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Abstract 

 

Discrete stochastic optimization considers the problem of minimizing (or maximizing) 

loss functions defined on discrete sets, where only noisy measurements of the loss 

functions are available. The discrete stochastic optimization problem is widely applicable 

in practice, and many algorithms have been considered to solve this kind of optimization 

problem. Motivated by the efficient algorithm of simultaneous perturbation stochastic 

approximation (SPSA) for continuous stochastic optimization problems, we introduce the 

middle point discrete simultaneous perturbation stochastic approximation (DSPSA) 

algorithm for the stochastic optimization of a loss function defined on a p-dimensional 

grid of points in Euclidean space.  

We show that the sequence generated by DSPSA converges to the optimal point under 

some conditions. Consistent with other stochastic approximation methods, DSPSA 

formally accommodates noisy measurements of the loss function. We also show the rate 

of convergence analysis of DSPSA by solving an upper bound of the mean squared error 
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of the generated sequence. In order to compare the performance of DSPSA with the other 

algorithms such as the stochastic ruler algorithm (SR) and the stochastic comparison 

algorithm (SC), we set up a bridge between DSPSA and the other two algorithms by 

comparing the probability in a big-O sense of not achieving the optimal solution. We 

show the theoretical and numerical comparison results of DSPSA, SR, and SC. In 

addition, we consider an application of DSPSA towards developing optimal public health 

strategies for containing the spread of influenza given limited societal resources.  

    This dissertation also contains three appendices. The first appendix considers the 

analysis of practical step size selection in stochastic approximation algorithms for 

continuous problems. The second appendix discusses the rate of convergence analysis of 

SPSA for time-varying loss functions. The third appendix focuses on the numerical 

experiments on the properties of the upper bound of the mean squared errors for the 

sequence generated by DSPSA.  
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Chapter 1 

Introduction 

 

The purpose of this chapter is to introduce the research problem, provide a literature 

review, and summarize main research results. We discuss the motivation in Section 1.1, 

and introduce the problem and previous work in Section 1.2. These sections are followed 

by a summary of the main results of the research.  

 

1.1 Motivation 

    The optimization of real-world stochastic systems typically involves the use of a 

mathematical algorithm that iteratively seeks out the solution. It is often the case that the 

domain of optimization is discrete and that only noisy objective function measurements 

are available to carry out the optimization process.  
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Some problems of interest within this framework include transmission problem in 

networks (Wieselthier et al., 1992, Cassandras and Julka, 1995, Mishra et al., 2007), 

spreading code design problem (Krishnamurthy et al., 2004), assignment problem of 

people evacuation (Francis, 1981), facility locating problem (Ermoliev and Leonardi, 

1982), weapons assignment problem (Cullenbine et al., 2003), antenna selection problem 

(Liu et al, 2012), and, more generally, distributing a discrete amount of resources to a 

finite number of users in the face of uncertainty (Castanon and Wohletz, 2009, Wang and 

Gao, 2010). 

    In this paragraph, we briefly discuss some of the problems above. Wieselthier et al. 

(1992) discuss the model of a multiple service, multiple resource (MSMR) problem. In 

networks that support voice traffic, the acceptance of a call is based on the commitment 

of resources at all nodes along the path. The call may be blocked due to the lack of 

resource at any node along the path. The objective is to optimize the total performance of 

the networks, which is related to throughput and blocking probability. Cassandras and 

Julka (1994) discuss the problem where a single resource must provide service to a set of 

customer classes and the single resource can serve multiple customers simultaneously 

from the same class. The objective is to determine the assignment probabilities and use 

them to optimize the performance by solving the scheduling problem. Mishra et al. 

(2007) consider the problem of admission control of packets in communication networks 

under dependent service times. The parameters to be optimized are the thresholds of 

acceptance and rejection of the incoming packets. Krishnamurthy et al. (2004) consider 

the problem of optimization of the spreading codes of users in the CDMA system. The 
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objective is to maximize the signal-to-interference-plus-noise ratio by choosing the 

optimal spreading codes. Francis (1981) discusses the problem of evacuating a building 

in the minimal time by assigning people to different evacuation routes. Liu et al. (2012) 

discuss the problem of sum rate maximization antenna selection in MIMO (multiple 

input, multiple output) two-way AF relay with imperfect CSI (channel state information). 

They want to determine the optimal antenna subset under the imperfect information, 

which is a discrete problem with noise. Castanon and Wohletz (2009) consider one class 

of stochastic resource allocation problems, and in their class, resources assigned may fail 

to complete the task with certain probability. The objective is to minimize the incomplete 

task value and the cost of using resources.  

Many algorithms, such as ranking and selection, multiple comparisons, stochastic ruler 

and stochastic comparison (more discussions will be in Section 1.2.2), have been 

considered for such discrete stochastic optimization problems. By the “No Free Lunch 

Theorem” (Spall 2003, Subsection 1.2.2), we know that no algorithm can outperform all 

other algorithms for all kinds of functions. There is an inherent trade-off between the 

robustness and the efficiency of algorithms. In view of the trade-off, some algorithms 

may be more robust, which indicates that they may be applicable for many kinds of 

functions, but at the same time, these algorithms may not be efficient. On the other hand, 

some other algorithms may be very efficient for some specific kinds of functions, but 

they may only be applicable for fewer kinds of loss functions. In view of objective 

functions, for some loss functions we have to compare the function values in all points to 

decide the optimal solution, while for others we can use the special structure of the 
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functions to find out the optimal solution more efficiently.  

As will be discussed in Section 1.2.2, many algorithms for discrete optimization often 

focus on the comparisons of loss function values at different points or the comparisons of 

the ranks of candidate points, and these algorithms do not really take advantage of 

function structure. Furthermore, due to the noisy measurements of loss function, point-

wise comparisons in each iteration may not lead to the right results. Hill et al. (2004) 

introduce a new algorithm, which uses the similar idea of the simultaneous perturbation 

stochastic approximation (SPSA) algorithm (Spall, 1992, 1998a). SPSA is one kind of 

stochastic approximation algorithm used for continuous stochastic optimization 

problems. The gradient estimate in SPSA is based on the idea of simultaneous 

perturbation instead of the general finite difference estimate in the finite difference 

stochastic approximation algorithm (FDSA). Compared with FDSA, SPSA can achieve 

the same level of accuracy by using p times fewer noisy measurements of the loss 

function in each iteration, where p is the dimension of the problem. Overall, SPSA has 

many advantages such as: 1) it is relatively easy to implement SPSA into real problems; 

2) there are only two noisy measurements of the loss function in each iteration; 3) SPSA 

implicitly makes use of loss function structure; 4) SPSA can handle noise properly; 5) 

SPSA is efficient for high-dimensional problems. In Hill et al. (2004), they use the 

similar idea of SPSA and introduce a stochastic approximation type algorithm for discrete 

stochastic optimization problems. They also develop preliminary results associated with 

convergence for a separable discrete loss function under special conditions. However, 

their algorithm can be shown not to converge to the optimal solution in simple examples. 
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For some one-dimensional problems, this algorithm converges to a point next to the 

optimal solution, but not the optimal one. 

We introduce a different form of discrete version of SPSA (different from Hill et al., 

2004). This new version of discrete SPSA (DSPSA) applies to a broad range of problems, 

while potentially retaining the essential efficiency advantage of standard SPSA. We show 

almost sure convergence of this algorithm under some conditions, discuss the rate of 

convergence property, and compare it with other popular algorithms.  

 

1.2 Discrete Stochastic Optimization 

In this section, we introduce the discrete stochastic optimization problem that we will 

consider, and do the literature review for a broad range of existing algorithms. 

 

1.2.1 Problem Statement 

We consider a real-valued function ( )L : p , where  is a p-dimensional vector, 

p  is the space of all p-dimensional multivariate integer points,  is the space of reals, 

and L is a loss function to be minimized. Suppose p  is the domain of the allowable 

values of . We consider the optimization problem of  

 min ( )L . 
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Suppose the solution set of the problem above is * . Then we have  

 * * *arg min ( ) : ( ) ( )L L L . 

But the measurements of the objective function ( )L  involve noise. We assume the noisy 

measurement of ( )L  is ( )y , and  

 ( ) ( ) ( )y L , 

 where  is the measurement of noise. It follows that the stochastic optimization problem 

can be regarded as 

 min ( )E y . 

Generally, we do not know the exact form of the objective function ( )L , and we need to 

do the optimization only based on the noisy measurements of the loss function through 

simulations.  

Here we consider a general domain within p . However, there are often discrete 

problems with a countable number of candidates that are not at the integer-based grid 

points. For such non-grid problems, we may map these non-integer points onto the 

domain of p , and there are many possible mappings. We will further discuss this 

problem in Section 8.2 as a future research direction. 
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1.2.2 Previous Work on Algorithms 

There are many papers discussing the discrete stochastic optimization problems. In this 

section, we review a broad range of these methods. Basically, we can divide these 

algorithms into several classes: statistical approach, random search method, stochastic 

approximation, and other algorithms. Hill (2013), Fu (2002) and Swisher et al. (2004) 

provide some literature reviews on the discrete stochastic optimization with noisy loss 

function measurements. 

 

1.2.2.1 Statistical Approaches 

The class of statistical approaches includes the methods of ranking and selection 

(R&S), multiple comparisons, ordinal optimization and others. The basic idea of these 

methods is to use statistical analysis to make decisions under a confidence level.  

R&S and multiple comparisons procedures (Swisher et al., 2003, Goldsman and 

Nelson, 1994, Kim and Nelson, 2007, Bechhofer et al., 1995, Bechhofer, 1954) evaluate 

all candidates from a given fixed and finite set of feasible domain. Due to the noisy 

measurements, these methods need to collect a certain number of observations for each 

candidate. These algorithms mainly focus on the optimization problem with small 

number of feasible solutions (20 is a frequently recommended number [Spall, 2003, p. 

302]). 
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For the R&S algorithm, based on observations, the goal is to select either the best 

candidate with a specific probability or a subset of candidates that contains the best 

candidate with a specific probability. These two types of selection procedures correspond 

to the two general classes of R&S: indifference-zone ranking and subset selection.  

For multiple comparisons procedures, the goal is to quantify the difference between 

candidates and construct simultaneous confidence intervals of the differences between 

loss function values at different points. Swisher et al. (2003) divide this approach into 

three classes: all-pairwise comparisons approaches, multiple comparisons with a control, 

and multiple comparisons with the best.  

The ordinal optimization algorithm is designed for the problem where it is easier to 

determine the relative order than the precise function values. Ho et al. (2000) and Ho et al. 

(2007) discuss the ideas of ordinal optimization, and these ideas are similar to the R&S 

algorithm and multiple comparisons algorithm. Ordinal optimization can work for the 

domains with a large number of candidates. In the ordinal optimization algorithm, a 

budget allocation problem is solved to decide the number of measurements needed for 

each candidate point to achieve some level of correct selection probability. Due to the 

noise, a large number of observations are needed for each point to achieve a certain 

confidence level of correct selection. The variance reduction techniques can greatly help 

to reduce the cost and improve the performance.  

The algorithm discussed in Kleywegt et al. (2001) is not a typical R&S method, but 

we think it belongs to the class of statistical approach. In their paper, the loss function 

value is estimated by the sample average. They solve the sample average optimization 
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problem for several replicates until a stopping criterion is satisfied. Compared with the 

R&S method, the algorithm in Kleywegt et al. (2001) does not do the screening and 

selection in each iteration, and it statistically picks the best solution from different 

replicates based on a confidence interval. 

 

1.2.2.2 Random Search Type Algorithms 

The basic ideas of the random search method are discussed in Chapter 2 of Spall 

(2003). These algorithms are applicable for the noise-free case, but with some 

modifications, such as adding a threshold, these algorithms are also applicable for the 

noisy case. Basically there are two classes of random search algorithms for discrete 

stochastic optimization. For the first class of algorithms, in each iteration the loss 

function is measured only at the candidate point and the current point, and for the second 

class of algorithms, the loss function is measured at points in a big set (promising area). 

Now we discuss these two classes of random search algorithms for discrete stochastic 

optimization in detail. 

For the first class of random search type algorithms, suppose the generated sequence is 

ˆ
k . Assume that ˆ( )kN  is a set of neighboring points of point ˆ

k  excluding ˆ
k  itself 

(the new candidate point should be generated from ˆ( )kN ). For any point k  in ˆ( )kN , 

suppose ˆ( , )k kR  is the probability to generate k  as the new candidate, where 
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ˆ( , ) 0k kR  and ˆ( )
ˆ( , ) 1

k k k kN R . The general random search algorithm in the 

first class can be described as: 

Step 1: Pick the initial guess 0
ˆ , k = 0. 

Step 2: Given ˆ
k , generate a new candidate ˆ( )k kN  with probability ˆ( , )k kR . 

Step 3: Do the comparisons based on some criterion to decide whether to accept  k . If 

accepted, let 1
ˆ

k k ; otherwise 1
ˆ ˆ

k k . 

Step 4: Set k = k + 1, go to step 2. 

In each iteration, a candidate point is generated from the neighborhood of the current 

point, and based on some comparisons, the current point is either replaced by the new 

candidate point or retained. The definition of the neighborhood ˆ( )kN  depends on the 

choice of algorithm. For example, the neighborhood of ˆ
k  can be ˆ{ }k  or a set 

containing points that are closed to ˆ
k  under some norm.  

The first class of random search type algorithms for discrete stochastic optimization 

includes the stochastic ruler algorithm (Yan and Mukai, 1992), the stochastic comparison 

algorithm (Gong et al., 1999), and the modified simulated annealing algorithm (Gelfand 

and Mitter, 1989, Fox and Heine, 1995, Gutjahr and Pflug, 1996, Alrefaei and 

Andradottir, 1999). Andradottir (1999) introduces an idea to accelerate the convergence 

speed of the first class of random search type algorithms. By recording all previous data 

and adding extra optimization step in each iteration, Andradottir (1999) improves the 

performance of the stochastic ruler algorithm, the stochastic comparison algorithm and 
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the simulated annealing algorithm. In the following, we expand the discussion of each 

method in the first class of random search type algorithms for discrete stochastic 

optimization. 

For the stochastic ruler algorithm, the idea is to change the minimization problem to a 

maximization problem. A stochastic ruler ,u vU  is defined and it is uniformly distributed 

over the interval [ , ]u v . The equivalent maximization problem is  

 ,max ( ) u vP y U . 

The implementation of the algorithm is to do multiple comparisons in each iteration 

between the noisy measurements of loss function at the current point and the stochastic 

ruler. If any of the comparisons indicate that ,u vU  is smaller than ( )y , the current point 

will be kept; otherwise the current point will be replaced. More discussions on the 

stochastic ruler algorithm can be seen in Section 5.2. 

For the stochastic comparison algorithm, the idea is similar to the stochastic ruler 

algorithm, where the minimization problem is also replaced by a maximization problem. 

In each iteration, the noisy measurements of loss function values at the current point and 

the candidate point are compared to decide whether the current point is kept or replaced. 

Gong et al. (1999) consider the case of ( )N  (set of  excluding ), and the 

authors show that under some reasonable conditions, the generated sequence converges to 

the global optimal point. More discussions on the stochastic comparison algorithm can be 

seen in Section 5.3. 
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For the modified simulated annealing algorithm, when the variance of the noise goes 

to 0 as k , Gelfand and Mitter(1989) and Gutjahr and Pflug (1996) show the result 

of convergence for the noisy case. Without the restrictive variance assumption, the most 

obvious way to deal with the noise is to use sample average to do the comparisons in 

each iteration. However, the cost may be dramatically increased. Fox and Heine (1995) 

consider the algorithm to calculate the average based on all previous iterations. Another 

way to handle the noise is to add a threshold (e.g. accepting the candidate point k , if for 

the current point ˆ
k , ˆ( ) ( )k ky y , where 0  is a threshold). In the Proposition 

8.1 of Spall (2003), the author shows a result for the method of threshold, but this 

proposition does not provide clear convergence property for the full process. Alrefaei and 

Andradottir (1999) consider the modification of a simulated annealing algorithm by using 

constant temperature. But they record the noisy measurements in all previous iterations 

and set the current optimal point to be the point with the smallest average function value 

based on all historical information. 

Andradottir (1999) uses the similar idea of Alrefaei and Andradottir (1999) and 

expands the idea to other random search type algorithms, such as the stochastic ruler 

algorithm and the stochastic comparison algorithm. Generally, Andradottir (1999) adds 

one more step into the original random search type algorithms. In this step, all old 

information is stored and the point with the smallest average noisy loss function value 

(based on all old information) is set as the current optimal point. The convergence 

properties can be proved through the strong law of large numbers and the central limit 
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theorem. Even though lots of information needs to be stored, the extra optimization step 

increases the speed of convergence.   

For the second class of random search type algorithms in discrete stochastic 

optimization, the loss function values are measured on a set of points in each iteration. 

This class of algorithms is sometimes called “adaptive random search,” where a 

promising area is chosen in each iteration. Generally, for this class, the algorithms 

contain two critical steps: the sampling scheme that determines the points to be sampled 

and the estimation scheme that decides the points to be measured and the number of 

measurements for each point. This kind of class includes convergent optimization via 

most-promising-area stochastic search (Hong and Nelson, 2006, Li et al., 2009), adaptive 

hyperbox algorithm (Xu et al., 2013), locally convergent random-search algorithm (Hong 

and Nelson, 2007), and general nested partitions (Pichitlamken and Nelson, 2003). In the 

following, we expand the discussion of each method in the second class of random search 

type algorithms. 

The basic idea of the convergent optimization via most-promising-area stochastic 

search (COMPASS) is to find the most promising area and to do more sampling within 

that area to increase the efficiency of the algorithm. All points sampled are to be 

evaluated for the noisy loss function values, and all observations up to the current 

iteration are used to decide the optimal solution in each iteration. The adaptive hyperbox 

algorithm (AHA) is a modification of COMPASS done by modifying the way to generate 

the most promising area. The method of locally convergent random-search algorithm 

generalizes the idea in COMPASS and provides a revised form of COMPASS, such that 
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in the estimation scheme fewer points need to be evaluated. The nested partitions method 

for the noise-free case is discussed in Shi and Olafsson (2000), and they show that the 

most promising area shrinks to the optimal solution with probability one. The application 

of nested partitions in noisy loss function is considered in Pichitlamken and Nelson (2003) 

and they modify the algorithm in several parts: 1) the way that they choose the most 

promising area is based on all the observations up to current iteration, while Shi and 

Olafsson (2000) only use measurements in current iteration; 2) at search termination, they 

pick the optimal solution with the smallest sample mean up to that time. Based on these 

two key modifications, they can show the almost sure convergence under less restrictive 

conditions.   

 

1.2.2.3 Stochastic Approximation Type Algorithms 

The discrete version of the stochastic approximation algorithms mimics the idea of 

stochastic approximation algorithms for the continuous stochastic optimization problem. 

Stochastic approximation (SA) has been well developed for continuous parameter 

problems, and Kushner (2010) provides a survey of the SA methods. The general formula 

of SA is 

 1
ˆ ˆ ˆˆ ( )k k k k ka g , 

where ka  is the gain sequence and ˆˆ ( )k kg  is the estimate of the gradient or 

subgradient at point ˆ
k . Few papers have considered using the idea of stochastic 

approximation in the discrete stochastic optimization problems. 
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    Dupac and Herkenrath (1982) solve the problem of finding a root of a function defined 

on p . Their idea is to extend the discrete function to a continuous one by multilinear 

interpolation. Then the discrete root finding problem is transferred to the continuous root 

finding problem, which can be solved by standard SA algorithms. Bhatnagar et al. (2011) 

set up an algorithm by making use of the similar idea of Dupac and Herkenrath (1982) on 

multilinear interpolation and the idea of SPSA, but they mainly focus on the problem of 

minimizing the long-run average cost  

 
1

1min ( )
n

j
j

E h X
n

, 

where ( )h  is real-valued function and { }jX  is the underlying Markov process that 

depends on .  Gokbayrak and Cassandras (1999) also extend the discrete objective 

function into a continuous differentiable function, which can be solved by the general SA 

algorithm. The function value of each non-multivariate-integer point is defined as the 

convex combination of multivariate integer points. In order to estimate the gradient for 

each point, they need many loss function measurements in each iteration. Therefore, the 

expense is costly for this algorithm. Lim (2012) constructs a piecewise linear continuous 

extension based on the original discrete function. But in order to get the approximated 

gradient, p +1 loss function measurements are needed in each iteration. Thus, for high-

dimension problems, the cost of the algorithm is really high. Hill et al. (2004) and Hill 

(2005) use a different way from Gokbayrak and Cassandras (1999) and Lim (2012) to 

calculate the gradient-like approximation, and they also provide some preliminary results 

associated with the convergence for a separable discrete loss function under some 
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conditions. Compared with Gokbayrak and Cassandras (1999) and Lim (2012), Hill et al. 

(2004) only need two measurements in each iteration, which involves less cost. Wang 

and Spall (2011) suggest a new discrete version of SPSA, which generalizes the type of 

loss functions discussed in Hill et al. (2004). 

 

1.2.2.4 Other Algorithms   

Besides the types of algorithms discussed in Sections 1.2.2.1, 1.2.2.2, and 1.2.2.3, 

there are some other algorithms that solve the discrete stochastic optimization problem 

including the evolutionary policy selection – Monte Carlo (EPI-MC) (Hannah and Powell, 

2010) and the stochastic branch and bound approach (Norkin et al., 1998a and Norkin et 

al., 1998b). 

