 2D Face2 image (RMSE=6.7) used to reconstruct 3D vertices and 

mesh successfully without significant distortion (3D surface visualized by MeshLab software) 
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(left) 2D decompressed Face2 image with RMSE=9.9, (middle and right) converted the 2D Face2 

image to 3D surface by GMPR group at compressed size =20.1 KB. 

 

(a): the decompressed 2D Face2 image (RMSE=9.9) used to reconstruct 3D vertices and mesh 

successfully without significant distortion (3D surface visualized by MeshLab software) 

Figure 14. (a) and (b): shows decompressed for Face2 2D image, that used in 3D application to 

reconstruct 3D mesh surface. The 3D mesh was successfully reconstructed without significant 

distortion at high compression ratios of 98.5%. 

 

6. Discussion and Comparative Analysis 

Our literature survey did not show results for image compression using the DFT alone. The 

reason is that by applying a DFT, it yields two sets of coefficients, real and imaginary. If one wishes 

to keep those for faithful image reconstruction, then it is not possible to achieve high compression 

ratios. We applied the DFT as described in this paper resulting in images with good visual quality 

and low compression complexity. A comparative analysis between compression ratios for DFT alone 

and DFT followed by the Matrix Minimization algorithm show enormous differences as shown in 

Table 4.  

The results demonstrate that our proposed method of using a DFT in conjunction with the 

Matrix Minimization algorithm has the ability to compress digital images up to 98% compression 

ratios. It is shown that the DFT alone cannot compress images with similar ratios and quality. 

Although it can be seen from Table 4 that our proposed method (DFT + Matrix Minimization 

algorithm) increases the overall RMSE and, while some image details are lost, reconstructed images 

are still high quality.  

Additionally, the proposed method is compared with JPEG technique [23,24,25] which is a 

popular technique used in image and video compression. Also, the JPEG is used in many areas of 

digital image processing [26]. The main reason for comparing our method with JPEG is because 

JPEG is based on DCT and Huffman coding. Table 5 shows the analytical comparison between the 

two methods. 
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Table 4: Comparative analysis of using DFT alone and our proposed method (DFT and Matrix 

Minimization) based on image quality and compressed size  

Image 
Size 

(MB) 

Quantization 

Factor 

Compressed 

size 

DFT alone  
RMSE PSNR 

Compressed 

Size  

DFT + MM 
RMSE PSNR 

KB bpp KB bpp 

Conventional images 
Lena 1.0 45 721 0.7 2.1 44.9 88  0.085 3.9 42.2 
Lion  1.37 100 808 0.57 3.59 42.5 71 0.05 8.1 39.0 

Apples 1.37 60 576 0.41 2.3 44.5 47 0.033 4.6 41.5 
Boeing  6.15 25 2,200 0.35 1.8 45.5 182 0.028 3.9 42.2 

Girl 4.29 25 2,350 0.54 3.59 42.5 315 0.071 5.5 40.7 
Bagdad 8.58 35 3,500 0.4 2.3 44.5 309 0.035 5.6 40.6 

Structured light images 
Corner 1.25 100 615 0.48 2.9 43.5 17 0.013 15.5 36.2 
Face1 1.37 160 624 0.44 4.8 41.3 18 0.012 11.5 37.5 
Face2 1.37 150 508 0.36 4.1 42.0 20 0.014 9.9 38.1 

 
 

Table 5: Comparative analysis of compression using JPEG and our approach based on image quality and 

compression size. 

