5,678 research outputs found

    Optimization with Discrete Simultaneous Perturbation Stochastic Approximation Using Noisy Loss Function Measurements

    Get PDF
    Discrete stochastic optimization considers the problem of minimizing (or maximizing) loss functions defined on discrete sets, where only noisy measurements of the loss functions are available. The discrete stochastic optimization problem is widely applicable in practice, and many algorithms have been considered to solve this kind of optimization problem. Motivated by the efficient algorithm of simultaneous perturbation stochastic approximation (SPSA) for continuous stochastic optimization problems, we introduce the middle point discrete simultaneous perturbation stochastic approximation (DSPSA) algorithm for the stochastic optimization of a loss function defined on a p-dimensional grid of points in Euclidean space. We show that the sequence generated by DSPSA converges to the optimal point under some conditions. Consistent with other stochastic approximation methods, DSPSA formally accommodates noisy measurements of the loss function. We also show the rate of convergence analysis of DSPSA by solving an upper bound of the mean squared error of the generated sequence. In order to compare the performance of DSPSA with the other algorithms such as the stochastic ruler algorithm (SR) and the stochastic comparison algorithm (SC), we set up a bridge between DSPSA and the other two algorithms by comparing the probability in a big-O sense of not achieving the optimal solution. We show the theoretical and numerical comparison results of DSPSA, SR, and SC. In addition, we consider an application of DSPSA towards developing optimal public health strategies for containing the spread of influenza given limited societal resources

    Feature Selection via Binary Simultaneous Perturbation Stochastic Approximation

    Full text link
    Feature selection (FS) has become an indispensable task in dealing with today's highly complex pattern recognition problems with massive number of features. In this study, we propose a new wrapper approach for FS based on binary simultaneous perturbation stochastic approximation (BSPSA). This pseudo-gradient descent stochastic algorithm starts with an initial feature vector and moves toward the optimal feature vector via successive iterations. In each iteration, the current feature vector's individual components are perturbed simultaneously by random offsets from a qualified probability distribution. We present computational experiments on datasets with numbers of features ranging from a few dozens to thousands using three widely-used classifiers as wrappers: nearest neighbor, decision tree, and linear support vector machine. We compare our methodology against the full set of features as well as a binary genetic algorithm and sequential FS methods using cross-validated classification error rate and AUC as the performance criteria. Our results indicate that features selected by BSPSA compare favorably to alternative methods in general and BSPSA can yield superior feature sets for datasets with tens of thousands of features by examining an extremely small fraction of the solution space. We are not aware of any other wrapper FS methods that are computationally feasible with good convergence properties for such large datasets.Comment: This is the Istanbul Sehir University Technical Report #SHR-ISE-2016.01. A short version of this report has been accepted for publication at Pattern Recognition Letter
    corecore