Hannah and Powell (2010) consider the algorithm of EPI-MC, which is designed for 

one-stage stochastic combinatorial optimization with a finite action space ( ) and a 

noisy cost function. Policy switching and mutation are two features used in the algorithm 

of EPI-MC. In each iteration, a set of policies (points) is chosen to evaluate the cost 

values by Monte Carlo simulation. Norkin et al. (1998a) consider the stochastic branch 

and bound approach, where three operations are executed iteratively: partition of set, 

estimation of loss function in each subset, and removal of some subset based on the 

statistical upper and lower bounds. 
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1.3 Summary of Main Results 

The primary contribution of this dissertation to the field is that we introduce a new 

discrete version of simultaneous perturbation stochastic approximation algorithm 

(DSPSA) for the discrete stochastic optimization problem. We show that DSPSA is a 

convergent algorithm under some conditions that are similar to those for some other 

discrete algorithms. We also provide a rate of convergence analysis of DSPSA for both 

finite sample performance and asymptotical performance, and compare DSPSA with the 

stochastic ruler algorithm and the stochastic comparison algorithm. Besides these 

theoretical results, we apply DSPSA on an epidemic problem in public health to solve for 

the optimal intervention method, including vaccination priority, antiviral agent policy, 

and time of school closure.  

Currently, most discrete stochastic optimization algorithms do not make use of the loss 

function’s structure in a manner analogous to the gradient information for continuous 

problems, and these algorithms may be robust even when the feasible domain is very 

strange. By the “No Free Lunch Theorem”, no algorithm can have both perfectly efficient 

performance and perfectly robust performance, which means there is a trade-off between 

efficiency and robustness for any algorithm. The discrete stochastic approximation 

algorithms implicitly make use of the structure information of the loss function through a 

“sort-of” gradient (subgradient), which can lead to a sequence with fast convergence 

performance under some assumptions. However, the robustness of the discrete stochastic 
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approximation algorithms may be sacrificed because of the assumptions for convergence 

property.  

There are few algorithms that are of the discrete stochastic approximation type, and the 

theoretical analysis of these algorithms is not well developed. DSPSA is one kind of 

discrete stochastic approximation algorithm, and we provide detailed theoretical analysis 

on its convergence properties. Moreover, the discrete stochastic approximation type 

algorithms are discrete analogues of continuous stochastic approximation algorithms, 

while most other discrete stochastic optimization algorithms are based on point-wise 

comparisons. The characteristics of discrete stochastic approximation type algorithms are 

very different from other discrete stochastic optimization algorithms. Thus, to our 

knowledge, there is no work on discussing the comparisons between them. We set up a 

bridge to do the comparisons of DSPSA and random search type algorithms (such as the 

stochastic ruler algorithm and the stochastic comparison algorithm).   

Overall, there are many good properties of DSPSA, including: 1) DSPSA is a simple 

algorithm and it is easy to implement DSPSA into computer code; 2) The number of 

coefficients to be picked is small, and we provide practical guidelines on the choice of 

coefficients; 3) DSPSA implicitly makes use of loss function structure and it can lead to 

very efficient performance for some kinds of loss functions; 4) There are only two noisy 

measurements of the loss function in each iteration; 5) Theory on the convergence and 

rate of convergence may be developed using powerful methods in stochastic analysis, as 

carried out by this dissertation. However, no algorithm can be perfect, so DSPSA also has 

some difficulties: 1) DSPSA is only guaranteed to converge from within a local area 
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around the optimum; 2) DSPSA may be restricted to some kinds of loss functions that 

satisfy some conditions, and not all conditions are easy to check; 3) For non-integer-grid 

domain, we need to do reformulation before using DSPSA. These difficulties are also 

true for many other discrete stochastic algorithms.  

The dissertation is organized into eight chapters and three appendices. In Chapter 2, we 

introduce DSPSA and show the convergence of DSPSA. In Chapter 3, we show the 

convergence rate of DSPSA by providing an upper bound for the mean square error of 

the generated sequence. We also discuss the properties of the upper bound theoretically. 

Furthermore, we consider the guidelines on the choice of coefficients of the gain 

sequence. In Chapter 4, some numerical experiments are done to show the performances 

and properties of DSPSA. In Chapter 5, we show the rate of convergence of two random 

search type algorithms: the stochastic ruler algorithm (SR) and the stochastic comparison 

algorithm (SC). We then theoretically compare these two algorithms (SR and SC) with 

DSPSA. In Chapter 6, we compare these three algorithms (SR, SC, and DSPSA) in 

numerical tests. In Chapter 7, we discuss the application of DSPSA towards developing 

optimal public health strategies for containing the spread of influenza given limited 

societal resources. Chapter 8 concludes the work in this dissertation and discusses some 

remaining problems for further research.  

    This thesis also contains three appendices. In Appendix A, we consider the analysis of 

practical step size selection in stochastic approximation algorithms for continuous 

problems. The practical gain sequence selection is different from the optimal selection 

(theoretically derived from asymptotical performance). We provide a formal way to 
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justify the reasons why we choose this gain sequence in practice. In Appendix B, we 

consider the rate of convergence of simultaneous perturbation stochastic approximation 

algorithm (SPSA) for time-varying loss functions. One important application of time-

varying loss function is in the model-free adaptive control with nonlinear stochastic 

systems, and model-free adaptive control is useful in many practical areas. Therefore, the 

results in Appendix B show the reasonable performance of SPSA in model-free control in 

the big-O sense. In Appendix C, we do the numerical experiments on the properties of the 

upper bound of 
2*ˆ

kE  in DSPSA. We show that the numerical results in Appendix 

C are consistent with the theoretical analysis in Section 3.2. 
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Chapter 2 

Discrete Simultaneous Perturbation 

Stochastic Approximation Algorithm 

 

In this chapter, we introduce the discrete simultaneous perturbation stochastic 

approximation algorithm, and discuss the almost sure convergence of DSPSA. We 

consider both the unconstrained and constrained domains. It is shown that the sequence 

generated by DSPSA converges to the optimal solution under some general conditions. 

  

2.1 Algorithm Description 

In this section, we introduce the discrete simultaneous perturbation stochastic 

approximation (DSPSA) algorithm. First we discuss the motivation of the algorithm by 
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considering the one-dimensional case. Suppose we have a discrete function :L , 

where  denotes the set of integers . We want to find the 

minimal value of the loss function L. Let the noisy measurement of the loss function L be 

y, where y = L +  and  indicates the noise. Figure 2.1 shows an example of a discrete 

function in one dimensional case with a line connecting the neighbor integer points. The 

piecewise linear function L  is a continuous extension of L , but L  is nondifferentiable 

at the integer points. For a point \ , the gradient of  ( )L  is  

( )

1 1( ) ( ) ,
2 2

g L L

L L
 

where  is the floor function,  is the ceiling function, and ( ) 1 2  is the 

middle point between  and . Here ( )  is the middle point between two 

neighbor integer points, so ( ) 1 2  must be an integer. If  is an integer point, then 

( )  is the middle point between  and + 1. We see that ( )g  is also well defined at 

any integer point ,  where ( )g  is a subgradient (a vector g  is a subgradient of L at  if 

( ) ( )L L  ( )Tg  for all p ). For ,  the estimated gradient 

(subgradient) based on noisy function measurements is  

1 1( ) ( )
2 2ˆ( )

y y
g , 



23 
 

where  is the random perturbation, and here we consider the special case when the  

is a Bernoulli random variable taking values 1 . We see that the form of the estimated 

gradient (subgradient) for this piecewise linear continuous extension L  is the same as the 

gradient (subgradient) estimate for L  in the simultaneous perturbation stochastic 

approximation (SPSA) algorithm. The continuous extension L  is nondifferentiable at the 

integer points, a  has shown that SPSA method converges 

for nondifferentiable convex continuous functions on a compact and convex domain. 

Therefore, for the one-dimensional case, by using the similar idea of SPSA, we have a 

convergent sequence. 

 

 

 

 

 

Figure 2.1  Example of discrete function with strictly convex continuous extension L . 

 

    Motivated by the one-dimensional case, we consider the case when  is a p-

dimensional vector, where p = 1, 2, 3, … . We have the general basic algorithm as below 

for the unconstrained problem, where the noisy loss function y = L + , L: p  and 

 is the noise. The basic algorithm is: 
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Step 1: Pick an initial guess ˆ p , and set k . 

Step 2: Generate the random perturbation vector 1 2, ,...,
T

k k k kp , where k

has a user-specified distribution satisfying conditions discussed in Section 2.2. 

A special case that we will focus on is when the ki  are independent Bernoulli 

random variables taking the values 1  with probability 1 2 . 

Step 3: ˆ ˆ( ) 2,k k p1 where p1  is a p-dimensional vector with all components 

being unity, 1
ˆ ˆˆ ,...,

T
k k kp , and 1

ˆ ˆˆ ,...,
T

k k kp . 

Step 4: Evaluate y at ˆ ˆ( ) 2k k k  and ˆ ˆ( ) 2k k k , where the [ ]  

here is the round operator (In the following, if “[ ] ” is the round operator, not 

simple brackets, we will note it.). Form the estimate of ˆˆ ( )k kg , 

1ˆ ˆ ˆˆ ( ) ( ) ( )k k k k ky yg , 

where 1 1 1
1,...,

T
k k kp . Note: since ˆ( )k  is the middle point of unit 

hypercube, then we have ˆ ˆ
k k . 

Step 5: Update the estimate according to the recursion  

1
ˆ ˆ ˆˆ ( ),k k k k ka g  

where (1 )ka a A k is the step size, and a , A ,  are the 

coefficients of the step size. Set k = k + 1. If k < M, go to Step 2. 
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Step 6: After M iterations, set the approximated optimal solution to be ˆ
M ,  where 

M is the maximum number of allowed iterations based on the cost limit, and [ ]  

is the round operator (each component of ˆ
M  is rounded to its nearest integer 

value). 

    In the theoretical analysis below, we define ( )g as the mean gradient-like 

expression centered at ( ) :  

1( ) ( ) ( ) ,E L Lg  

where  is a p-dimensional vector that has the same definition as k  mentioned above. 

If all components of  are independent Bernoulli random variables taking the values 1

with probability 1 2 , then  

( ) ( )
2 2

, 

( ) ( )
2 2

, 

where [ ]  is the round operator, and ( )g  can be further written as 

1( ) ( ) ( )
2 22 p L Lg , 

where  indicates the summation over all possible directions . Note that 1  in 

the special case of Bernoulli 1 perturbations. 
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Although most discussions in this thesis pertain to the unconstrained problem, let us 

offer some comments on the constrained problem with the lower and upper bounds in the 

ith coordinate of the feasible domain being il  and iu , respectively. For this 

constrained case, we only have a finite number of feasible unit hypercubes (denote the 

feasible unit hypercube to be the unit hypercube with all its corner points being in the 

feasible domain), and the sequence ˆ
k  generated by the general algorithm of DSPSA 

may be out of these feasible unit hypercubes. Thus, we need to modify the general 

algorithm to handle the bounded domain case. Suppose ˆ
k  = 1

ˆ ˆ,...,
T

k kp . Let ˆ( )k  

= 1 1
ˆ ˆ( ),..., ( )

T
k p kp  be the projection to map the ˆ

k  back to the feasible unit 

hypercubes, where we set 

ˆ

ˆ ˆ ˆ( )

ˆ ,

i ki i

i ki ki i ki i

i ki i

l l

l u

u u

 

where  is a very small positive number (e.g. , a simple example will be given 

in the following to show why  is introduced). Due to the modified definition of ˆ( )k  = 

ˆ( ) 2k p1 , which is given in the  modified step 3 below, we find that in order to 

make ˆ( )k  to be the middle point of one feasible unit hypercube, we have to add  

here. For example, for one- 1l  

1u  = 1
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Suppose ˆ = 1.5, then by the modified definition of ˆ( )  we have ˆ( )  

However, if we get rid of , then ˆ( ) = 1.5, which is not within the only feasible unit 

hypercube. Besides making ˆ( )k  to be the middle point of one feasible unit hypercube, 

we also need to make ˆ
k  to be feasible points. Therefore, for the bounded domain case, 

we modify ˆ
k  as ˆ

k  = ˆ( ( ) 2)k k , where [ ]  is the round operator. We see that 

after adding the projection , the modified values of ˆ
k  are within the feasible domain. 

Then step 3, step 4 and step 6 of the general DSPSA can be modified as: 

Step 3 (modified): Let ˆ ˆ( ) ( ) 2,k k p1 where p1  is a p-dimensional vector 

with all components being unity, and ˆ( )k  is equal to 

1 1
ˆ ˆ( ) ,..., ( )

T
k p kp . 

Step 4 (modified): Evaluate y  at the points ˆ
k  = ˆ( ( ) 2)k k  and ˆ

k  = 

ˆ( ( ) 2)k k , where [ ]  is the round operator. Form the 

estimate of ˆˆ ( )k kg , 

1ˆ ˆ ˆˆ ( ) ( ) ( ) ,k k k k ky yg  

where 1 1 1
1,...,

T
k k kp . Note: since ˆ( )k  is the middle point 

of one feasible unit hypercube, then we have ˆ ˆ
k k . 



28 
 

Step 6 (modified): After M iterations, set the approximated optimal solution to be 

ˆ( )M ,  where M is the maximum number of allowed iterations 

based on the cost limit and [ ]  is the round operator (as in the 

unconstrained algorithm). 

    We see that the value of ˆ( )k  is modified by the mapping, and the value of ˆ
k  is not 

modified by the mapping, which means that the value of ˆ
k  is allowed to be out of the 

feasible unit hypercubes. The reason to allow ˆ
k  to be outside the feasible unit 

hypercubes is that we do not want to lose the information in ˆˆ ( )k kg  through the 

mapping. 

 

2.2 Almost Sure Convergence 

    We now present an almost sure (a.s.) convergence result for ˆ
k . First we introduce 

some definitions that will be used in the proof. For any point , we denote the set of 

middle points of all unit hypercubes containing  as . If  lies strictly inside one 

unit hypercube, then  contains only one point. However, if  lies on the boundary 

of unit hypercube, then  contains more than one point (at most 2 p ). For any point 

m  in , we have | 1 2i im t|  for  1,...,i p , where  = 1[ ,..., ]Tpt t  and im  is 
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the ith component of m . Furthermore, let ˆ ˆ ˆ
k k , k k , 

1( )T T
k k , and  is the set of all possible events. 

Theorem 2.1. Suppose L is defined on p  and L has unique minimal point * . 

Assume (i) ka , k ka , kk a  and 2
kk a ; (ii) the k  are 

independent vectors, the components of k  are independently distributed random 

variables, and 1T
k k  is uniformly bounded in k; (iii) For all k, k k k kE  

a.s., and var( )k  is uniformly bounded in k; (iv) 
2ˆ ˆ( ) ( )k kE L L is uniformly 

bounded in k; (v) *Tg m  for all m  and all  *p ; (vi) 

ˆsup || ||k k  a.s. Then *ˆ
k  a.s.  

Remarks: 

    1. The inner product condition (v) in Theorem 2.1 is a natural extension of the standard 

The inner 

product condition (v) here is dependent on the distribution of the perturbation direction , 

because the definition of ( )g m  is dependent on the distribution of  (the value of 

( )g m  is constructed based on both the loss function and the distribution of ). 

Moreover, the inner product condition (v) here is only a sufficient condition, which 

means that DSPSA may also be effective for some loss functions where condition (v) is 

not satisfied.  



 
 

2. The combination of conditions (ii), (iii) and (iv) expresses the similar idea as the 

1T
k k  is equivalent to the condition of uniformly bounded 2

ki , so condition (ii) in 

Theorem 2.1 is an analogue of the finite inverse moments condition of standard SPSA. 

3. Conditions (i) and (vi) are similar to the conditions (B.1´´) and (B.3´´) on p. 183 of 

 

Proof. By the algorithm, we have 

 

1

1

1

ˆ ˆ ˆˆ ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) .

k k k k k

k k k k k

k k k k k k k

a

a y y

a L L

g

 

 

 

      (2.1) 

Adding and subtracting ˆ( ( ))kg  to the right-hand side of eqn. (2.1), we have  

1

1 1

ˆ ˆ ˆ( ( ))

ˆ ˆ ˆ( ( )) ( ) ( ) .

k k k k

k k k k k k k k k

a

a L L a

g

g
 

 

(2.2) 

Due to condition (vi), there exists 1 , such that 1( ) 1P  and for any 1 

ˆ ( )k  is a bounded sequence. Thus, there exists a subsequence ˆ ( )
sk  and point 

( )  such that ˆ ( ) ( )
sk  as s . Then, by the recursive relationship in eqn. 

(2.2), we have 
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1

1

1

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ( ( ( ))) ( ) ( ) ( )

ˆ ˆ ˆ( ( ( ))) ( ( )) ( ( )) ( ) .

s
s

s s

s

k i i
i k

i i i i i i
i k i k

i i i i i
i k

a a

a L L

g

g

 

 

 

 

(2.3) 

    Now let us start to discuss the terms on the right-hand side of eqn. (2.3) (suppressing 

). Since we know 1ˆ ˆ ˆ( ( )) ( ) ( )m
i i i i ii k m k

a L Lg  is a martingale 

sequence, by Doob’s martingale inequality (Kushner and Clark, 1978, p. 27), we have 

that for any  

1

2
2 1

ˆ ˆ ˆsup ( ( )) ( ) ( )

ˆ ˆ ˆ( ( )) ( ) ( ) .

m

i i i i i
m k i k

i i i i i
i k

P a L L

E a L L

g

g

 

 

 

(2.4) 

Now let us consider the right-hand side of inequality (2.4). By the definition of ( )g , we 

have  

                                1ˆ ˆ ˆ( ( )) ( ) ( ) .k k k k kE L Lg  

Then for all i < j, we have   
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1 1

1 1
1

1

ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ( ) ( )) ( ( )) ( ( ) ( ))

ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ( ) ( )) ( ( )) ( ( ) ( )) ,

ˆ ˆ ˆ ˆ( ( )) ( ( ) ( )) ( ( ))

T
i i i i j j j j

T
i i i i j j j j j j

T
i i i i j

E L L L L

E E L L L L

E L L E

g g

g g

g g 1ˆ ˆ( ( ) ( ))j j j jL L

 

 

 

 

 

(2.5) 

Due to conditions (i), (ii), (iv) and eqn. (2.5), we have for any k 

2
1

22 1

22 1

ˆ ˆ ˆ( ( )) ( ) ( )

ˆ ˆ ˆ( ( )) ( ) ( )

ˆ ˆ( ) ( ) .

i i i i i
i k

i i i i i
i k

T
i i i i i

i k

E a L L

a E L L

a E L L

g

g  

Thus, the inequality (2.4) can be written as 

1

22 2 1

ˆ ˆ ˆsup ( ( )) ( ) ( )

ˆ ˆ ˆ( ( )) ( ) ( )

,

m

i i i i i
m k i k

i i i i i
i k

P a L L

a E L L

g

g  

from which follows that for any n  
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1

1

22 2 1

ˆ ˆ ˆsup ( ( )) ( ) ( )

ˆ ˆ ˆsup ( ( )) ( ) ( )

ˆ ˆ ˆ( ( )) ( ) ( )

.

i i i i i
k n i k

m

i i i i i
m k i k
k n

i i i i i
i n

P a L L

P a L L

a E L L

g

g

g

 

Thus, we have  

 1ˆ ˆ ˆ
i i i i in k n i k

P a L Lg  (2.6) 

have  

1ˆ ˆ ˆlim ( ( )) ( ) ( )i i i i ik i k
a L L 0g  a.s. 

    By similar arguments, we know 1( )m
i i i ii k m k

a  is a martingale. Through 

condition (i), (ii), (iii) and Doob’s martingale inequality (Kushner and Clark, 1978, p. 

27), we have 
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2
1 2 1

22 2 1

sup ( ) ( )

( )

,

m

i i i i i i i i
m k i k i k

i i i i
i k

P a E a

a E  

which indicates that for any n  

1 1

22 2 1

sup ( ) sup ( )

( )

,

m

i i i i i i i i
k n m ki k i k

k n

i i i i
i n

P a P a

a E  

leading to  

 1
i i i i

n k n i k
P a . (2.7) 

Thus,  

1lim ( )i i i i
k i k

a 0  a.s. 

Overall, there exists 2  such that P( 2) = 1, and for any 2  we have

1ˆ ˆ ˆ( ( ( ))) ( ( )) ( ( )) ( )i i i i ii k a L Lg  0 as k  . There also exists 

3 , such that P( 3) = 1, and for any 3 , 1( ( ) ( )) ( )i i i ii k a   0 
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as k  . In all, we have P( 1  2  3) = 1, and for any   1  2  3, the terms 

in eqn. (2.3) have the results: as s , we have that ˆ( ) ( )
sk 0, 

1ˆ ˆ ˆ( ( ( ))) ( ( )) ( ( )) ( )
s i i i i ii k a L L 0g , 1( ) ( ) ( )

s i i i ii k a

0,  which implies that  

 ˆ( ( ( )))
s

i i
i k

a 0g  as s .   (2.8) 

Because ˆ ( ) ( )
sk , then for any > S >  when s > S, 

ˆ ( ) ( )
sk < . Thus, there exists S  such that when s > S , all ˆ( ( ))

sk .  