Image 
Size 

(MB) 

Compressed 

Size by JPEG RMSE PSNR 

Compressed Size  

by DFT + MM RMSE PSNR 

KB bpp KB bpp 

Conventional images 
Lena 1.0 64 0.062 1.9 45.3 88  0.085 3.9 42.2 
Lion  1.37 56 0.039 8.8 38.6 71 0.05 8.1 39.0 

Apples 1.37 48 0.034 3.2 43.0 47 0.033 4.6 41.5 
Boeing  6.15 210 0.033 8.7 38.7 182 0.028 3.9 42.2 

Girl 4.29 347 0.078 9.8 38.2 315 0.071 5.5 40.7 
Bagdad 8.58 279 0.031 3.5 42.6 309 0.035 5.6 40.6 

Structured light images 
Corner 1.25 26 0.02 14.3 36.5 17 0.013 15.5 36.2 
Face1 1.37 23 0.016  16.5 35.9 18 0.012 11.5 37.5 
Face2 1.37 27 0.019  13.1 36.9 20 0.014 9.9 38.1 

 
In above Table 5 it shown that our proposed method is better than JPEG technique to compress 

structured light images, while for conventional images it can be stated that both methods are 

roughly equivalent as image quality varies in both methods. The following figures 15, 16 and 17 

show comparisons between our approach the and JPEG technique for the images shown in Tables 4 

and 5. 
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JPEG Compressed Size=64 KB JPEG Compressed Size=56 KB JPEG Compressed Size=48 KB 

Figure 15: Compressed and decompressed greyscale images by JPEG, the quality of the 

decompressed images varies compared with our approach according to RMSE and PSNR.              

 

JPEG Compressed Size=210 KB   JPEG Compressed Size=347 KB   JPEG Compressed Size=279 KB   

Figure 16: Compressed and Decompressed colour images by JPEG, the decompressed images 

(Boeing and Girl) have lower quality compared with our approach according to RMSE and PSNR. 

However, our approach couldn't reach to JPEG level of compression for Bagdad's image on the right. 

 
Concerning the compression of structured light images for 3D mesh reconstruction, the 

comparison of our method with JPEG shows enormous potential for our approach as depicted in 

Figures 11 to 14. Trying to compress the same images using JPEG and then using the decompressed 

image to generate the 3D mesh clearly shows the problems and limitations of JPEG. This is 

illustrated in Figure 17, which shows the JPEG technique on two structured light images for 3D 

mesh reconstruction. 

  
(a) JPEG compressed size = 26 KB and 3D mesh reconstructed for Corner image. It clearly 

contains severe degradations, while our approach successfully reconstructed the 3D 

mesh without significant degradation (see Figure 12). 
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(b)  The JPEG compressed size for FACE1 and FACE2 is 23 KB and 27 KB respectively. 

However, it was not possible to reconstruct the 3D mesh for these two images, because 

the stripes became unreadable, while our approach has successfully compressed and 

decompressed these two images in 3D (see Figures 13 and 14). 

Figure 17: 3D reconstruction from JPEG compressed images. In (a) reconstruction was possible but with 

significant artefacts. In (b) 3D reconstruction was not possible as images were too deteriorated. 

 
Comparative analysis focused on our previous work on the Matrix Minimization algorithm 

based on two discrete transforms DWT and DCT, as suggested by Siddeq and Rodrigues [9,10,11] 

performing compression and encryption at the same time. However, complexity of compression and 

decompression algorithms is cited as a disadvantage of previous work. Table 6 shows the 

decompression time for the Matrix Minimization algorithm [12] (previous work) compared with our 

proposed approach. The advantages of the proposed over previous work are summarized as 

follows: 
• The complexity of the decompression steps is reduced in the proposed approach. This is 

evident from execution times quoted in Table 6 as the current approach runs faster than 

previous work on the same hardware. 