We now show that ( ) is the optimal point * . By contradiction, suppose ( )  is 

not the optimal solution. Then, by condition (v), we have *Tg m  for all 

m (at most 2 p  points in ), and it indicates that there exists a constant  

such that for all m , *( ) ( ( ) )Tg m . Moreover, we have 
s ii k a  = 

. Therefore, we have  

*ˆ( ( ( ))) ( ( ) )
s

T
i i

i k
a g  as s . 

But, at the same time from eqn. (2.8) we have  
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*ˆ( ( (
s

T
i ii k a g  as s , 

which is a contradiction. Then, for all  1  2  3, the limiting points of all 

convergent subsequence ˆ ( )
sk is equal to *,  which indicates that the bounded 

sequences ˆ ( )k  only has one cluster point *  for all 1  2  3. Therefore, we 

have  ˆ
k  converges to * a.s.  Q.E.D. 

In the following part of this section, we further discuss condition (v) in Theorem 2.1 

under the case when the ki  are independent Bernoulli random variables taking the 

values 1  with probability 1 2 . Except for condition (v), all the other conditions in 

Theorem 2.1 are general and have similar ideas as those conditions in “standard” 

(continuous) SPSA. Therefore, we will only focus on the discussions of condition (v) in 

the following. 

First let us discuss the relationship between condition (v) in Theorem 2.1 and discrete 

function. Miller (1971) introduced a definition of discrete convex function and showed 

that the local optimal points for discrete convex function are also global optimal 

solutions. The definition in Miller (1971) is: the function :f X  is discretely convex 

if X is a discrete rectangle and given 1 2, Xx x  and  

1 2

1 2

( (1 ) )
min ( ) ( ) (1 ) ( )

N
f f f

x x x
x x x , 



37 
 

where 1 2( (1 ) )N x x  is the discrete neighborhood of the point 1 2(1 )x x , and 

1 2( (1 ) )N x x  = 1 2: , ( (1 ) ) 1Xx x x x x (the norm in the braces is the 

standard Euclidean norm). There are other definitions of discrete convex functions, such 

shige 

contains the other classes of discrete convexities based on definitions.  

Condition (v) in Theorem 2.1 (for Bernoulli 1 case) is not a form of discrete 

convexity, but it has some connections to Miller’s definition of convexity. When 1p , 

discrete convex functions satisfying Miller’s definition of discrete convexity also satisfy 

condition (v) in Theorem 2.1. However, for the higher dimensional case, the set of 

functions that satisfy the Miller’s definition of discrete convexity does not include all 

functions that satisfy condition (v) in Theorem 2.1. Meanwhile, the set of functions that 

satisfy condition (v) also does not include all functions that satisfy Miller’s discrete 

convexity.  

In Figure 2.2, we see two simple functions where the first function satisfies condition 

(v) but does not satisfy Miller’s definition, and the second function satisfies Miller’s 

definition but does not satisfy condition (v). In both plots of Figure 2.2, suppose the 

middle point of the left unit hypercube is lm , and the middle point of the right unit 

hypercube is .rm  In plot (a) of Figure 2.2, we know 1 2f fx x  

However,  1 2min ( )
N

f
x x x

x   

does not satisfy Miller’s definition of discrete convexity. Meanwhile, it is easy to check 
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that condition (v) is satisfied for the function in plot (a). In plot (b) of Figure 2.2, for the 

right unit hypercube and the point x , we have *( ) ( )T
rg m x

condition (v) is not satisfied. However, it is easy to check the function in plot (b) satisfies 

Miller’s definition of discrete convexity. 

 

 

 

                          (a)                                                                       (b) 

Figure 2.2 Examples of the relationship between condition (v) in Theorem 2.1 (for 

Bernoulli 1 case)  and Miller’s definition of discrete convexity. Plot (a) is the simple 

function that satisfies condition (v) in Theorem 2.1, but does not satisfy Miller’s 

definition of discrete convexity. Plot (b) is the simple function that satisfies Miller’s 

definition of discrete convexity, but does not satisfy condition (v) in Theorem 2.1. 

 

In the propositions below, we use three common classes of discrete functions to show 

that condition (v) in Theorem 2.1 is reasonable (it is the reason why these propositions 

are useful). Since in this part we assume that the ki  are independent Bernoulli random 

variables taking the values 1  with probability 1 2 , we know that ( ) 2 , and

( ) 2 . For any discrete function L, there are an infinite number of continuous 

extensions L  such that L  is a function defined on p , and for all ,p  we have 

2 

1 

1 

 

 

 

x1 

x2 

2 

 

1 

 

 

 

x * 
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( )L  = ( )L . Here we use L  to restrict the class of L. Suppose  = 1 ,...,
T

pt t  and the 

optimal solution of L is *  = * *
1 ,...,

T
pt t . The three classes of discrete functions that we 

will discuss have very general forms of continuous extensions, which are separable 

function, piecewise linear function and quadratic function. The separable function is 

defined as ( )L  = 
1 ( )p

i ii L t . The piecewise linear function that we consider is assumed 

to be linear ( ( )L  = T
mB  + mC ) within each unit hypercube (centered by m ), and 

this function may not be separable. The quadratic function is defined as ( )L  = T A  + 

TB  + C. Discrete functions with strictly convex separable continuous extensions are 

considered in Proposition 2.1 and this kind of function has also been discussed in Hill et 

 

    Proposition 2.1. Suppose L is a discrete function having a continuous extension L  

that is a strictly convex separable function with the minimal value at the multivariate 

integer point * . Then L satisfies condition (v) in Theorem 2.1, where the ki  are 

independent Bernoulli random variables taking the values 1  with probability 1 2 . 

Proof. Since *  is the optimal point of L . According to Theorem 23.4 in Rockafellar 

in the domain for a continuous convex function. Since L  is strictly convex, then for all 

*p  and any subgradient ( ) ( )i i i ig t L t , we have *
i i i ig t t t  for i = 1, 

…, p. Moreover, suppose  = 1,...,
T

p . For any 1[ ,..., ] ,T
pm mm  since 



 
 

the ki  are independent Bernoulli random variables taking the values 1  with 

probability 1 2 , we have 

1

1

1

1

1

1

1( )
2 22

1
2 22

1
2 22

1 1 .
2 2

p

p
i i

i i i ip
i

p
i i

i i i ip
i

p

i i i i i
i

L L

L m L m

L m L m

L m L m

g m m m

e

 

Then, we have *( ) ( )Tg m  = *
1 ( 1 2) ( 1 2) ( ).p

i i i i i ii L m L m t t The 

minimal point is a multivariate integer point and iL  is strictly convex. Therefore,

( 1 2) ( 1 2)i i i iL m L m  has the same sign with the subgradient of iL  at it , 

indicating that *
i i i i i iL m L m t t  for all i = 1, …, p. Thus 

*Tg m  for all    *  and m  . Q.E.D. 

   In Proposition 2.2, we consider the loss functions that have piecewise linear continuous 

extension functions. 

Proposition 2.2. Suppose L is a discrete function having a continuous extension L  

that is strictly convex and linear in each unit hypercube. Then L  satisfies condition (v) in 

Theorem 2.1, where the ki  are independent Bernoulli random variables taking the 

values 1  with probability 1 2 .  
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Remark: Since the continuous extension L  is linear in each unit hypercube, then the 

optimal solution of L  is at a multivariate integer point * . 

    Proof. For any m  , since the ki  are independent Bernoulli random variables 

taking the values 1  with probability 1 2 , then 

1

1

1

1( )
2 22

1
2 22

1 ( ) ,
2

p

p

T
p

L L

L L

L

g m m m

m m

m

 

where ( )L m  is the gradient of L  at point m , and where ( )L m  is known to exist 

since L  is differentiable at m . Thus,  

* *

*

*

1( ) ( ) ( ) ( )
2

1( ) ( )
2

( ) ( ),

T T T
p

T T
p

T

L

L

L

g m m

m

m

 

where 1( )T T . In addition, L  is linear in each unit hypercube, so for any m  

 we have ( )L m   ( )L . Since L  is a strictly convex function, then for all   

*p , we have *TL m , which indicates that *( ) ( )Tg m  

all *  and m  . Q.E.D. 



42 
 

       In Proposition 2.3, we consider the loss functions that have quadratic continuous 

extension functions. Before discussing Proposition 2.3, let us first define the strictly 

diagonal dominant matrix. The matrix ij p p
aA  is strictly diagonal dominant if for 

all i, | |iia  > | |ijj i a . 

    Proposition 2.3. Suppose ( )L  is a discrete function having a quadratic continuous 

extension ( )L  = T TA B C , where A is a symmetric strictly diagonal dominant 

matrix with positive diagonal values. Suppose that the minimal value of L  is at 

multivariate integer point * . Then, L satisfies condition (v) in Theorem 2.1, where the 

ki  are independent Bernoulli random variables taking the values 1  with probability 

1 2 .  

Remark: Because A is a symmetric strictly diagonal dominant matrix with positive 

diagonal values, it is known that A is positive definite. Hence L  is a strictly convex 

function. 

    Proof. The gradient of L  at point  is 2A B . Since *  is also the optimal point of 

L , then we have *2 0A B . Furthermore, since the ki  are independent Bernoulli 

random variables taking the values 1  with probability 1 2 , then 

1

1

1( )
2 22

1 (2 ) .
2

p

T T
p

L Lg m m m

m A B

 



43 
 

Then for all * , we have 

* *

*

*

*

* *

* *

1( ) ( ) 2 ( )
2

1 2 ( )
2

12 ( )
2

2 ( )

2 2 ( )

2 ( ),

T T T T
p

T T
p

T T
p

T

T

T

g m m A B

Am B

Am B

Am B

Am A

m A

 

where 1( )T T . Let x = *m  and y = * . Suppose 1( ,..., )T
px xx  and 

1( ,..., )T
py yy . Because m  is the middle point of the unit hypercube where  is 

located in, each component of  m  equals the sum of an integer and , implying that 

for any i j p  we have i jx x  are integers. Moreover, for all i, we have 

1 2 1 2i i ix y x , which indicates that i ix y . Furthermore, since * , then 

there exists at least one i p  such that i ix y . Since ij p p
aA  and A is a 

symmetric strictly diagonal dominant matrix with positive diagonal elements, then for all 

i j p , we have iia , ij jia a , | |iia  > | |ijj i a . Thus,  

 1
p

ii ij i ii j ia a x y . (2.9) 

 Let ( )ijs a   { ija . Then, 
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1 1

1

1

1 1

2

2

2

2 ( | |) | |

2 | | 2 | | ( ( ) )

2

T

p p

ij i j
i j

p

ii i i ij i j
i j i

p

ii i i ij i i ij i i ij i j
i j i j i j i

p p

ii ij i i ij i i ij j
i j i i j i

ii

a x y

a x y a x y

a x y a x y a x y a x y

a a x y a x y s a y

a

x Ay

1 1

1 1

| | 2 | | ( ( ) ) | | ( ( ) )

2 | | 2 | | ( ( ) ) | | ( ( ) )

2 | |

p p

ij i i ij i i ij j ij i i ij j
i j i i j i j i

p p

ii ij i i ij i i ij j ji j j ji i
i j i i j i j i

ii ij
j i

a x y a x y s a y a x y s a y

a a x y a x y s a y a x y s a y

a a
1 1

1 1

2 | | ( ( ) ) | | ( ( ) )

2 | | 2 | | ( ( ) )( ( ) ) .

p p

i i ij i i ij j ji j j ji i
i i j i

p p

ii ij i i ij i ij j i ij j
i j i i j i

x y a x y s a y a x y s a y

a a x y a x s a x y s a y

         

    In the following, we will show that for any i, j  {1, …, p

( ( ) )( ( ) )i ij j i ij jx s a x y s a y ( )i ij jx s a x

( ( ) )( ( ) )i ij j i ij jx s a x y s a y  i ij jx s a x . 

Since 1 2 ix   iy   1 2 ix  and 1 2 jx   jy   1 2 jx , then we have  
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 1 ( ( ) ) ( ) 1 ( ( ) )i ij j i ij j i ij jx s a x y s a y x s a x   

 for all i, j  {1, …, p i jx x  are integers, which indicates that 

( )i ij jx s a x  is integer, and we have discussed the case when ( )i ij jx s a x  

we consider the case when ( )i ij jx s a x  is non-zero integer. If i ij jx s a x , then 

i ij jx s a x i ij jy s a y . Similarly, if 

i ij jx s a x , then i ij jx s a x

iy ( )ij js a y  ( ( ) )( ( ) )i ij j i ij jx s a x y s a y   

From the arguments in the previous paragraph, we have the result that 

1 | | ( ( ) )( ( ) )p
ij i ij j i ij ji j i a x s a x y s a y   

inequality (2.9), we have 1( | |)p
ii ij i ii j ia a x y  > 2 Tx Ay  > which 

indicates that  *Tg m  for all m   and all    *p . Q.E.D. 

 

2.3 Case of Binary Components in  

In this section, let us discuss the binary case, where it i. Based on the 

algorithm description in the Section 2.1, we know the difference between the algorithm 

for the unconstrained case and the algorithm for the constrained case (bounded case) is 

the projection ( )  (defined in Section 2.1, mapping the value of  back to the feasible 
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unit hypercubes). For the bounded case, the algorithm allows ˆ
k  being outside the 

feasible unit hypercubes, so ˆ( )k  is defined as ˆ( ) 2k p1 , which makes ˆ( )k  to 

be the middle point of one feasible unit hypercubes. In addition, ˆ
k  are defined as ˆ

k  = 

ˆ( ( ) 2)k k  ([ ]  is the round operator), which makes ˆ
k  to be within the feasible 

domain. For the binary case, we only have one unit hypercube with middle point m 

2

T
pT 1

m = . 

Therefore, for all p , ( )  = ( ) 2p1  = m, and ˆ
k  = ˆ( ( ) 2)k k

p  According to the description of the modified DSPSA in Section 2.1 for the 

constrained case, the solution is ˆ( )M  , where M is the maximum number of 

iterations and [ ]  is the round operator. In the theorem below, we show the almost sure 

convergence property for the binary case. 

Theorem 2.2. Assume L is defined on p , and L has unique minimal point * . 

Suppose also (i) ka , k ka , kk a  and 2
kk a ; (ii) the 

components of k  are independently random variables and 1T
k k is uniformly 

bounded in k; (iii) For all k, k k k kE  a.s., and var( )k  is uniformly 

bounded in k; (iv) *Tg m  for all  *p . Then ˆlimk k  = 

*  a.s., where [ ]  is the round operator.  
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Remarks:  

1. Condition (iv) in the Theorem 2.1 on unconstrained case is not needed here, because 

for the binary case, we have that the function L is uniformly bounded, which implies that 

condition (iv) in the Theorem 2.1 is automatically true. Condition (vi) in Theorem 2.1 on 

the unconstrained case is also not given here, because for binary case we do not need it in 

the proof. 

2. Even though condition (ii) here is the same as the condition (ii) in Theorem 2.1, in 

practical we only focus on more realistic distribution of k , where k  satisfies condition 

(ii) and | |ki 1 for all k and i. For the binary case, there is only one unit hypercube, so 

we do not need to consider the case of | |ki > 1. Specially, when | |ki 1, the definition 

of ˆ
k  can be rewritten as ˆ

k  = ˆ( ( ) 2)k k  = ˆ( ) 2k k , because under the 

condition of | |ki 1, ˆ( ) 2k k  must belong to the feasible domain ( [ ]  is the 

round operator).  

Proof. By the same arguments in the proof of Theorem 2.1, we have 

 
1 1

ˆ ˆ ( )

ˆ ˆ( ) ( ) ( ) .

k

k i
i

k k

i i i i i i i i
i i

a

a L L a

g m

g m

 
 

(2.11) 

Now let us consider the terms on the right-hand side of eqn. (2.11). Suppose ie  is the 

p-dimensional vector with the ith component being 1 and all the other components being 
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* * *
1[ ,..., ]Tpt t . Since here for all i, *

it , then the sign of 

*
it  is *1 2 it , which belongs to the set . Then the sign vector of *m  is 

* *
1[1 2 ,...,1 2 ]Tpt t , and each component of the sign vector is none zero. Because of 

condition (iv), we have that  

*T
i itg m e , 

for all i, which indicates that the ith component of ( )g m  has the same sign as *1 2 it . 

Therefore, combining the results above and condition (i), we know that the second term 

on the right-hand side of eqn. (2.11) has the relationship 

* *
1lim ( ) (1 2 ) ( ),..., (1 2 ) ( )

k T
i pk i

a t tg m  

(the entries on the right-hand side are ).     

    In addition, since 1ˆ ˆ( ) ( ) ( )k
i i i ii k

a L Lg m  is a martingale sequence, 

by Doob’s martingale inequality (Kushner and Clark, 1978, p. 27), we have that for any 

 

 
1

2
2 1

ˆ ˆsup ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) .

k

i i i i
k i

i i i i
i

P a L L

E a L L

g m

g m

 

 

 

(2.12) 

Now let us consider the right-hand side of inequality (2.12). By the definition of ( )g   
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1ˆ ˆ( ) ( ) ( ) .i i iE L Lg m  

For all i < j, we have   

 

1 1

1 1
1

1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

T
i i i j j j

T
i i i i i j j

T
i i i i i j

E L L L L

E E L L L L

E L L E L L

g m g m

g m g m

g m g m

 

 

 

 

 

(2.13) 

Due to conditions (i), (ii), and eqn. (2.13), we have  

2
1

22 1

22 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) .

i i i i
i

i i i i
i

T
i i i i i

i

E a L L

a E L L

a E L L

g m

g m  

Since inequality (2.12) is true for all 

2
1ˆ ˆ( ) ( ) ( )i i i iiE a L Lg m  is finite, we have  



 
 

1

2
1

2

ˆ ˆlim sup ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )
lim

k

i i i i
k i

i i i i
i

P a L L

E a L L

g m

g m
 

which indicates that  

11 1lim ( )
2 2

k

i i i ik i
a L Lg m m m  

is finite almost surely. By similar arguments, we know 1( )k
i i i ii k

a  is a 

martingale. By Doob’s martingale inequality (Kushner and Clark, 1978, p. 27), we have 

that for any  

 2
1 2 1

22 2 1

sup ( ) ( )

( ) .

k

i i i i i i i i
k i i

i i i i
i

P a E a

a E

 

 

 

(2.14) 

Through condition (i), (ii), (iii), we have 

22 1( ) .i i i i
i

a E  

Since inequality (2.14) is true for all , then we have  
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22 1

1
2

( )i i i ik
i

i i i i
k i

a E
P a  

which indicates that 

1lim
k

i i i i
k i

a  

is finite almost surely.  

    Overall, as k , we know that the third term and the fourth term on the right-hand 

side of eqn. (2.11) are finite almost surely, and the second term ( )k
ii a g m  goes to 

* *
1(1 2 ) ( ),..., (1 2 ) ( )

T
pt t (as above, components are ). Thus, by eqn. 

(2.11), we have 

* *
1

ˆlim (1 2 ) ( ),..., (1 2 ) ( )
T

k pk
t t  a.s. 

Because of the definition of the projection, we know that for all i  

*
*

*
(1 2 ) ( )

1 if 1,
i

i i
i

t
t

t
 

which indicates that  

* *
*

* *
(1 2 ) ( )

if 1,
i i

i i
i i

t t
t

t t
 

where  is a very small positive number. Hence, we have 
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* * *
1(1 2 ) ( ),..., (1 2 ) ( )

T
pt t , 

where [ ]  is the round operator. Therefore, *ˆlimk k  a.s. ( [ ]  is the round 

operator) Q.E.D. 

    In the Theorem 2.2, except condition (iv), all the other conditions are easy to check. 

Thus, we only discuss the meaning of inner product condition (condition (iv)) for the 

binary settings. In the following we assume that the components of k  are independently 

Bernoulli 1  distributed. The inner product condition is *( ) ( )Tg m   for all

*
1

T p
pt t , where 

1

1

( )
2 2

1 ,
2 22 p

E L L

L L

g m m m

m m

 

because the components of k  are independently Bernoulli 1  distributed. Suppose 

1,..., .
T

p  Since the optimal solution is * * *
1 ,...,

T
pt t , then *m = 

* *
1

T
pt t . Hence the sign vector of *m  is * *

11 2 ,...,1 2
T

pt t , and each 

component of the sign vector is . Then the inner product condition *( ) ( )Tg m

 is equivalent to that for all i 
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            *T
i itg m e , (2.15) 

where ie  is the vector with the i  

    In addition, for each , we have  

 
( ) ( ) ( )

2 2 2 2
L L L Lm m m m . (2.16) 

Suppose that  = 1, 1,...,j j p , i  = *1 2 , 1,i i jt j i  and i  = 

*1 2 , 1,i i jt j i . Due to eqn. (2.16), we have  

1 1
2 2 2 2i i

L L L Lm m m m  

for each i  {1, …, p i i , then   

1

1

1

1

1( )
2 22

1
2 22

1
2 22

2 ,
2 22

i

i

i

p

p

p

p

L L

L L

L L

L L

g m m m

m m

m m

m m

 

for each i  {1, …, p ( )g m  can be written into different 

expressions. Then for each i  {1, …, p  
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* 1 *

*

* 2

1( ) (1 2 ) (1 2 )
2 22

2 (1 2 )
2 22

2 (1 2 ) .
2 22

i

i

T
i i i ip

T
i ip

ip

t L L t

L L t

t L L

g m e m m e

m m e

m m

 

Therefore, inequality (2.15) can be written as 

* 2
2 2i iit L Lm m , 

for all i, which is equivalent to 

 
2 2i i

L Lm m , (2.17) 

for all i. Let *  = * *
11 2 , ...,1 2

T
pt t , then *   i  for all i  {1, …, p *  = 

* 2m . Then inequality (2.17) indicates that when the sum of loss function values at 

the points with the ith coordinate equal to *
it  has a smaller value than the sum of 

the loss function values at the points with the ith coordinate equal to *
it  for all i 

 {1, …, p   
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Chapter 3 

Rate of Convergence 

 

In this chapter, we discuss the rate of convergence property of DSPSA. We have 

shown partial and preliminary results of this chapter in Wang and Spall (2013). We set up 

an upper bound for the finite sample performance and calculate the asymptotic 

performance of DSPSA in the big-O sense.  We also discuss the properties of the upper 

bounds. In the last section of this chapter, we discuss the guidelines on the choice of 

coefficients of the gain sequence. 

 

3.1 Theoretical Analysis of Rate of Convergence 

Now let us consider the rate of convergence of DSPSA. Generally, for convergent 

discrete stochastic algorithm, if the optimal solution is unique and all the points in the 
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sequence ˆ{ }k  
are multivariate integer points, it is natural to use the rate at which 

*ˆ( )kP  going to 0 (or *ˆ( )kP  going to 1) as the measure of rate of convergence. 

However, for DSPSA, the points in the sequence ˆ{ }k  are non-multivariate integer 

points, so it is natural to consider the mean square error 
2*ˆ

kE  instead. In this 

section, we provide an upper bound for 
2*ˆ

kE . Furthermore, we have 
2*ˆ

kE
 

 2 *ˆ0 ([ ] )kP  + 2 *ˆ0.5 ([ ] )kP  = *ˆ0.25 ([ ] )kP , where ˆ[ ]k  
is the nearest 

multivariate-integer point of ˆ
k . Through the relationship between 

2*ˆ
kE  and 

*ˆ([ ] )kP , we can get an upper bound of *ˆ([ ] )kP  to compare DSPSA with other 

algorithms in the big-O sense.  

 

3.1.1 Upper Bound for Finite Sample Performance     

    Before discussing the asymptotic performance of DSPSA, we first consider the finite 

sample performance by deriving the upper bound for the mean squared error. Theorem 

3.1, which provides an upper bound for 
2*ˆ

kE  that applies for all 0k , is the main 

theorem on the rate of convergence analysis for DSPSA. In Corollary 3.2, we show that 

the upper bound can be written in another form by solving the integral, which leads to a 
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clear asymptotic performance of DSPSA. Following the theorem statement (and 

preceding the proof), we offer several remarks related to the conditions.  

    Before proving Theorem 3.1, let us first discuss a useful lemma. In the expression of 

the upper bound in Theorem 3.1, we will use a function ( )C , which is defined as below: 

for  0.5 <  < 1 

21 1(1 1) (1 ) 1exp 2 2 1
1 1 1
A AC a a

A
, 

and for   = 1,  

2 21(1) 1
1

a
C

A
, 

where 0 , 0a  and 0A . In Lemma 3.1, we set up a relationship for ( )C , and the 

result will be used in the mathematical induction proof of Theorem 3.1. 

Lemma 3.1. When 0.5  <   < 1, the following holds for all 0k  

 

11 1
2 22 (1 1) 2 (1 )(1 ) exp (1 ) exp

1 1

( ),

k

k

a A k a A xA k A k dx

C

 

and 

12
2 2

2
(1 1) (1 ) (1)

(1 )

ka
a

k

A k A x dx C
A k

. 
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Proof. For the case of 0.5 1, by mean value theorem for integration, there exists 

[ , 1]x k k  such that  

11 1
2 2

1 1
2 2

1 1

2 (1 1) 2 (1 )(1 ) exp (1 ) exp
1 1

2 (1 1) 2 (1 )(1 ) exp (1 ) exp
1 1

2 (1 1) 2 (1 )exp
1 1

k

k

a A k a A xA k A x dx

a A k a A xA k A x

a A k a A x 2
1 .

1
x k

A k

 

Next we will show that  

1 1 1 1((1 1) (1 ) 1 1) (1 )A A A k A x . 

When k = 0, obviously we have  

1 1 1 11 1 (1 ) (1 1) (1 )A A A k A x . 

When k  1, a Taylor expansion indicates  

1 1 (1 )( 1 )(1 1) (1 ) ,
(1 )

k xA k A x
A x

 

where [ , 1]x x k  , and  

1 1 1(1 1) (1 ) ,
(1 )

A A
A x

 

where [0,1]x . These two Taylor expansions indicate that  
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1 1 (1 )( 1 )(1 1) (1 ) ,

(1 )
k xA k A x

A x
 (3.1) 

 
1 1 1(1 1) (1 ) .

(1 )
A A

A x
 (3.2) 

Thus, when 1k , due to the value of k, x , x  and x , we know that the right-hand side of 

eqn. (3.2) is larger than the right-hand side of eqn. (3.1), which means that the left-hand 

side of eqn. (3.2) is larger than the left-hand side of eqn. (3.1)   

1 1 1 1 .(1 1) (1 ) (1 1) (1 )A A A k A x  

Therefore, for all k  0, we have  

1 1 1 1(1 1) (1 ) (1 1) (1 )A A A k A x , 

which demonstrates that 

21 1

21 1

2 (1 1) 2 (1 )exp 1
1 1 1

2 (1 1) 2 (1 ) 1exp 1
1 1 1

( ).

a A k a A x x k
A k

a A a A
A

C

 

Thus,  

1
2

1 1
2

2 (1 1)(1 ) exp
1

( ).
2 (1 )(1 ) exp

1

k

k

a A kA k
C

a A xA k dx
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    For the case of  = 1, the mean value theorem for integration indicates  

12 2
2 2 2 2

2 2

2 2

2 2

2 2

2 2

(1 1) (1 1)(1 ) (1 )
(1 ) (1 )

(1 1) (1 )
(1 ) (1 )

1 1 1
1 1

11 1 ,
1 1

ka a
a a

k

a a

a

a

A k A kA x dx A y
A k A k

A k A y
A k A y

A k A y
A y A k

k y y k
A y A k

 

where [ , 1]y k k , which implies that 

1 2 22
2 2

2
1(1 1) (1 ) 1 (1)

1(1 )

k aa
a

k

A k A x dx C
AA k

. 

Q.E.D. 

Theorem 3.1 Assume that L is a function on p  and L has an unique minimal point 

* . Assume also (i) ka  = (1 )a A k , 0.5 <   1, a > 0, and A  0; (ii) the 

components of k  are independently distributed random variables and 0 < 1T
k k l < 

, where l  is independent of the sample point; (iii) for all k, ( ) | ,k k k kE  = 0 

a.s., and var( )k  is uniformly bounded in k; (iv) 
2ˆ ˆ( ) ( )k kE L L  is uniformly bounded 

for all k; (v) there exists  > 0 such that * * *ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0T T
k k k kE g  

for all k. Then  
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2

2 2

2*

1 1 2*
0

1
2

1
2

0

22*
0

ˆ

2 (1 ) 2 (1 ) ˆexp
1 1

2 (1 )exp ( )
1

2 (1 )(1 ) exp , 0.5 1,
1

(1 ) (1)ˆ (1 )
(1 ) (1 )

a

a a

k

k

E

a A a A k E

a A k lba C

a A xA x dx

A lba CE A x
A k A k

2 2

0

, 1,
k

a dx

 

 

 

 

 

 

(3.3a) 

 

 

(3.3b) 

where for  0.5 <  < 1 

21 1(1 1) (1 ) 1exp 2 2 1
1 1 1
A AC a a

A
, 

and for   = 1, we have 

2 21(1) 1
1

a
C

A
, 

and b is a uniform upper bound for 
2ˆ ˆ( ) ( )k kE L L  +  

2
k kE  .  

    Remarks:  

    1.  A special case that satisfies condition (ii) is when the ki  are independent 

Bernoulli random variables taking the values 1  with probability 1 2 . Under this case, 
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we have 1T
k k p , which means the value of l can be set as p (all l  in inequality 

(3.3a) and (3.3b) can be replaced by p under the special case). 

2. From condition (v), we know there exists a *, such that for all k 

*ˆ ˆ( ) ( )T
k kE g   * * *ˆ ˆ( ) ( )T

k kE . Then, for all  satisfying 0 <  

* , we have *ˆ ˆ( ) ( )T
k kE g   * *ˆ ˆ( ) ( )T

k kE  for all k. The 

choice of  is also restricted by the relationship 1 2 0ka  in the early iterations (for 

large k, the relationship 1 2 0ka  is automatically satisfied), which will be further 

discussed in the proof of Theorem 3.1. Furthermore, condition (v) is an analog of the 

definition of strongly convexity for continuous case. Thus,  is also affected by the 

structure (curvature) of the loss function. 

3. Condition (iv) requires that the sequence of ˆ{ ( )}kL  is stable, which means that the 

values of ˆ{ ( )}kL  are not extremely large in magnitude.  

4. The conditions in Theorem 3.1 are not the same as these conditions in Theorem 2.1 

(almost sure convergence), because in Theorem 3.1 we consider the mean square error 

convergence, while in Theorem 2.1 we consider almost sure convergence. The main 

difference is in the expression of condition (v). Also the condition (vi) in Theorem 2.1 is 

not needed in Theorem 3.1.  
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5. When 1, the form of the upper bound for 0.5 <  < 1 in inequality (3.3a)  

converges to the upper bound for the case of  = 1 in inequality (3.3b). We further 

discuss this result in Corollary 3.1 below. 

6. The upper bounds in Theorem 3.1 each include an integral term. We keep the form 

of integral temporarily, because for the case of 0.5 <  < 1, it is not easy to solve the 

integral, so we leave it for Corollary 3.2. For the case of   = 1, we want to keep the 

form of the upper bound consistent with the form for the case of 0.5 <  < 1, and we also 

want to make the relationship between these two cases clearly. Thus, we also keep the 

form of integral for the case of  = 1 temporarily, and solve the integral in Corollary 3.2, 

even though the integral is not hard to solve for the case of  = 1. 

Proof. The key formula for DSPSA is  

 1
1

ˆ ˆ ˆ ˆ( ) ( ) .k k k k k ka y y  (3.4) 

Subtracting *  from both sides of eqn. (3.4) and calculating the norm squared, we get   

 

2 2* * * 1
1 1

21

ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) ( )

ˆ ˆ( ) ( ) .

T
k k k k k k k

k k k k

a y y

a y y

 
 

(3.5) 

Adding and subtracting *ˆ ˆ2 ( ) ( ( ))T
k k ka g  to the right-hand side of eqn. (3.5) and 

taking expectation on both sides, we have 
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2 2* * * 1
1

2* 2 1

ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( ( ))

ˆ ˆ ˆ ˆ2 ( ) ( ( )) ( ) ( ) .

T
k k k k k k k k

T
k k k k k k k

E E a E y y

a E a E y y

g

g

 
 

 (3.6) 

    Let us now discuss the terms on the right-hand side of eqn. (3.6). After dropping the 

ak multiplier, the second term on the right-hand side of eqn. (3.6) is: 

* 1

* 1 * 1

* 1

* 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ))

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ))

ˆ( ) ( ) | ,

0 0 0,

T
k k k k k

T T
k k k k k k k k k

T
k k k k k k

T
k k k k k k

E y y

E L L E

E E L L

E E

g

g

g  

where k  and k  are defined in Section 2.2 ( 0 1
ˆ ˆ ˆ{ , ,..., }k k , 0 1{ , ,..., }k k ). 

After dropping the 2
ka  multiplier, the fourth term on the right-hand side of eqn. (3.6) is  

2 21 1

2 1

1

2 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ2 ( ) ( ) ( )

( ) .

T
k k k k k k k

T
k k k k

T
k k k k k k

T
k k k k

E y y E y y

E L L

E L L

E

 

In addition, we know that 



65 
 

1

1

1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ,

ˆ ˆ( ) ( ) ( ) , .

T
k k k k k k

T
k k k k k k k k

T
k k k k k k k k

E L L

E E L L

E L L E

  

By condition (iii), we have ( ) ,k k k kE  = 0, which indicates that  

1ˆ ˆ( ) ( ) ( ) 0.T
k k k k k kE L L  

Then, due to condition (ii), the fourth term on the right-hand side of eqn. (3.6) can be 

written as 

 

2
1

2 1 2 1

2 2

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) .

k k k

T T
k k k k k k k k

k k k k

E y y

E L L E

l E L L E

 

 

 

 

(3.7) 

Due to condition (iv), we have that 
2ˆ ˆ( ) ( )k kE L L  is uniformly bounded. By 

condition (iii), 2( )k kE  is also uniformly bounded. Therefore, there exists a positive 

scalar b such that 
2ˆ ˆ( ) ( )k kE L L  + 2( )k kE  b, which indicates that the right-

hand side of eqn. (3.7) is smaller than or equal to lb . After substituting the second term 

and the fourth term on the right-hand side of eqn. (3.6) by 0 and upper bound lb , we get  

2 2* * * 2
1

ˆ ˆ ˆ ˆ2 ( ) ( ( ))T
k k k k k kE E a E a lbg . 
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Furthermore, by condition (v), we have that for all k the inductive step from k to k+1 is 

 
2 2* * 2

1
ˆ ˆ (1 2 )k k k kE a E a lb , (3.8) 

and by following all steps before inequality (3.8) in the proof, we know that the right-

hand side of inequality (3.8) is positive. In addition, we will show that the term 

1 2 0ka  for all k. In order to have 1 2 ka  > 0, we must have 1 2 ka  for all k. 

Since 0ka  as k , then we will automatically have 1 2 ka (1 2 ka  > 0) when 

k is large. Thus, the choice of is restricted by 1 2 ka  in the early iterations. As we 

have discussed in Remark 2, by condition (v), we know that we can always pick  small 

enough to make 1 2 0ka  for all k.  

    We see that the upper bound of the mean square error 
2*ˆ

kE  in the kth iteration 

in inequality (3.8) is composed of two terms. The first term is related to the mean square 

error from the previous iteration and the second term is the new error introduced in the 

current iteration.  

In all, by recursive inequality (3.8), we have the following solution: 

 

2*
1

2* 2 2 2
0 0 1

0 1

22*
0

00 0

ˆ

ˆ(1 2 ) (1 2 ) ... (1 2 )

ˆ(1 2 ) .
(1 2 )

k

k k

i i k k k
i i

k k
i

i i
ii jj

E

a E a a lb a a lb a lb

aa E lb
a
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From this solution, we find that the upper bound of the mean square error in the kth 

iteration is related to the mean square error of the initial guess and the cumulated errors 

introduced in each iteration. 

Now let us prove Theorem 3.1 by the method of induction. First, let us consider the 

proof when 0.5 <  < 1. For the base case, k = 0, we have  

1 1 2*
0

1 10
22

0

2*
0

2 1 2 1 ˆexp
1 1

2 1 2 1
exp ( ) 1 exp

1 1

ˆ .

a A a A
E

a A a A x
lba C A x dx

E

 

 

 

 

(3.9) 

Eqn. (3.9) indicates the inequality (3.3a) is true for k = 0.  

    Now, suppose the inequality (3.3a) is true for some k, which means  

1 12 2* *
0

1 1
22

0

2 (1 ) 2 (1 )ˆ ˆexp
1 1

2 1 2 1
exp ( ) 1 exp .

1 1

k

k

a A a A kE E

a A k a A x
lba C A x dx

 

Then, for the case of k + 1, by recursive relationship (3.8), we have  

 

2 2* * 2
1

22*
2

ˆ ˆ1 2

2 ˆ1 .
(1 ) (1 )

k k k k

k

E a E a lb

a lbaE
A k A k

 
 

(3.10) 
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As we have discussed, there always exists 0  such that condition (v) is satisfied and 

1 2 0ka for all k. So, in inequality (3.10), we can replace 
2*ˆ

kE  with its upper 

bound (from the inductive hypothesis). Then, we have  

2*
1

1 1 2*
0

1

1 2
22

2
0

ˆ

2 2 (1 ) 2 (1 ) ˆ1 exp
1 1(1 )

2 121 exp
1(1 )

2 1
( ) 1 exp

1 (1 )

21
(1 )

k

k

E

a a A a A k E
A k

a A ka
A k

a A x lbalba C A x dx
A k

a
A k

1 1 2*
0

1

1 2
22

2
0

2 (1 ) 2 (1 ) ˆexp exp
1 1

2 121 exp
1(1 )

2 1
( ) 1 exp .

1 (1 )

k

a A k a A E

a A ka
A k

a A x lbalba C A x dx
A k

 

 

 

 

 

 

 

 

 

 

(3.11) 

Now let us start to discuss the terms on the right-hand side of inequality (3.11). First 

we will provide an upper bound to the term   

12 2 (1 )1 exp
1(1 )

a a A k
A k

 

that appears in inequality (3.11). By a second order Taylor expansion, we have  
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1

1 1

1 2 2

1 2

2 (1 1)exp
1

2 (1 ) 2 (1 ) 2exp exp
1 1 (1 )

1 2 (1 ) 2 4exp
2 1 (1 ) (1 )

21 ex
(1 )

a A k

a A k a A k a
A k

a A x a a
A x A x

a
A k

12 (1 )p ,
1

a A k

 

where [ , 1]x k k , which means 

 
1 12 2 (1 ) 2 (1 1)1 exp exp

1 1(1 )
a a A k a A k

A k
. (3.12) 

By plugging the results of inequality (3.12) into the first and second term on the right-

hand side of inequality (3.11), we have 
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2*
1

1 1 2*
0

11
22

0

2

2

1 1

0

ˆ

2 1 2 (1 1) ˆexp
1 1

2 12 (1 1)exp ( ) 1 exp
1 1

(1 )

2 1 2 (1 1) ˆexp
1 1

k

k

E

a A a A k E

a A xa A k lba C A x dx

lba
A k

a A a A k E
2*

1 1
2 2

0

2 1

2 (1 1) 2 (1 )exp ( ) (1 ) exp
1 1

(1 ) 2 (1 1)exp ,
( ) 1

ka A k a A xlba C A x dx

A k a A k
C

 

 

 

 

 

 

 

 

 

(3.13) 

For the term in the braces {} within the last term on the right-hand side of inequality 

(3.13), the result in Lemma 3.1 (inequality for ( )C ) implies  

1 2 1
2

0

11 1
2 2

0

1
2

2 (1 ) (1 ) 2 (1 1)(1 ) exp exp
1 ( ) 1

2 (1 ) 2 (1 )(1 ) exp (1 ) exp
1 1

2 (1 )(1 ) exp

k

k k

k

a A x A k a A kA x dx
C

a A x a A xA x dx A x dx

a A xA x
1

0

.
1

k
dx

 

Therefore, inequality (3.13) can be written as 
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2*
1

1 1 2*
0

1 11
22

0

ˆ

2 1 2 1 1 ˆexp
1 1

2 1 1 2 1
exp ( ) 1 exp ,

1 1

k

k

E

a A a A k
E

a A k a A x
lba C A x dx

 

which indicates that the inductive 1k k step is true for 0.5 1. Therefore, the 

inequality (3.3a) is true. 

      Next, let us consider the proof when  = 1. For the base case k = 0, we have  

 
2

2 2

022 2* 2 2 *
0 0

0

(1 ) (1)ˆ ˆ(1 ) .
(1 ) (1 )

a

a a
aA lba CE A x dx E

A A
 (3.14) 

Equation (3.14) indicates the inequality (3.3b) is true for k = 0. Suppose the inequality 

(3.3b) is true for some k, which means  

2

2 2

22 2* * 2 2
0

0

(1 ) (1)ˆ ˆ (1 ) .
(1 ) (1 )

a

a a

k
a

k
A lba CE E A x dx

A k A k
 

For the case of k +1, we have that by recursive inequality (3.8), 

 

2 2* * 2
1

22*
2

ˆ ˆ1 2

2 ˆ1 .
1 1

k k k k

k

E a E a lb

a lbaE
A k A k

 
 

(3.15) 
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As we have discussed, there always exists  > 0 such that condition (v) is satisfied and 

1 2 0ka  for all 0k . Hence, we can replace 
2*ˆ

kE  with its upper bound 

(from the inductive hypothesis) into inequality (3.15). Then, we have   

2

2

2

2 2* *
1 0

2 2
2 2

2
0

2 (1 )ˆ ˆ1
1 (1 )

2 (1)1 (1 ) .
1 (1 )(1 )

a

a

a

k

k
a

a AE E
A k A k

a lba C lbaA x dx
A k A kA k

 

 

 

(3.16) 

By the second order Taylor expansion, we have  

 

2 2

2 1 2 2

2

1 1 2 (2 1)
1 1 1 (1 ) (1 )

2 11 ,
(1 ) 1

a a

a a

a

a a a
A k A k A k A y

a
A k A k

 

 

 

(3.17) 

where [ , 1]y k k . Then plugging the upper bound of 

22 11
(1 ) 1

aa
A k A k

 

in inequality (3.17) into the first and second term on the right-hand side of eqn. (3.16), we 

have  
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22 2* *
1 02

2 2
2 2

2 2
0

2 2*
02

22
2 2

2 2
0

1ˆ ˆ
1 1

(1) (1 )
(1 )1 1

1 ˆ
1 1

1 1(1) 1 .
(1)(1 )1 1

a

k a

k
a

a

a

a

ak
a

a

A
E E

A k

lba C lbaA x dx
A kA k

A
E

A k

A klba C A x dx
C A kA k

 

Due to Lemma 3.1 (inequality for (1)C ), we know  

2 1
2 2 2 2 2 2

2
0 0

1
2 2

0

1 1
1 (1 ) (1 )

(1)(1 )

(1 ) .

ak k k
a a a

k

k
a

A k
A x dx A x dx A x dx

C A k

A x dx

 

Then, we get  

2 122 2* * 2 2
1 02 2

0

1 (1)ˆ ˆ (1 ) ,
1 1 1 1

a k
a

k a a
A lba CE E A x dx

A k A k
 

which indicates that the inductive 1k k step is true for 1 . Therefore, the 

inequality (3.3b) is true. 