• The header file information of current approach is smaller than previous work leading 

to increased compression ratios. 
•  

Table 6: Comparative analysis between pervious work [12] (Matrix Minimization algorithm) and our 

approach based on time execution 

Image 
Size 

(MB) 

 Previous work  

(Matrix Minimization algorithm)  
The proposed algorithm  

Compressed 

size (KB) 

Bits/Pixel 

(bpp) 

Decompression 

time (seconds) 

Compressed 

size (KB) 

Bits/pixel 

(bpp) 

Decompression 

time (seconds) 

Lena 1.0 120 0.117  102  88  0.085 25 

Lion  1.37 98 0.069 240  71 0.05  40 

Apples 1.37 92 0.065 90 47 0.033  15 

Boeing  6.15 240 0.038 420  182 0.028 150 

Girl 4.29 399 0.090 330 315 0.071  114 

Bagdad 8.58 673 0.076 720 309 0.035  198 

Corner 1.25 56 0.043 84 17 0.013 22 

Face1 1.37 46 0.032 144 18 0.012 59 



  

18 
 

Face2 1.37 38 0.027 174  20 0.014 66 

 
 

It is important to stress the significant novelties of the proposed approach which are the 

reduced number of steps at decompression stage and smaller header information resulting in faster 

reconstruction from data compressed at higher compression ratios. Table 7 shows that our proposed 

image compression method has higher compression ratios and better image quality (i.e. for both 

types conventional and structured light images) as measured by RMSE and PSNR.         

 
Table 7: Comparative analysis between pervious work [12] (Matrix Minimization) and our approach based 

on image quality and compression sizes. 

Image 
Size 

(MB) 

 Previous work  

(Matrix Minimization algorithm)  
The proposed algorithm  

Compressed 

Size (KB) 

Bits/Pixel 

(bpp) 
RMSE  PSNR 

Compressed  

Size (KB)  

Bits/Pixel 

(bpp) 
RMSE PSNR  

Lena 1.0 120 0.117 6.8  39.8 88 0.085 3.9 42.2 

Lion  1.37 98 0.069  10.1 38.0 71 0.050 8.1 39.0 

Apples 1.37 92 0.065  7.1 39.6 47 0.033 4.6 41.5 

Boeing  6.15 240 0.038  10.2 38.0 182 0.028 3.9 42.2 

Girl 4.29 399 0.090  8.4 38.8 315 0.071 5.5 40.7 

Bagdad 8.58 673 0.076  5.9 40.4 309 0.035 5.6 40.6 

Corner 1.25 56 0.043  16.0 36.0 17 0.013 15.5 36.2 

Face1 1.37 46 0.032 14.4  36.5 18 0.012 11.5 37.5 

Face2 1.37 38 0.027  11.2 37.6 20 0.014 9.9 38.1 

 

7. Conclusion 

This research has demonstrated a novel approach to compress images in greyscale, colour and 

structured light images used in 3D reconstruction. The method is based on the DFT and the 

Matrix-Minimization algorithm. The most important aspects of the method and their role in 

providing high quality image with high compression ratios are highlighted as follows. 

  
• After dividing an image into non-overlapping blocks (4x4), a DFT is applied to each 

block followed by quantizing each part (real and imaginary) independently. 

Meanwhile, the DC value (Low Frequency Coefficients) from each block are stored in a 

new matrix, while the rest of the values in the block are the High Frequency 

Coefficients.    
• The Matrix-Minimization algorithm is applied to reduce the high-frequency matrix to 

1/3 of its original size, leading to increased compression ratios. 

• The relatively large probability table of previous method was reduced to two values, 

minimum and maximum leading to higher compression ratios and faster 

reconstruction. 

 
Results demonstrate that our approach yields better image quality at higher compression ratios 

while being capable of accurate 3D reconstruction of structured light images at very high 
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compression ratios. Overall, the algorithm yields a best performance on colour images and 

structured light images used in 3D reconstruction than on standard grey images. 

On the other hand, the compression steps introduced by the MM algorithm, especially at 

decompression stage, make the compression algorithm more complex than, for instance, standard 

JPEG. In general, it can be stated that decompression is slower than compression due to the search 

space to recover the original Low and High Frequency coefficients. In addition, arithmetic coding 

and decoding is applied to three sets of data (DC values, in addition to real and imaginary frequency 

coefficients) adding significantly more computation steps leading to increased execution time. 
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