     In summary, we have  
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2

2 2

2*

1 1 2*
0

1

1
2

2
0

22* 2 2
0

0

ˆ

2 1 2 1 ˆexp
1 1

2 1
exp

12 1
exp ( ) , 0.5 1,

1 1

(1 ) (1)ˆ (1 ) ,
(1 ) (1 )

a

a a

k

k

k
a

E

a A a A k
E

a A x

a A k
lba C dx

A x

A lba CE A x dx
A k A k

1,

 

which completes the proof. Q.E.D. 

 In the following, we present Corollary 3.1, where we show the relationship between 

the upper bound in inequality (3.3a) and the upper bound in inequality (3.3b).  

Corollary 3.1. Assume that the conditions of Theorem 3.1 are true. In inequality 

(3.3a), the upper bound for the case of 0.5 <  < 1 converges to the upper bound for the 

case of  = 1 in inequality (3.3b), when 1.  

Proof. Under the conditions of Theorem 3.1, we know that inequalities (3.3a) and 

(3.3b) are true. First we show that the term 

1 12 (1 ) 2 (1 )exp
1 1

a A a A x  
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in inequality (3.3a) converges to 
2 2

(1 ) (1 )
a a

A A x  as   1 for all x  0. 

Suppose the base of the logarithm used below is e (natural logarithm). By L’Hôpital’s 

rule, we have  

1 1

1

1 1

1

2 2

2 1 2 1
lim

1

2 1 log(1 ) 2 1 log(1 )
lim

1

2 log(1 ) 2 log(1 )

log(1 ) log(1 ) ,a a

a A a A x

a A A a A x A x

a A a A x

A A x

 

which indicates that  

            
1 1 2

21

2 (1 ) 2 (1 ) (1 )lim exp
1 1 (1 )

a

a
a A a A x A

A x
. 

Similarly 

 
1 1 2

21

2 (1 ) 2 (1 ) (1 )lim exp
1 1 (1 )

a

a
a A a A k A

A k
, (3.18) 

 
1 1 2

21

2 (1 1) 2 (1 ) (1 1)lim exp
1 1 (1 )

a

a
a A a A A

A
,  (3.19) 

and  

 
1 1 2

21

2 (1 ) 2 (1 ) (1 )lim exp
1 1 (1 )

a

a
a A x a A k A x

A k
. (3.20) 

By eqn. (3.19) we have   
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21 1

1 1

2 2

2 (1 1) 2 (1 ) 1lim ( ) lim exp 1
1 1 1

11
1

(1).

a

a A a AC
A

A

C

 

 

 

 

(3.21) 

In addition, by eqn. (3.20) we have 

 

2

1 1
2

1
0

1 1
2

1
0

2 2

0

2 1 2 1
lim exp 1 exp

1 1

2 1 2 1
lim 1 exp

1 1

1 (1 ) .
(1 )

a

k

k

k
a

a A k a A x
A x dx

a A x a A k
A x dx

A x dx
A k

 

 

 

 

(3.22) 

Overall, by eqns. (3.18), (3.21), and (3.22), we have  

2

2 2

1 1 2*
01

1 1
22

0

22* 2 2
0

0

2 1 2 1 ˆlim exp
1 1

2 1 2 1
exp ( ) 1 exp

1 1

(1 ) (1)ˆ (1 ) ,
(1 ) (1 )

a

a a

k

k
a

a A a A k
E

a A k a A x
lba C A x dx

A lba CE A x dx
A k A k

 

which means that, when   1, the upper bound in inequality (3.3a) for the case of 0.5 < 

 < 1 converges to the upper bound in inequality (3.3b) for the case of  = 1. Q.E.D. 
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3.1.2 Asymptotic Performance  

Following the discussion of the upper bound for finite sample performance in last 

section, we consider the asymptotic performance of DSPSA in this section. In Corollary 

3.2, we show that inequality (3.3a) and (3.3b) in Theorem 3.1 can be written in a new 

form by solving the integral, and from the new form we can get the rate of convergence 

of DSPSA in the big-O sense.  

Corollary 3.2. Assume that the conditions of Theorem 3.1 are true. Inequality (3.3a) 

and (3.3b) can be written as  

2

2

2*

1 1 2*
0

2*
0

ˆ

2 (1 ) 2 (1 ) ( , )ˆexp
1 1 (1 )

( , ) , 0.5 1,
(1 )

(1 ) ( ,1) ( ,1)ˆ , 1,
1 1(1 )

a

a

kE

a A a A k T kE
A

T k
A k

A T k T kE
A A kA k

 

 

 

 

(3.23a) 

 

 (3.23b) 

where we have that when 0.5 <  <1, 

2

1
( )( , )

2 1 ( )

lba CT k
a A f k

, 
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1
1 1

2

0
1

(1 )

0

2 (1 )(1 ) exp
1

( ) 1
2 (1 )(1 ) exp

1

k

k

a A xA x dx
f k A

a A xA x dx
, 

( )f k  as k , and when 1 

2 (1)( ,1)
2 1

lba CT k
a

. 

Remarks:  

1. In Corollary 3.2, we show that inequality (3.3a) and (3.3b) in Theorem 3.1 can be 

written into a new form by solving the integral, and we can derive the rate of 

convergence in the big-O sense through this new form easily. Thus, the values of 

( , )T k  in finite iterations are not important for us in discussing the asymptotic 

performance. 

2. For ( , )T k , we will show in the proof that ( )f k  as k , which indicates 

that  when 0.5 <  < 1, we have 2( , ) ( ) 2T k lba C a  as k . In addition, when 

k is large, the effect of the coefficient A disappears in ( , )T k , while the effect of a is 

always present. The overall reasons that we introduce ( )f k  here are that we can rewrite 

the integral into two clear big-O forms and when k  the effect of ( )f k  disappears in 

the coefficient ( , )T k . 

3. When  = 1, we can always adjust the value of a a small amount to make 2 1a . 

Proof. Under the conditions of Theorem 3.1, we know that inequalities (3.3a) and (3.3b) 
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are true. Now we solve the integral in inequality (3.3a) and (3.3b). For the case of  0.5 < 

 < 1, let us consider the integral  

1
2

0

2 (1 )2 (1 ) exp
1

k a A xa A x dx .  

Using integration by parts, we have  

1
2

0

1

0

1 1

00

1

2 (1 )2 (1 ) exp
1

1 2 (1 )exp
1(1 )

1 2 (1 ) 2 (1 ) 1exp exp
1 1(1 ) (1 )

1 2 (1 )exp
1(1 )

k

k

k k

a A xa A x dx

a A xd
A x

a A x a A x d
A x A x

a A x
A x

1
1

00

1 1

1
2

1
0

2 (1 )(1 ) exp
1

1 2 (1 ) 1 2 (1 )exp exp
1 1(1 ) (1 )

2 (1 ) 1(1 ) exp ,
1 (1 )

k k

k

a A xA x dx

a A k a A
A k A

a A xA x dx
A x

 

which implies that  

 1
2

1
0

1 1

2 (1 )(1 ) exp 2
1 (1 )

1 2 (1 ) 1 2 (1 )exp exp .
1 1(1 ) (1 )

k a A xA x a dx
A x

a A k a A
A k A

 

 

 

(3.24) 
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By the mean value theorem for integration, for each k, there exists ( ) [0, ]f k k  such that  

 1
2

1
0

1
2

1
0

2 (1 ) 1(1 ) exp
1 (1 )

1 2 (1 )(1 ) exp ,
1(1 ( ))

k

k

a A xA x dx
A x

a A xA x dx
A f k

 

 

    

    (3.25) 

which implies that  

1
1 1

2

0
1

(1 )

0

2 (1 )(1 ) exp
1

( ) 1
2 (1 )(1 ) exp

1

k

k

a A xA x dx
f k A

a A xA x dx
. 

Combining the results of eqn. (3.24) and eqn. (3.25), we have  

1
2

1
0

1 1

2 (1 )2 (1 ) exp
1(1 ( ))

1 2 (1 ) 1 2 (1 )exp exp ,
1 11 1

k a A xa A x dx
A f k

a A k a A

A k A

 

which implies that  

1
2

0

1 1

1

2 (1 )(1 ) exp
1

2 (1 ) 2 (1 )exp 1 exp 1
1 1

,
2 (1 ( ))

k a A xA x dx

a A k a AA k A

a A f k
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which means that we have solved the integral in inequality (3.3a).  Thus, the upper bound 

in the inequality (3.3a) can be written as  

1 1 2*
0

1 1
2 2

0

1 1 12*
0

2 (1 ) 2 (1 ) ˆexp
1 1

2 (1 ) 2 (1 )exp ( ) (1 ) exp
1 1

2 (1 ) 2 (1 ) 2 (1 )ˆexp exp
1 1 1

k

a A a A k E

a A k a A xlba C A x dx

a A a A k a A kE

1 1

2
1

1 1 2*
0

2 (1 ) 2 (1 )exp 1 exp (1 )
1 1

( )
2 (1 ( ))

2 (1 ) 2 (1 ) ( , ) ( , )ˆexp
1 1 (1 ) (1

a A k a AA k A
lba C

a A f k

a A a A k T k T kE
A A k

,
)

  

which shows that the result in inequality (3.23a) is true.  

    In the following, we show that for the ( )f k  in inequality (3.23a), we have ( )f k    

as k  . After that, we show that inequality (3.23b) is true. By rewriting eqn. (3.25), 

we have 

1
(1 )

0

1
2

1
0

2 (1 )(1 ) exp
1

1 2 (1 )(1 ) exp ,
1(1 ( ))

k

k

a A xA x dx

a A xA x dx
A f k

 

which follows that 
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1
(1 )

0
1 1

2

0

2 (1 )(1 ) exp
11

(1 ( )) 2 (1 )(1 ) exp
1

k

k

a A xA x dx

A f k a A xA x dx
. 

By L’Hôpital’s rule and the fact that  < 1, we have  

1
(1 )

0
1

2

0

1
(1 )

1
2

1

2 (1 )(1 ) exp
1

lim
2 (1 )(1 ) exp

1

2 (1 )(1 ) exp
1

lim
2 (1 )(1 ) exp

1

1lim 0.
(1 )

k

kk

k

k

a A xA x dx

a A xA x dx

a A kA k

a A kA k

A k

 

Thus,  

1
1lim 0

(1 ( ))k A f k
, 

which indicates that ( )f k  as k . Then we have  2( , ) ( ) 2T k lba C a  > 0 

as k . Therefore, we have 
2*ˆ (1 )kE O k  for the case of 0.5 <  < 1, and 

specifically 
2*ˆ

kE  = 2 ( ) 2lba C a k + ( )o k . 

Now let us show that when  = 1 the inequality (3.23b) is true. For the case of  = 1,  

as we have discussed in Remark 3 ( 2 a  1) of this corollary,  we have 
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2

2 2

2

2 2

2

2

22* 2 2
0

0

22* 2 1 2 1
0

2*
0

(1 ) (1)ˆ (1 )
(1 ) (1 )

(1 ) (1)ˆ (1 ) (1 )
(1 ) (2 1)(1 )

(1 ) ( ,1) ( ,1)ˆ ,
1 1(1 )

a

a a

a

a a

a

a

k
a

a a

A lba CE A x dx
A k A k

A lba CE A k A
A k a A k

A T k T kE
A A kA k

 

which shows that the result in inequality (3.23b) is true. Overall, we have shown that the 

inequality (3.23a) and (3.23b) are true. Q.E.D.   

    The second term on the right-hand side of inequality (3.23a) goes to 0 at a lower rate 

than the first term, so we have 
2*ˆ (1 )kE O k  for the case of 0.5 <  < 1. 

Moreover, on the right-hand side of inequality (3.23b), the first term = 2(1 )aO k  and 

the second term = (1 )O k . Therefore, we need to discuss the relationship between 2 a  

and 1 before figuring out the asymptotic performance for  = 1 in the big-O sense. If we 

only consider the upper bound for the asymptotic performance, we only need to focus on 

the sequence for very large k. That is, for the asymptotic performance of ˆ{ }k , we only 

need to consider the sequence ˆ{ }k k N  when N is a very large integer value. Suppose we 

only focus on the exponent of the big-O function instead of the constant multiplier of the 

big-O function. For very large N, and k N , it is known that 1 (1 )A k  is very small. 

Then, we can set a such that 2 a  > 1, and this a can still make 1 2 0ka  when k N . 

Therefore, asymptotically for the case of  = 1, we have 
2*ˆ (1 )kE O k . 
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Based on the result of Corollary 3.2 and the discussion above, let us summarize the 

asymptotic performance of DSPSA in a more formal way. Through the results of 

inequality (3.23a) and the fact 2( , ) ( ) 2T k lba C a , we have that for 0.5 1,  

1 12* 2 (1 ) 2 (1 ) 1ˆ exp
1 1k

a A a A kE O O
k

. 

When k is large, we have  

1 1
12 (1 ) 2 (1 ) 2

1 1 1
a A a A k a k , 

which indicates that for the case of 0.5 1, we have 

 
2* 12 1ˆ exp

1k
aE O k O

k
. (3.26) 

The second term on the right-hand side of eqn. (3.26) goes to 0 at a lower rate than the 

first term (first term = o(second term)), so under the case of 0.5 1, 
2*ˆ

kE  = 

1O k . For the case of 1,   through the results of inequality (3.23b), we have 

2*
2
1 1ˆ

k aE O O
kk

. 

By the discussion above, when 1, we have  
2*ˆ 1kE O k .   

From these results, we find when 1, 
2*ˆ

kE  goes to 0 at the fastest rate from 

the allowable (0.5,1] . However, the usable solution we get from each iteration is 
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ˆ[ ]k  instead of ˆ
k . Therefore, when k is large enough, we will have *ˆ[ ]k , which 

indicates 1 may not provide better asymptotic performance in terms of ˆ[ ]k . As we 

have discussed in Section 3.1, we have 
2* *ˆ ˆ([ ] ) 4k kP E . Then by the analysis 

in this section on 
2*ˆ

kE , we get *ˆ([ ] ) (1 )kP O k .  

 

3.2 Properties of Upper Bound on Convergence 

Rate 

In this section, we discuss the properties of the upper bound in inequality (3.3a) and 

(3.3b) to see how the upper bound changes with the change of coefficients of the gain 

sequence { }ka . Later we will find the properties discussed here are consistent with the 

numerical results shown in Chapter 4, which means the upper bounds provided in Section 

3.1 are reasonable.  

From inequality (3.3a) and (3.3b), we see that the upper bounds for both cases are 

composed of two terms: the first term is corresponding to the initial guess and the second 

term is corresponding to the cumulative errors introduced in the whole process of the 

algorithm. In the early iterations, where the value of k is small, the second term is small 

(the integration interval of the integral is small) and the first term is more significant in 

the upper bound (initial guess may be far away from the optimal solution). In the later 

iterations, where the value of k is large, the first term is smaller (due to the faster 
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decaying speed of the coefficient of the initial guess), and the second term becomes more 

significant than the first term (due to the slower convergence speed of the second term). 

Therefore, we have Proposition 3.1 as below. 

Proposition 3.1. The ratio of the first term on the right-hand side of inequality (3.3a,b) 

(the initial guess term) over the upper bound in inequality (3.3a,b) is strictly decreasing 

with k. The ratio of the second term on the right-hand side of inequality (3.3a,b) over the 

upper bound in inequality (3.3a,b) is strictly increasing with k.  

Proof. First let us consider the upper bound in inequality (3.3a). The ratio of the first 

term over the upper bound (3.3a) is defined as  

1 1 2*
0

2 (1 ) 2 (1 ) ˆexp
1 1

upper bound

a A a A k E
. 

Thus, to prove the ratio is strictly decreasing with k is equivalent to show that the ratio of 

the first term over the second term in the inequality (3.3a) is strictly decreasing with k. 

The ratio is   

1 1 2*
0

1 1
2 2

0

1 2*
0

1
2 2

2 (1 ) 2 (1 ) ˆexp
1 1

2 (1 ) 2 (1 )exp ( ) (1 ) exp
1 1

2 (1 ) ˆexp
1

2 (1 )( ) (1 ) exp
1

k

a A a A k E

a A k a A xlba C A x dx

a A E

a A xlba C A x
0

.k
dx
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We see that the denominator of the ratio strictly increases with k and the numerator of the 

ratio is independent of k. Therefore, the ratio strictly decreases with k, which indicates the 

ratio of the first term on the right-hand side of inequality (3.3a) over the upper bound in 

inequality (3.3a) strictly decreases with k. Therefore, the ratio of the second term on the 

right-hand side of inequality (3.3a) over the upper bound in inequality (3.3a) strictly 

increases with k.  

Similarly for the upper bound in inequality (3.3b), we have that the ratio of the first 

term over the second term is 

2 2*
0

2 2 2

0

ˆ(1 )

(1) (1 )

a

k
a

A E

lba C A x dx
, 

which is strictly decreasing with k. Therefore, the ratio of the first term on the right-hand 

side of inequality (3.3b) over the upper bound in equality (3.3b) strictly decreases with k, 

and the ratio of the second term on the right-hand side of inequality (3.3b) over the upper 

bound in inequality (3.3b) strictly increases with k. Q.E.D.  

From Proposition 3.1, we know that in the early iterations, the value of the first term 

(initial guess term) on the right-hand side of inequality (3.3a,b) is more significant 

compared to the second term. However, in the later iterations, the second term on the 

right-hand side of inequality (3.3a,b) becomes more significant. Thus, for different stages, 

the properties of the upper bound are different.  

In the following two propositions, we discuss how the upper bounds change with the 

coefficients , a, and A in different stages.  
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Proposition 3.2. The first term on the right-hand side of inequality (3.3a) (the initial 

guess term),  

 
1 1 2*

0
2 (1 ) 2 (1 ) ˆexp

1 1
a A a A k E , (3.27) 

is a non-decreasing function on (0.5,1) , a non-increasing function on (0, )a , and 

a non-decreasing function on [0, )A .  

Proof. By ignoring the positive multiplier 
2*

0
ˆE , we consider the derivatives of 

the function   

1 12 (1 ) 2 (1 )exp
1 1

a A a A k . 

Let us start the proof by considering the derivative on (0.5,1) . By the chain rule, we 

have  

1 1

1 1 1 1

2 (1 ) 2 (1 )exp
1 1

2 (1 ) 2 (1 ) 2 (1 ) 2 (1 )exp .
1 1 1 1

a A a A k

a A a A k a A a A k
 

In addition,   
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1 1

1 1

2

1 1

2

1 (1 ) 1 (1 )

2

2 (1 ) 2 (1 )
1 1

2 (1 ) log(1 ) (1 ) log(1 ) (1 )

(1 )

2 (1 ) (1 )

(1 )

2 (1 ) log(1 ) 1 (1 ) log(1 ) 1
,

(1 )

a A a A k

a A A A k A k

a A A k

a A A A k A k

 

where the base of the logarithm here is e (natural logarithm). As we know, the derivative 

of (log 1)x x  over x is log x . Thus, when 1x , (log 1)x x  is an increasing function 

on x. Here 1(1 )A   x  1(1 )A k , where we always have x  1, which indicates 

(log 1)x x  is an increasing function in the interval of  1 1(1 ) , (1 )A A k . 

Therefore, we have 1 (1 )(1 ) log(1 ) 1A k A k  1 (1 )(1 ) log(1 ) 1A A , 

which indicates that  

1 (1 ) 1 (1 )

2

2 (1 ) log(1 ) 1 (1 ) log(1 ) 1
0

(1 )

a A A A k A k
. 

Thus, we have 
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1 1

1 1

1 1 1 1

2

2 (1 ) 2 (1 )exp
1 1

2 (1 ) 2 (1 )exp
1 1

2 (1 ) log(1 ) 1 (1 ) log(1 ) 1

(1 )

0,

a A a A k

a A a A k

a A A A k A k

 

so the function (3.27) is a non-decreasing function on (0.5,1) .   

    Second, let us consider the derivative over a > 0. We have  

1 1

1 1
1 1

2 (1 ) 2 (1 )exp
1 1

2 (1 ) 2 (1 ) 2exp (1 ) (1 )
1 1 1

0,

a A a A k
a

a A a A k A A k  

which indicates that the function (3.27) is a non-increasing function on a > 0 . 

    Last, let us calculate the derivative over 0A . We have  

1 1

1 1

2 (1 ) 2 (1 )exp
1 1

2 (1 ) 2 (1 ) 1 1exp 2
1 1 (1 ) (1 )

0,

a A a A k
A

a A a A k a
A A k

 

which indicates that the function (3.27) is a non-decreasing function on 0A . Q.E.D. 
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In Proposition 3.2, we see the properties of the upper bound in the early iterations on 

the coefficients of gain sequence. From the proof of Proposition 3.2, we find that the 

magnitude of the derivative over  is more significant compared to the magnitudes of the 

derivatives over a  and A (the magnitude of the derivative over A  is the least significant 

one) in the big-O sense. Therefore, based on properties of the first term of the upper 

bound, we prefer to pick relatively smaller  and tune the values of a  and A to satisfy 

other requirements such as the stability of the algorithm.  

From inequality (3.23a), we find that the second term ( ( , ) (1 )T k A k ) on the 

right-hand side goes to 0 at a slower rate than the first term (first term = o(second term)). 

Thus, when k is large, in inequality (3.23a), the second term ( ( , ) (1 )T k A k ) on 

the right-hand side is the leading term in the upper bound, which indicates that discussing 

the properties of the second term in inequality (3.23a) in the later iterations is equivalent 

to discussing the properties of the upper bound in the later iterations. As we have 

discussed in Corollary 3.2, ( , ) ( ) 2T k lbaC , so the second term on the right-

hand side of inequality (3.23a) is very close to ( ) (2 (1 ) )lbaC A k  when k is large. 

Since it is not easy to discuss the second term on the right-hand side of inequality (3.23a) 

directly, we will consider its approximation ( ) (2 (1 ) )lbaC A k  instead. In 

Proposition 3.3 below, we discuss the property of the function ( ) (2 (1 ) )lbaC A k  

on the coefficients of the gain sequence to see the properties of the upper bound in the 

later iterations.  
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Proposition 3.3 The function  

 
( )

2 (1 )
lbaC

A k
 (3.28) 

is strictly increasing on (0, )a , and is strictly decreasing on [0, )A . Function 

(3.28) is a strictly decreasing function on (0.5,1)  when k is large enough to make 

2 2(2 ) (1 ) 1
(1 )
A A

A k
. 

Proof. By ignoring the positive multiplier 2lb  in function (3.28), we discuss the 

function ( ) (1 )aC A k . Since 

21 12 (1 1) 2 (1 ) 1exp 1
1 1 1

a A a AC
A

  , 

then  

1 1 2 2( ) 2 (1 1) 2 (1 ) (2 ) (1 )exp
1 1 (1 )(1 )

aC a A a A A Aa
A kA k

. 

After ignoring the positive multiplier (in function (3.28)) that is not related to the 

coefficients, we calculate the derivatives on (0.5,1) , (0, )a , and [0, )A  as 

below: 
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2 2 1 1

1 1 2 2

( )
(1 )

(2 ) (1 ) 2 (1 1) 2 (1 )exp
(1 ) 1 1

2 (1 1) 2 (1 ) (2 ) (1 )exp ,
1 1 (1 )

aC
A k

A A a A a Aa
A k

a A a A A Aa
A k

 

 
 
 

 
 
 
 
(3.29) 

 

 

2 2 1 1

1 1 2 2
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(3.30) 

and 

 

2 2 1 1

21 1 2

( )
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(2 ) (1 ) 2 (1 1) 2 (1 )exp
(1 ) 1 1

2 (1 1) 2 (1 ) (2 ) (1 )exp .
1 1 (1 )

aC
A A k

A A a A a Aa
A k A

a A a A A Aa
A A k

 

 

 

 

 

 

 

(3.31) 

Now let us calculate all the derivatives on the right-hand side of eqns. (3.29), (3.30) and 

(3.31). By similar arguments as in the Proposition 3.2, we know  

1 12 (1 1) 2 (1 )exp 0
1 1

a A a A , 
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1 12 (1 1) 2 (1 )exp 0
1 1

a A a A
a

, 

and 

1 12 (1 1) 2 (1 )exp 0
1 1

a A a A
A

. 

Moreover, we also have  

2 2 2 2 2 2(2 ) (1 ) (2 ) (1 ) (2 ) (1 )log 0
(1 ) (1 ) (1 )
A A A A A A

A k A k A k
, 

when k is large enough to make  

2 2(2 ) (1 ) 1
(1 )
A A

A k
. 

In addition,  

2 2

2 2

2 1 2

2 1

(2 ) (1 )
(1 )

1 1 1 11 1
1 1(1 ) (1 )

2 1 11 1
1 1(1 ) (1 ) (1 )

0.

A A
A A k

A A A AA k A k

A AA k A A k

 

Overall, we have calculated all terms in the derivatives on the right-hand side of eqns. 

(3.29), (3.30) and (3.31) and know the signs of all derivatives. Therefore, we have 
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( ) 0
(1 )

aC
a A k

 and 
( ) 0

(1 )
aC

A A k
, 

which implies that in the later iterations, we have that ( ( )) (2 (1 ) )lbaC A k  is a 

strictly increasing function on (0, )a , and a strictly decreasing function on [0, )A . 

We also have  

( ) 0
(1 )

aC
A k

, 

when k is large enough to make 

2 2(2 ) (1 ) 1
(1 )
A A

A k
, 

 which implies that ( ( )) (2 (1 ) )lbaC A k  is a strictly decreasing function on 

(0.5,1)  when k is large enough. Q.E.D.  

    In Proposition 3.3, we see the properties of the upper bound in inequality (3.3a) in the 

later iterations related to the coefficients of gain sequence. From the proof of Proposition 

3.3, we find that the magnitude of the derivative over  is most significant compared to 

the magnitudes of the derivatives over a  and A (the magnitude of the derivative over A  

is the least significant one) in the big-O sense. Therefore, based on properties of the 

upper bound in the later iteration, we prefer to pick relatively bigger  and tune the 

values of a  and A to satisfy other requirements such as the stability of the algorithm.  

Comparing the results of Proposition 3.2 and Proposition 3.3, we find that the effects 

of the coefficients of the gain sequence on the upper bound are in the opposite directions 
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in different stages. Because different terms dominate the upper bound in different stages 

(finite samples stage and asymptotical stage), the good set of coefficients for better finite 

sample performance may not be the good set for better asymptotic performance under the 

criterion 
2*ˆ

kE  and vice versa.  

    In Appendix C, we will run some numerical experiments to see the properties of the 

upper bound numerically for the case when the ki  are independent Bernoulli random 

variables taking the values 1  with probability 1 2 . In Appendix C, we will see that 

these numerical results are consistent with the theoretical analysis of the properties of the 

upper bounds discussed above. Moreover, in Chapter 4, we will see that the performances 

of DSPSA have the same properties as the upper bound and it indicates that this upper 

bound is meaningful in the sense that it captures the true properties of the performances 

of DSPSA.  

In the following, we discuss a little bit on the choice of  and b, which arise in the 

upper bound of 
2*ˆ

kE . The values of  and b are dependent on the loss functions. 

From the condition (v) of Theorem 3.1, we have the relationship that 0 <  

* * *ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( )T T
k k k kE Eg  for all 0k . Furthermore, b is a 

uniform upper bound for the value of 
2ˆ ˆ( ) ( )k kE L L  + 2( )k kE  for all 0k . 

Therefore, the values of  and b are restricted by some iterations. The choice of  and b 

affect the tightness of the upper bound on 
2*ˆ

kE . In the Appendix C, we use the 
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separable quadratic loss function as an example to discuss how to pick the value of  and 

b, and how these values affect the tightness of the upper bound. In these numerical tests, 

we consider the special case that the ki  are independent Bernoulli random variables 

taking the values 1  with probability 1 2 . From these results in Appendix C, we see the 

tradeoff between the tightness of the upper bound in the early iterations and the tightness 

of the upper bound in the later iterations through the choice of  and b. 

 

3.3 Choice of Gain Sequence 

In this section, we discuss the implementation aspects regarding the choice of the gain 

sequence under the criterion of 
2*ˆ

kE and the assumptions in Theorem 3.1. The idea 

in this section is similar to the idea in Appendix A, where we discuss the practical step 

size selection for continuous stochastic approximation algorithms. We consider the 

choice for both finite sample performance and asymptotic performance. We provide some 

guidelines here. 

The choice for finite sample performance is based on the discussion of MSE 

2*ˆ
kE  in Section 3.1. Note that eqn. (3.6) can be written as  

 

2 2* * *
1

22 2 1

ˆ ˆ ˆ ˆ2 ( ) ( ( ))

ˆ ˆ( ) ( ) ( ) .

T
k k k k k

T
k k k k k k k

E E a E

a E L L

g
 

 

(3.32) 
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By the condition (v) in Theorem 3.1, we have *ˆ ˆ( ) ( ( ))T
k kE g   

* *ˆ ˆ( ) ( )T
k kE . Let   

 
*

2*

ˆ ˆ( ) ( ( ))
0

ˆ

T
k k

k

k

E

E

g
. (3.33) 

By eqn. (3.33) and the recursive eqn. (3.32), we have 

2*
1

22* 2 2 1

2*
0

0

22 2 1

0 1

ˆ

ˆ ˆ ˆ1 2 ( ) ( ) ( )

ˆ(1 2 )

ˆ ˆ(1 2 ) ( ) ( ) ( ) .

k

T
k k k k k k k k k k

k

j j
j

kk
T

j j i i i i i i i
i j i

E

a E a E L L

a E

a a E L L

 

 

 

 

 

 

(3.34) 

 

There are three terms on the right-hand side of eqn. (3.32). The first term is related to 

the MSE in the previous iteration, the second term is negative, and the third term is 

positive. In order to have stable performance (the algorithm is stable means that the 

sequence generated by the algorithm stays within a reasonable distance of the optimum) 

in the early iterations, the third term of eqn. (3.32) should have small values. It can be 

achieved by small value of step size, which is equivalent to having the value of a not too 

big and the value of A not too small (we regard these requirements as the constraints on 

the gain sequence for stable performance).  
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Now we consider the choice of gain sequence for good finite sample performance 

under the constraints for stable performance. Suppose 0
ˆ  is far from the optimal solution 

* , and k  does not change significantly on different sets of coefficients in the early 

iterations. Then, the first term on the right-hand side of eqn. (3.34) is the dominant term 

in the early iterations, so we prefer relatively bigger value of ka . We can achieve 

relatively big value of ka by choosing small value of (  = 0.501), large value of a and 

small value of A. We see that the requirements for a and A are on the opposite sides for 

stability and better finite sample performance. In order to have better finite sample 

performance, we need to pick a relatively large and pick A relatively small in the domain 

that provides stable performance. 

Now we start to discuss a clear rule for the choice of a and A. For some cases, the cost 

of noisy measurements of the loss functions might be high, so the number of iterations 

may be limited. In order to achieve reasonable performance for the limited number of 

iterations, we want A to be proportional to the maximum number of allowed iterations M. 

Let A M , where 0 . It indicates that for small number of allowed iterations, we 

prefer A to be small, which can make the gain sequence large. A large step size can lead 

the sequence generated by DSPSA to a reasonable result even for very limited number of 

iterations. In addition, we want the effect of A to disappear for later iterations to achieve 

proper decaying gain. Thus, we prefer A to be at a lower value than M, which indicates  

= 0.1, 0.01, 0.001, ... Moreover, as we have discussed, we want (1 )a A i  to be 

reasonably small in the early iterations to keep the stability of the algorithm, but we also 
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want the gain step not too small in the later iterations to foster a reasonable speed of 

convergence. We know the effect of A disappears when k is large, and the effect of a is 

always there, which follows that we prefer to pick large A instead of small a to keep the 

stability of the algorithm, because we still need a not to be too small for better finite 

sample performance. Therefore, among all the choices of , we prefer a larger value, 

which is a value such as 0.1 , and this guideline is similar to the guideline for SPSA 

in continuous problems (Spall, 2003, p. 190). We find that 0.1A M  satisfies all the 

requirements, including the stability and finite sample performance. After getting the rule 

of A, we can make the multiplication of 0a  and the magnitude of elements in 0 0
ˆˆ ( )g

approximately equal to the desired change of the magnitude of ˆ
k  in the early iterations, 

which leads to the possible choice of a.  

Furthermore, let us discuss the choice of coefficients for better asymptotic performance. 

Suppose we have 
2*ˆ 0kE  as .k  When ,k  the generated sequence 

ˆ{ }k  bounces around the optimal solution. Asymptotically we want the sequence to 

bounce as little as possible, and we can achieve it by picking smaller ka = (1 )a A k

(the discussion here on asymptotic performance not only focus on the exponent of the 

big-O function, but also focus on the constant multiplier of the big-O function). From eqn. 

(3.32), we have 
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2 2* * *
1

22 2 1

ˆ ˆ ˆ ˆ2 ( ) ( ( ))

ˆ ˆ( ) ( ) ( ) .

T
k k k k k

T
k k k k k k k

E E a E

a E L L

g
 

Since 
2*ˆ 0kE , then asymptotically we want 

2 2* *
1

ˆ ˆ
k kE E  to 

converges to 0 as fast as possible to achieve higher convergence rate, which indicates 

smaller value of gain sequence is preferred asymptotically. Taking the derivatives of ka  

over , a  and A , we get  

log(1 ) 0
(1 ) (1 )

a a A k
A k A k

, 

1 0
(1 ) (1 )

a
a A k A k

, 

1 0
(1 ) (1 )

a a
A A k A k

. 

We find that the magnitude of the derivative over  is most significant compared to the 

magnitudes of the derivatives over a  and A (the magnitude of the derivative over A  is 

the least significant one, so the effect of A is negligible for asymptotic performance). 

Therefore, asymptotically we prefer relatively larger .  

Overall, based on the discussion in this section, we know that for the selection of the 

coefficients we need to consider three parts: the stability of the algorithm, the finite 

sample performance, and the asymptotic performance. Each part prefers different set of 

coefficients. If we want to have stable performance and good finite sample performance, 
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we prefer 0.501, 0.1A M  and make the multiplication of 0a  and the magnitude of 

elements in 0 0
ˆˆ ( )g  approximately equal to the desired change of the magnitude of ˆ

k  in 

the early iterations, which leads to the possible choice of a. If we focus more on the 

asymptotic performance under the criterion 
2*ˆ

kE , we prefer  = 1, which is 

identical to the asymptotically optimal choice of  for the continuous case (e.g. Spall, 

2003, Chapter 4). 
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Chapter 4 

Performance of DSPSA  

 

We have introduced the algorithm of DSPSA and discuss the convergence properties 

of DSPSA theoretically in the last two chapters. In this chapter, first we do some 

numerical experiments to check the effects of the coefficients of the gain sequence. Then, 

based on the guidelines of choice of coefficients discussed in Section 3.3, we test the 

performance of DSPSA on some general loss functions numerically. 

 

4.1 Description of Loss Functions 

    In this chapter, we do the numerical tests on the case when the ki  are independent 

Bernoulli random variables taking the values 1  with probability 1 2 . We consider three 

loss functions here. The first function is a separable loss function defined on p  
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 2

1
( )

p
T

i
i

L t , (4.1) 

where 1[ ,..., ]Tpt t . The second loss function is a quadratic function defined on p  

 ( )L  = T TD D  2 Td D  + Td d , (4.2) 

where D is a matrix with each diagonal component being 1 1 p  and all the other 

components being 1 p , and d is a vector with each component being 2. Here matrix D is 

a strict diagonal dominant matrix. By Theorem (6.1.10) in Horn and Johnson (1985), we 

know that strict diagonal dominant matrix is positive definite. Therefore, we have that D 

is positive definite, which indicates that the second loss functions has a strictly convex 

quadratic continuous extension. In addition, we see that the second loss function can be 

written as ( )L  = ( ) ( )TD d D d , and the optimal solution is * [1,...,1]T T
p1 . 

The third loss function is a skewed quartic function (Spall, 2003, Ex 6.6) defined on p :  

 3 4

1 1
( ) 0.1 ( ) 0.01 ( )

p p
T T

i i
i i

L B B B B  , (4.3) 

where ( )i  represents the ith component of the vector B  and pB  is an upper triangular 

matrix of 1’s.  

In Theorem 2.1 (almost sure convergence theorem), condition (i), (ii), (iii), (iv) and 

(vi) are general conditions, and these conditions are not hard to check. Then condition (v) 

( *( ) ( ) 0Tg m  for all m  and all  *\{ }p ) in Theorem 2.1 is the main 

focus. By Proposition 2.1 in Section 2.2, the first loss function satisfies condition (v) in 
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Theorem 2.1. By Proposition 2.3 in Section 2.2, we know the second loss function also 

satisfies condition (v) in Theorem 2.1.  

However, the third loss function does not satisfy condition (v) in Theorem 2.1, and we 

will show it in the following. In the numerical test in the Section 4.5 on the third loss 

function, we will test high-dimensional case, where 200p . Let us consider the point  

with all components being 0 except the 200th component being 1 , then the unit 

hypercube centered by ( )  is a vector with all components being 0.5 except the 200th 

component being 0.5. By the definition shown in Section 2.1, we know that when the 

ki  are independent Bernoulli random variables taking the values 1  with probability 

1 2  

11 1 1( )
2 22 p L Lg , 

and we can calculate the value of ( )g  directly. We find that *( ( )) ( )Tg  

 < 0 (there are 2200 possible choices for ;  we randomly pick 5,000,000 of them to 

do the approximation, and the final estimator is the mean value of 20 replicates), where 

* = 2000 , and 2000  is a 200-dimensional vector with all components being 0. Therefore, 

the condition (v) in Theorem 2.1 is not satisfied for the skewed quartic loss function 

defined on p . However, we will see that DSPSA still works for high-dimensional 

skewed quartic loss function defined on p  in Section 4.5. 
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4.2 Numerical Tests on the Effects of Coefficients 

of the Gain Sequence 

Before doing the numerical tests on the loss functions mentioned above, we first do 

some simple tests to show that the discussion in Section 3.3 on the effects of coefficients 

of the gain sequence are consistent with the numerical results. We pick the separable loss 

function (4.1) as the example to do the tests. Suppose the measurement noises  are i.i.d. 

N(0,1), the dimension p = 10, the initial guess is 1010 1 , and the gain step ka  = 

( 1 )a k A . Let the number of iterations in each replicate be 1000 and let the number 

of replicates be 20. We use the sensitivity analysis for the tests, which means that in each 

test we only change one coefficient and fix all the rest. Suppose the base case is:  = 

0.75, A = 100, a = 0.4. 

In Figure 4.1, we test the effect of a. The values that we choose for a are 0.4 and 1. 

From Figure 4.1, we see that after having stable performance for DSPSA, relatively 

larger a leads to better performance in the early iterations. Meanwhile, smaller value of a 

provides better performance in later iterations. We see a crossing point at just under 300 

iterations between the line for a = 0.4 and a = 1. As the discussion in Section 3.3, smaller 

value of a can help to provide stable performance for DSPSA in the early iterations, after 

obtaining stable performance, relatively bigger value of a can work better in the early 

iterations, and smaller value of a leads to better asymptotic performance. Therefore, the 

numerical result here is consistent with the discussion in Section 3.3. 
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Figure 4.1 Performance comparison with different values of a for separable loss function. 

Under the premise of stable performance, by fixing the values of A and , we find that 

the relatively larger value of a leads to better performance in the early iterations; while 

smaller value of a provides better performance asymptotically. Each curve represents the 

sample mean of 20 independent replicates. 

 

    In Figure 4.2, we test the effect of A. The values that we choose for A are 10 and 100. 

We find that the effect of A disappears in the later iterations. After having stable 

performance for DSPSA, the relatively smaller A works better in the early iterations. As 

the discussion in Section 3.3, big value of A can help to provide stable performance for 
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DSPSA in the early iterations, and after obtaining stable performance, relatively smaller 

value of A can provide better performance in the early iterations. Therefore, the 

numerical result here is consistent with the discussion in Section 3.3. 

 

 

 

 

 

 

 

 

 

Figure 4.2 Performance comparison with different values of A for separable loss function. 

Under the premise of stable performance, by fixing the values of a and , we find that 

the relatively smaller value of A provides better performance in the early iterations; while 

the effect of A is negligible asymptotically. Each curve represents the sample mean of 20 

independent replicates. 

 

    In Figure 4.3, we test the effect of . The values that we choose for  are 0.501 and 

0.75. Figure 4.3 tells that for finite sample performance in the early iterations, smaller  
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gives better performance; while for later iterations, larger  leads to better asymptotic 

performance. We also see a clear crossing point between the line for = 0.501 and = 

0.75.  The numerical result here is also consistent with the discussion in Section 3.3. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Performance comparison with different values of  for the separable loss 

function. By fixing the values of A and a, we find smaller value of  provides better 

performance in the early iterations; while bigger value of  provides better performance 

asymptotically. Each curve represents the sample mean of 20 independent replicates. 

 

Overall, since these numerical results are consistent with the discussions in the Section 

3.3, then the guidelines of the coefficients selection of the gain sequence given in Section 

3.3 seem reasonable.  
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4.3 Performance of DSPSA on the Separable Loss 

Function 

    In this section, we discuss the performance of DSPSA on the first loss function (4.1) 

(separable loss function). The optimal solution is *
p0 . We consider the high-

dimensional case with p = 200, and set the measurement noises  to be i.i.d. N(0,1). The 

initial guess is 20010 1 . Let the number of iterations in each replicate be 10,000, and let 

the number of replicates be 20. Here ( 1 )ka a k A . We pick the coefficients based 

on the guidelines in Section 3.3. By the guideline on A, we have A = 0.1 10000  = 1000. 

For practical selection of , we choose  = 0.501, and for the asymptotically optimal 

selection of , we choose  = 1. After computing some values of 0 0
ˆˆ ( )g , we know that 

the largest of the mean values of the magnitudes of the components in 0 0
ˆˆ ( )g  is 

approximately 30. Suppose we want the elements of  move by a magnitude of 0.05 in 

the early iterations. Then, for the practical selection of ,  a = 0.05 is according to 

0.5010.05 1001 30   0.05. For the asymptotically optimal selection of , a = 1.57 is 

according to 1.57 1001 30  0.05.  

Therefore, we do the numerical tests with two sets of coefficients: 1) (practical 

selection of ) 0.501, A = 1000, a = 0.05; 2) (asymptotically optimal )  = 1, A = 

1000, a = 1.57. These two sets of coefficients provide the same gain step in the first 
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iteration, because a is picked by matching the desired change magnitude in the early 

iterations.  

In the numerical tests below, we not only check the criterion * *
0

ˆ ˆ
k , but 

also check the criterion * *
0

ˆ ˆ[ ] [ ]k , where [ ]  is the round operator. (Recall 

that the solution provided by DSPSA in the kth iteration is ˆ[ ]k ). Figures 4.4 and 4.5 

show the results for the separable loss function, and under both criteria, the sequences 

generated by DSPSA converge to the optimal solution. We see that the results given by 

these two different criteria are quite similar. In Figure 4.4, we see that the first set of 

coefficients provides better performance in the early iterations; while the second set of 

coefficients provides better performance in the later iterations. In Figure 4.5, by using the 

round operation in the criterion, we see that for finite samples performance the first set of 

coefficients still leads to better performance, but the difference between the asymptotic 

performances on these two sets is not as large as that in Figure 4.4.  The reason is that 

when ˆ
k  is very close to the optimal solution, ˆ[ ]k  always equals *,  which makes the 

difference between the asymptotic performances on these two sets of coefficients smaller.  
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Figure 4.4 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ
k  on separable loss function. The first set of coefficients (practical 

selection of ,  = 0.501) leads to better performance in the early iterations; while in 

the later iterations the second set of coefficients (asymptotically optimal ,  = 1) 

provides better performance under this criterion. Each curve represents the sample mean 

of 20 independent replicates. 

 

 

 

*

*
0

ˆ

ˆ
k

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

 

 

a = 0.05, A = 1000,  = 0.501
a = 1.57, A = 1000,  = 1



113 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ[ ] [ ]k  on the separable loss function. The first set of coefficients 

(practical selection of ,  = 0.501) leads to better performance in the early iterations, 

and in the later iterations, the difference between the performances of DSPSA on both 

coefficient sets are small under this criterion. Each curve represents the sample mean of 

20 independent replicates. 
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4.4 Performance of DSPSA on the Quadratic Loss 

Function 

    In this section, we discuss the performance of DSPSA on the second loss function (4.2) 

(quadratic loss function). The optimal solution is *
p1 , where p1  is the vector with all 

components being 1. We consider the high-dimensional case with p = 200, and set the 

measurement noises  to be i.i.d. N(0,1). Similar to the settings for the first loss function, 

we set the initial guess to be 20010 1 , the number of replicates to be 20 and the number 

of iterations in each replicate to be 10,000. We pick the coefficients based on the 

guidelines in Section 3.3. Similar to the first loss function, we set A = 1000. For practical 

selection of , we choose 0.501, and for the asymptotically optimal selection of , 

we choose 1. After computing some values of 0 0
ˆˆ ( )g , we know that the largest of 

the mean values of the magnitudes of the components in 0 0
ˆˆ ( )g  is approximately 150. 

Suppose we want the elements of  to move by a magnitude of 0.05 in the early 

iterations. Then, for the practical selection of , a = 0.01 is according to 

0.5010.01 1001 150 0.05 . For the asymptotically optimal selection of , a = 0.314 is 

according to 0.314 1001 150   0.05.   

Therefore, we do the numerical tests with two sets of coefficients: 1) (practical 

selection of ) 0.501, A = 1000, a = 0.01; 2) (asymptotically optimal )  = 1, A = 

1000, a = 0.314. These two sets of coefficients provide the same gain step in the first 



115 
 

iteration, because a is picked by matching the desired change magnitude in the early 

iterations.  

In the numerical tests below, we not only check the criterion * *
0

ˆ ˆ
k , but 

also check the criterion * *
0

ˆ ˆ[ ] [ ]k . Figures 4.6 and 4.7 show the results for 

the quadratic loss function. The results here are similar to the results of the separable loss 

function. We see that DSPSA can provide convergent sequences for the quadratic loss 

function under both criteria. We also see that the first set of coefficients (practical 

selection of ) leads to better performance in the early iterations under both criteria. In 

the later iterations, the second set of coefficients (asymptotically optimal ) provides 

better performance under the criterion * *
0

ˆ ˆ
k  and the difference in the 

performance of DSPSA on both coefficients sets are smaller under the criterion 

* *
0

ˆ ˆ[ ] [ ]k . 
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Figure 4.6 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ
k  on quadratic loss function. The first set of coefficients (practical 

selection of ,  = 0.501) leads to better performance in the early iterations; while in 

the later iterations the second set of coefficients (asymptotically optimal ,  = 1) 

provides better performance under this criterion. Each curve represents the sample mean 

of 20 independent replicates. 
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Figure 4.7 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ[ ] [ ]k  on quadratic loss function. The first set of coefficients (practical 

selection of ,  = 0.501) leads to better performance in the early iterations, and in the 

later iterations, the difference between the performances of DSPSA on both coefficient 

sets are small under this criterion. Each curve represents the sample mean of 20 

independent replicates. 
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4.5 Performance of DSPSA on the Skewed Quartic 

Loss Function 

    We discuss the performance of DSPSA on the third loss function, the skewed quartic 

loss function. The optimal solution is * = p0 . We consider the high-dimensional case 

with p = 200, and set the measurement noises  to be i.i.d. N(0,1). Similar to the settings 

for the last two loss functions, we set the initial guess to be 20010 1 , the number of 

replicates to be 20, and the number of iterations in each replicate to be 10,000. We pick 

the coefficients based on the guidelines in Section 3.3. Similar to the last two loss 

functions, we set A = 1000. For practical selection of , we choose 0.501, and for 

the asymptotically optimal selection of , we choose 1 . After computing some 

values of 0 0
ˆˆ ( )g , we see that the largest of the mean values of the magnitudes of the 

components in 0 0
ˆˆ ( )g  is approximately 150. Suppose we want the elements of  move 

by a magnitude of 0.05 in the early iterations. Then, for the practical selection, a = 0.01 is 

according to 0.5010.01 1001 150   0.05. For the asymptotically optimal selection, a = 

0.314 is according to 0.314 1001 150   0.05.   

Therefore, we do the numerical tests for two sets of coefficients: 1) (practical selection 

of ) 0.501, A = 1000, a = 0.01; 2) (asymptotically optimal )  = 1, A = 1000, a 

= 0.314. These two sets of coefficients provide the same gain step in the first iteration, 

because a is picked by matching the desired change magnitude in the early iterations.  
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In the numerical tests below, we not only check the criterion * *
0

ˆ ˆ
k , but 

also check the criterion * *
0

ˆ ˆ[ ] [ ]k . Figures 4.8 and 4.9 show the performance 

of DSPSA for the skewed quartic loss function. Due to the special structure of the skewed 

quartic loss function, the sequence ˆ
k  does not converge as fast to *  as the first two 

loss functions. However, we still see the efficient convergent performance for the skewed 

quartic loss function by using DSPSA. We also check the performance in terms of the 

errors in loss function value ˆ([ ])kL  in Figure 4.10. We do not check the value of 

ˆ( ),kL  because in the discrete problem, loss functions are not defined on points that are 

non-multivariate integer. We see that Figure 4.10 shows good convergence of DSPSA for 

the skewed quartic loss function in term of the errors in loss function values. Comparing 

the results in Figures 4.10 and 4.9, we find that the relatively slow convergence of the 

sequence in terms of the errors in points is due to the special structure of the loss 

function, where there is a large flat area near the optimal solution. From Figures 4.8 and 

4.9, we find that, relative to the errors reported in Figures 4.4, 4.5, 4.6 and 4.7 based on 

the previous loss functions, ˆ
k  is still not very close to the optimal solution *  in the last 

iteration. Thus, we only see the finite sample performance of DSPSA for the skewed 

quartic loss function, and the difference between the two curves are similar in Figure 4.8 

and Figure 4.9. We see that the first set of coefficients (practical selection of ) leads to 

better finite sample performance under both criteria. 
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Figure 4.8 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ
k  on the skewed quartic loss function. The first set of coefficients 

(practical selection of ,  = 0.501) leads to better finite sample performance under this 

criterion. Each curve represents the sample mean of 20 independent replicates. 
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Figure 4.9 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ[ ] [ ]k  on the skewed quartic loss function. The first set of coefficients 

(practical selection of ,  = 0.501) leads to better finite sample performance under this 

criterion. Each curve represents the sample mean of 20 independent replicates. 
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Figure 4.10 Performance of DSPSA with two sets of coefficients for the criterion 

* *
0

ˆ ˆ([ ]) ([ ]) ([ ]) ([ ])kL L L L  on the skewed quartic loss function. The first set 

of coefficients (practical selection of ,  = 0.501) leads to better finite sample 

performance under this criterion. Each curve represents the sample mean of 20 

independent replicates. 
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sample performance, and in the later iterations the second set of coefficients 

(asymptotically optimal )  might do better in terms of * *
0

ˆ ˆ
k . But after 

considering the round operation, we find that the better performance of the second set of 

coefficients in the later iterations becomes weaker. For the function with special 

structure, such as the skewed quartic loss function that contains a large flat area near the 

optimal solution, DSPSA provides good convergent performance especially in terms of 

the errors in loss function values.  

 

4.6 Example of Non-Bernoulli Distribution for the 

Simultaneous Perturbation Direction  

    For the simultaneous perturbation direction , we have mainly discussed the case 

when the components of  are independent Bernoulli random variables taking the values 

1  with probability 1 2 . Now let us discuss a non-Bernoulli distribution, where the 

components of  can be discrete uniformly distributed over the set { 1, 3}. Note that 

non-Bernoulli distributions have also been considered for continuous (non-discrete) 

problems as well (e.g. Spall, 2003, Chapter 7 and Cao, 2011). 

As an example, let us explain the idea of the non-Bernoulli case on the domain of 2 . 

For example, suppose in the kth iteration, we have that ˆ [0.1, 0.1]Tk  and the simulation 

result for k  is [3,1]Tk , then ˆ [2,1]Tk and ˆ [ 1, 0] .T
k  In Figure 4.11, the lines 
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radiating from ˆ( )k  represent all possible values of the perturbation vector k , the 

triangle point indicates the position of ˆ
k  , and by choosing different k , the possible 

values for  ˆ
k  and ˆ

k  belong to the set of the round points. We find that this non-

Bernoulli distribution of k  makes DSPSA to explore the points in a larger hypercube 

(not restricted within one unit hypercube). This is just one example to describe the non-

Bernoulli case. 

 

 

Figure 4.11 Brief idea of the extension on k . The triangle point is ˆ
k , the lines 

radiating from ˆ( )k  represent all possible values of the perturbation vector k , and the 

round points are the possible values for ˆ
k  and ˆ

k  based on different values of  k .  

 

We do the numerical tests by using both the non-Bernoulli distribution (the uniform 

{ 1, 3}) and the Bernoulli 1 distribution for the simultaneous perturbation vector 
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k  on the 200-dimensional separable loss function. The initial guess is 10 p1 , the 

number of replicates is 20, and the number of iterations in each replicate is 10,000. We 

see that these settings are the same as that in Section 4.3, then for the Bernoulli case we 

pick the same set of coefficients (practical selection), which is 0.501, A = 1000, a = 

0.05.  For non-Bernoulli case, we pick the coefficients also based on the guidelines in 

Section 3.3. Similar to the Bernoulli case, for the non-Bernoulli case, we set A = 1000. 

For practical selection of , we choose 0.501 . After computing some values of 

0 0
ˆˆ ( )g , we see that the largest of the mean values of the magnitudes of the components 

in 0 0
ˆˆ ( )g  is approximately 45. Suppose we want the elements of  move by a 

magnitude of 0.05 in the early iterations. Then, for the practical selection, a = 0.0354 is 

according to 0.5010.0354 1001 45  0.05. 

Therefore, we do the numerical test by using the coefficients 0.501, A = 1000, a = 

0.05 for Bernoulli 1  and 0.501 , A = 1000, a = 0.0354 for the non-Bernoulli 

distribution (uniform { 1, 3}). In Figures 4.12 and 4.13, we find by using the non-

Bernoulli distribution, we also can get a convergent sequence. However, we see that the 

Bernoulli 1  can provide better performance for this high-dimensional separable loss 

function in terms of both criteria * *
0

ˆ ˆ
k  and * *

0
ˆ ˆ[ ] [ ]k . Of 

course, these results do not necessarily indicate similar comparative performance using 

different loss functions. We further discuss the choice of distribution for the simultaneous 

perturbation vector  as the future research direction in Chapter 8. 
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Figure 4.12 Performance of DSPSA by using different distributions for the perturbation 

vector k  on the high-dimensional separable loss function. The non-Bernoulli 

distribution (uniform { 1, 3}) provides convergent performance. The Bernoulli 1 

provides better performance for the separable loss function in terms of the criterion 

* *
0

ˆ ˆ
k . Each curve represents the sample mean of 20 independent replicates. 
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Figure 4.13 Performance of DSPSA by using different distributions for the perturbation 

vector k  on the high-dimensional separable loss function. The non-Bernoulli 

distribution (uniform { 1, 3}) provides convergent performance. The Bernoulli 1 

provides better performance for the separable loss function in terms of the criterion 

* *
0

ˆ ˆ[ ] [ ]k .  Each curve represents the sample mean of 20 independent 

replicates. 
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Chapter 5 

Formal Comparison of Convergence 

Rates of DSPSA and Two Random 

Search Algorithms 

 

In this chapter, we first present some basic results of two random search type 

algorithms (stochastic ruler algorithm and stochastic comparison algorithm). Then, we 

calculate the rate of convergence in the big-O sense for these two random search 

algorithms. At last, we do the comparison of the rate of convergence of DSPSA and two 

random search type algorithms theoretically. 

 

 



129 
 

5.1 Introduction 

    As we discussed in the Section 1.2.2, there are three main classes of algorithms 

designed for the discrete stochastic optimization problem: random search class, statistical 

class, and stochastic approximation class. Based on the literature review in Chapter 1, we 

see that many algorithms belong to the class of random search type algorithms. Random 

search type algorithms provide convergent sequences, and many theoretical results on 

them are available. However, the statistical class of algorithms does not provide a 

sequence that converges to the optimal solution. Meanwhile, the stochastic approximation 

class does not contain many existing algorithms, and the theoretical results of the 

stochastic approximation class are not well developed.  

Stochastic ruler (SR) algorithm and stochastic comparison (SC) algorithm are two 

basic representatives of random search algorithms. Andradottir’s (1999) idea, discussed 

in Section 1.2.2.2, is a modification of basic random search type algorithms, according to 

which all of the old information is stored and used to pick the current optimal point. For 

other random search algorithms, such as COMPASS (discussed in Section 1.2.2.2) and 

locally convergent random-search algorithm, they are also the extensions of basic random 

search type algorithms, but they are much more complicated than the basic ones. These 

extensions improve the performance of basic random search type algorithms for some 

specific kinds of problems, but at the same time the simplicities of the original algorithms 

are sacrificed. As we know, DSPSA is a simple algorithm, and we can also modify it to 

improve the performance, such as storing old information. Here we choose SR algorithm 

and SC algorithm as two representatives of the basic random search type algorithms, and 
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compare them with DSPSA. In addition, as far as we know there is no generally accepted 

criterion for the comparisons of different discrete stochastic optimization algorithms, 

because different algorithms use different rate of convergence measurements. However, 

for each convergent algorithm of discrete stochastic optimization problem, we know 

*ˆ([ ] ) 0kP , where [ ]  is the round operator, so we consider the rate at which 

*ˆ([ ] )kP  goes to 0 as the basis of comparisons for the three algorithms. For the SR 

algorithm and the SC algorithm, ˆ{ }k  is composed of multivariate integer points, so ˆ[ ]k  

= ˆ
k . In the following analysis on the rate of convergence of the SR algorithm and SC 

algorithm, we consider the criterion *ˆ( )kP  directly. 

 

5.2 Stochastic Ruler Algorithm 

    Yan and Mukai (1992) introduce the SR algorithm. The idea of this algorithm is to 

change the minimization problem into a particular maximization problem. A stochastic 

ruler ,u vU  is defined for this algorithm, and ,u vU  is a random variable uniformly 

distributed over the interval [ , ]u v . Yan and Mukai (1992) change the original problem of  

 min ( ( ))E y  

to the maximization problem  

 ,max ( ) u vP y U . 
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    By Theorem 3.1 in Yan and Mukai (1992), the authors show that there exist real 

numbers u and v , such that u v  and for any u u  and v v , the following results 

hold: 1) if ( )E y  < ( )E y , then ,( ) u vP y U  > ,( ) u vP y U  for any 

, ; 2) 0 < ,( ) u vP y U  < 1 for all . The first result of Theorem 3.1 in 

Yan and Mukai (1992) indicates that the optimal solution *  corresponding to the 

smallest value of *( ( ))E y  achieves the biggest value in probability ,( ) u vP y U . 

Here u and v are picked by the user, and the user can always pick very small value for u 

and very large value for v to make the condition of Theorem 3.1 in Yan and Mukai (1992) 

to be satisfied. In Yan and Mukai (1992), the authors indicate that if the noisy 

measurements of loss function are uniformly bounded, we can choose u as the lower 

bound of ( )y and choose v as the upper bound of ( )y . If the noisy measurements of 

loss function are not bounded, we can still pick finite values for u and v to make 0 < 

,( ) u vP y U  < 1 for all  (the second  result in Theorem 3.1 of Yan and Mukai, 

1992). However, the authors do not provide a clear guideline on the choice of u and v for 

general cases.  

 

5.2.1 Algorithm Description 

Before describing the algorithm, let us denote ( )N  as a set of neighbor points 

of , excluding  itself. For example, for the domain of p , the local neighbor of 
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1{ ,..., }pt t  may be ( )N =  1{ ,..., } 1 for allp
p i it t t t i  and we call it 

local square-ring neighbor of  . Meanwhile, the global square-ring neighbor of  may 

be defined as ( ) .pN Also we denote kM  as the maximum number of 

comparisons in the kth iteration, and kM  changes with iteration. Furthermore, for any 

 and ( )N , we define ( , )R  as the transition probability with ( , )R  > 0 

and 
( ) ( , )N R  = 1. In particular, given a current point , the probability to 

generate ( )N  as the possible candidate is ( , )R . For example, the simplest way 

to define ( , )R  is uniform distribution, i.e., ( , ) 1 ( )R N , where ( )N is the 

number of elements in ( )N .  

The basic description of the SR algorithm is:  

Step 1: Pick the initial guess 0
ˆ , k = 0. 

Step 2: Given ˆ
k , generate k

ˆ( )kN ˆ
k  according to the probability 

distribution ˆ( , )k kR (defined above). 

Step 3: Given k , set  

,
1

,

with probability ( )
ˆ

ˆ with probability1 ( ) ,

k

k

M
k k u v k

k M
k k u v k

P y U

P y U
 

where the values of u and v are picked by the user based on their experience, 

and the values of u and v are fixed during the whole process of the algorithm. 
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Step 4: Replace k with k+1, and go to step 2. 

    The implementation of Step 3 in the SR algorithm can be accomplished by generating 

a noisy measurement of the loss function ( )ky , and a uniformly distributed random 

variable ,u vU . If ( )ky  > ,u vU , then set 1
ˆ ˆ

k k ; otherwise generate another noisy 

measurement of loss function ( )ky  and another uniform distributed random variable 

, ,u vU and continue the comparison. If ( )ky   ,u vU  in all kM  comparisons, then we 

accept the candidate and set 1
ˆ

k k . Conditional on k , these comparisons are 

independent. Therefore, given k , the probability that ( )ky   ,u vU  in all kM  

comparisons is ,( ) kM
k u v kP y U . Overall, the implementation of the algorithm is 

to do at most Mk comparisons between the noisy observations at point k  and the 

stochastic ruler in the kth iteration. If one of the comparisons shows that ,u vU  is smaller, 

then 1
ˆ

k  = ˆ
k ; otherwise the current point ˆ

k  will be replaced by k . Suppose ( )i ky  

is the ith noisy measurement at point k  and ( )
,
i

u vU  is the ith simulation result of the 

uniform distributed stochastic ruler, then in short we have  

 
( )
,

1
if ( ) 1,...,ˆ

ˆ otherwise.

i
k i k u v k

k
k

y U i M
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5.2.2 Convergence Properties 

    In Yan and Mukai (1992), the authors consider the case where  contains a finite 

number of points (i.e.,  is bounded).  In their paper, they show that when Mk is fixed 

(Mk  = M ) for all iterations, which means the maximum number of comparisons does not 

change with the number of iteration, the sequence ˆ
k  generated by the algorithm 

produces a stationary Markov chain. Suppose ( )M  is the stationary probability 

distribution vector conditioned on the value of M when k ( )M  

equals the number of points in the bounded domain . For each   , the 

corresponding component of ( )M  is  

 
,

,

( )ˆ( ) lim
( )

M
u v

k Mk
u v

P y U
M P M

P y U
. 

Theorem 6.1 of Yan and Mukai (1992) shows that when M , the probability vector 

( )M  converges to the probability distribution * , where each component of *  is 

 
*

* *
1 ifˆlim ( ) | |

0 otherwise,
kk

P  

where * is the set of optimal points, and *| |  represents the number of points in *. 

    Furthermore, in Theorem 7.2 of Yan and Mukai (1992), the authors provide a 

convergence theorem for the case with Mk = 0log (1 )c k k  (not fixed at one value 
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M). Suppose r = min max ,d , where ,d  is the distance between  and 

, which is defined as the minimum length of path from  to  (the length of path 

from  to  is defined as the number of edges on the path, and ,d  is an integer). 

Here r describes the radius of the graph of the domain. The constraints for , c, and 0k  

in the definition of Mk are set as  ,1 min ( ( ) )u vP y U (by conclusion (2) of 

Theorem 3.1 in Yan and Mukai, 1992, they show that 0 < ,( ( ) )u vP y U  < 1), 0 < c  

1 r , and 0log ( 1)c k   1. The authors show that when Mk = 0log (1 )c k k , under 

the constraints on the coefficients ( , c, and 0k ), the sequence ˆ
k  generated by the SR 

algorithm converges in probability  

*ˆlim ( ) 1kk
P . 

In addition, suppose the vector ˆ( )k k  (with each component being ˆ( )kP ) is the 

probability distribution for ˆ
k  in the kth iteration for non-fixed Mk case.  In Theorem 8.1 

of Yan and Mukai (1992), the authors show that for this inhomogenous  Markov chain 

(i.e., time varying transition matrix), *ˆ( )k k (1 )hO k  (a geometric convergence 

rate is for homogenous Markov chains (Spall, 2003, Theorem E.1)), where h > 0 is 

determined by the transition probabilities, domain , coefficients c and , and value of 

,max ( ) u vP y U  .  
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5.3 Stochastic Comparison Algorithm 

    Gong et al. (1999) discuss the SC algorithm, and the idea is also to change the 

minimization problem  

 min ( ( ))E y  

to a maximization problem  

 
( )

max ( ( ) ( ))
N

P y y , 

where ( )N  = . In Assumption 3.1 of Gong et al. (1999), the authors suppose that 

the noises in the measurements of the loss function are i.i.d. and have symmetric 

distribution with mean 0. Furthermore, in Theorem 3.1 of Gong et al. (1999), the authors 

show that under Assumption 3.1 of Gong et al. (1999), the optimal solution for the 

minimization problem can achieve highest value for the related maximization problem 

above. 

 

5.3.1 Algorithm Description  

    In Gong et al. (1999), the authors only consider global square-ring neighborhood 

structure ( )N  = . The authors state: “While a good neighborhood structure can 

speed up the search process of algorithms like SR, a poor neighborhood structure can hurt 

performance.” Thus, Gong et al. (1999) eliminate the use of a neighborhood structure. In 
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the SC algorithm, kM  is still the maximum number of comparisons in the kth iteration, 

and  kM  changes with iteration. Furthermore, for any  and ( )N , let ( , )R  

be the transition probability to generate  as possible candidate with ( , ) 0R  and 

( ) ( , )N R  = 1. The basic description of the SC algorithm is quite similar to the SR 

algorithm: 

Step 1: Pick the initial guess 0
ˆ , k = 0. 

Step 2: Given ˆ
k , generate k

ˆ( )kN = ˆ
k according to the probability 

distribution ˆ( , )k kR (defined above). 

Step 3: Given k , set  

1

ˆ ˆwith probability ( ) ( ) ,
ˆ

ˆ ˆ ˆwith probability 1 ( ) ( ) , .

k

k

M
k k k k k

k M
k k k k k

P y y

P y y
 

Step 4: Replace k with k +1, and go to step 2. 

    The implementation of Step 3 of the SC algorithm can be accomplished by first 

generating the pair of noisy measurements of the loss function, ( )ky  and ˆ( )ky . If 

( )ky  > ˆ( )ky , then set 1
ˆ ˆ

k k ; otherwise, given ˆ
k  and k , generate another 

independent pair of noisy measurements of loss function ( )ky  and ˆ( )ky , and continue 

the comparison. If in all kM  comparisons ( )ky   ˆ( )ky , then we accept the candidate 

and set 1
ˆ

k k . Overall, given k  and ˆ
k , the implementation of the algorithm is to do 
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at most Mk conditionally independent comparisons between the noisy observations at 

points k  and ˆ
k . If one of the comparisons indicates that ˆ( )ky is smaller, then 

1
ˆ ˆ

k k ; otherwise the current point ˆ
k  will be replaced by k . Suppose ( )i ky  and 

ˆ( )i ky  are the ith noisy measurement at point  k  and ˆ
k  , then in short we have  

 1

ˆif ( ) ( ) 1,...,ˆ
ˆ otherwise.

k i k i k k
k

k

y y i M
 

 

5.3.2 Convergence Properties 

    In Gong et al. (1999), the authors consider the case where  contains finite points (i.e., 

 is bounded), and the authors show the convergence properties in their Theorem 5.1. 

They suppose  , \1 min ( ( ) ( ))P y y , 0 < c  1, 0log (1 )c k   1. Under 

these assumptions, when Mk = 0log (1 )c k k , Gong et al. (1999) show that the 

sequence ˆ
k  generated by the SC algorithm is a strongly ergodic inhomogeneous 

Markov chain, and  

*ˆlim ( ) 1kk
P , 

where *  is the set of optimal points. However, Gong et al. (1999) do not provide a 

formal rate of convergence analysis, and they only do some numerical experiments to 



139 
 

compare the performance of the SR algorithm and the SC algorithm. In the following, we 

present a rate of convergence analysis for both SR algorithm and SC algorithm. 

 

5.4 Rate of Convergence Analysis and 

Comparison 

    In this section, we derive a rate of convergence for both the SR algorithm and the SC 

algorithm. From the description of Section 5.2.1 and Section 5.3.1, we see that these two 

algorithms have similar descriptions. Therefore, in the following, first we provide a 

general form of algorithm description for these two algorithms (the general form might 

also represent other random search type algorithms), second we discuss the rate of 

convergence result for the general form in Theorem 5.1, and last we consider the rate of 

convergence results of the SR and the SC separately in Corollary 5.1 and Corollary 5.2. 

We can describe the general form of these two algorithms as: 

Step 1: Pick the initial guess 0
ˆ , k = 0. 

Step 2: Given ˆ ,k  generate k
ˆ( )kN ˆ

k  according to the probability 

distribution ˆ( , )k kR . 
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Step 3: Given k , set  

 1

ˆwith probability ( , )
ˆ

ˆ ˆwith probability1 ( , ) ,

k

k

M
k k k

k
M

k k k

p

p
 

where kM  = 0log (1 )c k k , ˆ( , )k kp  = ,( )k u v kP y U  for the SR 

algorithm, and ˆ ˆ ˆ( , ) ( ) ( ) ,k k k k k kp P y y  for the SC algorithm. 

Step 4: Replace k with k +1, and go to step 2. 

    In the following, we state Theorem 5.1, and this theorem provides an upper bound on 

the rate of convergence of *ˆ( )kP . The rate of convergence describes the 

asymptotical performance of the algorithm, so the result is only related to loss function 

information in the neighbor of the optimal solution.   

    Theorem 5.1. 

domain , if (i) the sequence ˆ{ }k  generated by the algorithm convergences to the 

optimal point * , *ˆlim 1k kP ; (ii) for all    and   ( )N   , 

we have that 
( ) ( , )N R  = 1, ( , )R  > 0, and 0 < ( , )p  < 1; and (iii) kM  = 

0log (1 )c k k , c > 0,  > 1, and 0log (1 )c k   1. Then  

*
*( )

log 1 max ( , )

*log( ) ˆ
N

c p

kk O P , 
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where *( )N *  and the base of logarithm here is e (natural logarithm), which 

means *ˆ
kP (i.e. *ˆ1 ( )kP ) goes to 0 at a rate not faster than the rate at which 

*
*( )

log 1 max ( , ) log( )
N

c p
k  goes to 0. 

    Remarks: 

    1. In Theorem 5.1, our purpose is to calculate the bound of the rate of convergence of 

the algorithm under the condition (i): *ˆlimk kP  = 1. The condition for the 

coefficients of kM  (condition (iii)) is weaker than that in the SR algorithm (discussed in 

Section 5.2.2) and that in the SC algorithm (conditions are discussed in Section 5.3.2), 

because here we have already assumed that the sequence generated by the algorithm 

converges to the optimal solution. However, the conditions of the coefficients in SR and 

SC are still needed in Corollaries 5.1 and 5.2 to show that the sequences generated by the 

algorithms SR and SC converge to the optimal solution.   

    2. The value of 0k  is used to make the number of comparison in each iteration not to 

be smaller than 1. As k , the effect of 0k  disappears. 

    3. The value of c affects the increase rate of kM . If we pick relatively small value for c, 

then kM  goes to  at a slow speed, and if we pick relatively large value for c, then kM

goes to  at a fast speed. Thus, the value of c affects the rate of convergence.   

    4. The value of  also affects the increase rate of kM . If we pick relatively small 

value for , then kM  goes to  at a fast speed, and if we pick relatively large value for 
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, then kM  goes to  at a slow speed. Thus, the value of affects the rate of 

convergence.   

     Proof.  By law of total expectation, we have 

 

* * * *
1 1

* * *
1 1

* * *
1 1

* * *
1 1

* *
1

* * * * *
1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ1

ˆ ˆ ˆ1

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ1 .

k k k k

k k k

k k k

k k k

k k

k k k k k

P P P

P P

P P

P P

P

P P P

 

 

 

 

 

 

(5.1) 

In the following, we will show that the multiplier of *
1

ˆ
kP  on the right-hand side 

of eqn. (5.1) is positive when k is big enough, which implies *ˆ
kP  is a positive 

combination of * *
1

ˆ ˆ
k kP  and *

1
ˆ

kP . Since any positive combination 

of * *
1

ˆ ˆ
k kP  and *

1
ˆ

kP  goes to 0 at a rate not faster than 

* *
1

ˆ ˆ
k kP  and *

1
ˆ

kP  individually, it implies that *ˆ
kP  goes to 

0 at a rate not faster than the rate at which  * *
1

ˆ ˆ
k kP  goes to 0, which means

* *
1

ˆ ˆ
k kP  = *ˆ

kO P .  
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    Now let us start the proof by considering the values of * *
1

ˆ ˆ
k kP and 

* *
1

ˆ ˆ
k kP  separately. By the law of total expectation, we have   

 
*

*

* * *
1 1

( )

* *

( )

ˆ ˆ ˆ ˆ

( , ) ( , ) .k

k k k k
N

M

N

P P

R p
 

 

(5.2) 

Because Mk = 0log (1 )c k k , we have 0log (1 )c k k 1 < Mk  0log (1 )c k k , 

which indicates that  

 0 0log (1 ) log (1 ) 1* * *( , ) ( , ) ( , )kc k k M c k kp p p . (5.3) 

    We discuss the rate of convergence of *( , ) kMp  through the lower and upper bounds 

in inequality (5.3). In addition, due to the assumption:  0 < *( , )p  < 1, we have 

 

*

0
0

*
0
*

*
0( , )

log(1 )log (1 )
log( )

log ( , )log(1 )
log( )log ( , )

log (1 ) log ( , ) ,
p

k kk k

pk k
p

k k p

 

and it follows that  

 
*( , )

*
0

0

*

log (1 ) log ( , )
log (1 )* *

log ( , )
0

( , ) ( , )

1 .

p
c k k p

c k k

c p

p p

k k
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Therefore, inequality (5.3) can be written as  

 
* *log ( , ) log ( , )*

0 0*
11 ( , ) 1

( , )
kc p c pMk k p k k

p
. (5.4) 

Since  > 1, c > 0, and *0 ( , ) 1p , then we have *log ( , )c p  < 0. Therefore, 

*log ( , )
01 c pk k  goes to 0 as k , implying from inequality (5.4) that

*( , ) kMp  goes to 0 as fast as 
*log ( , )

01 c pk k  goes to 0. 

    Furthermore, since *
*

( ) ( , )N R  = 1, *( , )R  > 0 for all *( )N , and *( )N  

contains finite points, then through eqn. (5.2) we know * *
1

ˆ ˆ
k kP  is a 

positive finite combination of all *( , ) kMp  over *( )N  at each k, which indicates 

that * *
1

ˆ ˆ
k kP  goes to 0 at the lowest rate among all rates at which 

*( , ) kMp  goes to 0 for all *( )N (note that the multipliers in the finite combination 

are not dependent on k). The lowest rate of all *( , ) 0kMp  for *( )N  is the same 

as the rate at which 
*

*( )
log max ( , )

01 N
c pk k  goes to 0. Therefore, there exist 

c  > 0, c  > 0, and c c   such that for all k large enough 

   *
*( )

* *
1

log max ( , )

ˆ ˆ

N

k k

c p

P
c c

k

. (5.5) 
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    We can derive similar arguments for * *
1

ˆ ˆ
k kP . Here  

*

*

* * * * *
1 1 1 1 1

* *
1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ,

k k k k k k k

k k k k

P P P

P P
 

and for each * , if * ( )N , then  

* * *
1

ˆ ˆ ( , ) ( , ) kM
k kP R p , 

and if * ( )N , then *
1

ˆ ˆ 0k kP , which indicates that 

 * *

* *

* *
1

* * *
1 1

, ( )

* * *
1 1

, ( )

ˆ ˆ

ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , ) .

k

k

k k

M
k k

N

M
k k

N

P

R p P

R P p

 

 

 

(5.6) 

Similar to the proof of the rate of convergence for *( , ) kMp  in the last three paragraphs, 

we have *( , ) 0kMp . Furthermore, by eqn. (5.6), we know * *
1

ˆ ˆ
k kP  

equals a nonnegative finite combination of *( , ) kMp , implying * *
1

ˆ ˆ
k kP  

 0.  
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    Overall, from the proof above, we know that * *
1

ˆ ˆ 0k kP and 

* *
1

ˆ ˆ 0k kP  as k * *
1

ˆ ˆ
k kP  

* *
1

ˆ ˆ 1k kP . Therefore, by eqn. (5.1), we know for k large enough, 

*ˆ
kP  is a positive combination of * *

1
ˆ ˆ

k kP  and *
1

ˆ
kP , which 

indicates that *ˆ
kP  goes to 0 at a rate not faster than the rate of convergence of  

* *
1

ˆ ˆ
k kP  to 0 (shown in inequality (5.5)), which is equivalent to  

*
*( )

log 1 max ( , )

*log( ) ˆ
N

c p

kk O P , 

Therefore, we have shown the result on the convergence rate of *ˆ
kP . Q.E.D. 

     Corollaries 5.1 and 5.2 below apply the general theorem above to the special cases of 

the SR algorithm and the SC algorithm.  

    Corollary 5.1. For the SR algorithm, if (i) * = *{ }; (ii) for all    and   

( )N , we have that ( ) ( , )N R =1, ( , )R > 0, and 0 < ,( ) u vP y U  < 

1; and (iii) kM  = 0log (1 )c k k , 0 < c  1 r ,  ,1 min ( ( ) )u vP y U , and 

0log (1 )c k   1. Then 
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* ,( )
log 1 max ( )

*log( ) ˆ
u vN

c P y U

kk O P , 

which means *ˆ
kP  goes to 0 at a rate not faster than the rate at which  

* ,( )
log 1 max ( )

log( )

u vN
c P y U

k  

goes to 0. 

    Remarks:  

    1. For the SR algorithm, u and v can be picked properly to make the assumption 0 < 

,( ) u vP y U  < 1 to be true (shown in Theorem 3.1 of Yan and Mukai, 1992). 

    2. The value of r in condition (iii) is defined in Section 5.2.2. 

    Proof. For the SR algorithm and any , , ,p  = ,( ) u vP y U , which 

does not rely on the value of . From the Theorem 7.2 of Yan and Mukai (1992), by 

condition (i), (ii) and (iii) here, we have that the sequence ˆ
k  generated by the SR 

algorithm converges in probability  

*ˆlim 1kk
P , 

which indicates that the condition (i) in Theorem 5.1 is true here.   
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    Moreover, since ,0 ( ( ) ) 1u vP y U , then   ,1 min ( ( ) )u vP y U  > 1, then 

the condition (iii) here implies that the condition (iii) in Theorem 5.1 is true here. Then 

all conditions in Theorem 5.1 are true here, and consequently we have 

* ,( )
log 1 max ( )

*log( ) ˆ
u vN

c P y U

kk O P , 

which means *ˆ
kP  goes to 0 at a rate not faster than the rate at which 

* ,( )
log 1 max ( )

log( )

u vN
c P y U

k  

goes to 0. We have shown the result on the convergence rate of *ˆ
kP  for the SR 

algorithm.  Q.E.D. 

    Corollary 5.2. For the SC algorithm, if (i) *  = *{ }; (ii) for all    and  

( )N , we have that ( ) ,N R = 1, ( , )R > 0, and 0 < ( ) ( )P y y  < 

1; (iii) kM  = 0log (1 )c k k , 0 < c  1,  , ( )1 min N P y y , and 

0log (1 )c k  1. Then 

*
*( )

log 1 max ( ( ) ( ))

*log( ) ˆ
N

c P y y

kk O P , 

which means *ˆ
kP  goes to 0 at a rate not faster than the rate at which 
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*
*( )

log 1 max ( ( ) ( ))

log( )
N

c P y y

k  

goes to 0. 

    Remark: For Gaussian noise case, we always have 0 < ( ) ( )P y y  < 1 for all

, , . 

    Proof. For the SC algorithm and any , , ,p  = ( ) ( )P y y . From the 

Theorem 5.1 of Gong et al. (1999), by condition (i), (ii) and (iii) here, we have that the 

sequence ˆ
k  generated by the algorithm converges in probability  

*ˆlim 1kk
P , 

which indicates that the condition (i) in Theorem 5.1 is true here. Moreover, since 0 <

( ) ( )P y y < 1, then we have that  , ( )1 min N P y y  > 1, then 

the condition (iii) here implies that the conditions (iii) in Theorem 5.1 is true. Then all 

conditions in Theorem 5.1 are true here, and consequently we have 

*
*( )

log 1 max ( ( ) ( ))

*log( ) ˆ
N

c P y y

kk O P , 

which means *ˆ
kP  goes to 0 at a rate not faster than the rate at which 

*
*( )

log 1 max ( ( ) ( ))

log( )
N

c P y y

k  
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goes to 0. We have shown the result on the convergence rate of *ˆ
kP  for the SC 

algorithm.  Q.E.D.    

    Let  

* ,( )
log 1 max ( )

log( )

u vN
SR

c P y U
, 

*
*

( )
log 1 max ( ( ) ( ))

log( )
N

SC

c P y y
, 

and now we discuss some properties of the exponent SR  and SC . For the SR algorithm, 

we have  ,1 min ( ( ) )u vP y U  and 0 < c  1 r , so the exponent can be bounded 

as 

* ,( )

,

log 1 max ( )
0

log 1 min ( )

u vN
SR

u v

c P y U

P y U
 

Since ,min ( ) u vP y U  * ,( )
max ( ) u vN

P y U , and 0 < c  1 r 1, then 

we have that the range of the exponent SR  is (0,1]. Similarly for the SC algorithm, we 

have  , \1 min P y y  and 0 < c  1, then the exponent has lower 

and upper bounds as 

*
*

( )

, ( )

log 1 max ( ( ) ( ))
0 1

log 1 min
N

SC
N

c P y y

P y y
. 
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Therefore, we have that the range of the exponent SC  is (0,1].  

    From the discussion in Section 3.1.2, we have *ˆ([ ] ) ( )kP O k . Overall, we 

have the comparative rates of convergence for DSPSA, SR, and SC summarized in Table 

5.1. For SR and SC, we have ˆ ˆ[ ]k k . In Table 5.1, we have *ˆ([ ] ) ( )kP O k , 

0.5 < 1 for DSPSA, SRk = *ˆ( ([ ] ))kO P , 0 < SR 1 for SR, and SCk  = 

*ˆ( ([ ] ))kO P , 0 < SC   1 for SC, which indicates that SR and SC cannot achieve 

higher rate of convergence than DSPSA. 
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Table 5.1 Analysis of rates of convergence to 0 for *ˆ([ ] )kP  in DSPSA, stochastic 

ruler, and stochastic comparison. For SR and SC, we have ˆ ˆ[ ]k k .  

Method 

Name 
Analysis of Rate of Convergence of *ˆ([ ] )kP   

DSPSA 
*ˆ([ ] ) ( )kP O k  

0.5 1 

SR 

*ˆ( ([ ] ))SR
kk O P , 

* ,( )
log 1 max ( )

log( )

u vN
SR

c P y U
 

  ,1 min ( ( ) )u vP y U , 0 < c  1 r , 

 0 1SR  

SC 

*ˆ( ([ ] ))SC
kk O P , 

*
*

( )
log 1 max ( ( ) ( ))

log( )
N

SC

c P y y
 

  , \1 min P y y , 0 1c , 

0 1SC  

 

    The forms of the rates of convergence of the SR algorithm and the SC algorithm in 

Table 5.1 seem complicated, so now let us use two very simple examples to see the rates 

clearly. Let us consider two-dimensional separable quadratic function 2 2
1 2t t  in the 

domain of 2{ 1, 0,1}  and suppose the noises  are i.i.d. (0,1)N . For the SR algorithm, 
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based on the function structure and our experience, we let u  = 0 and v  = 2. Then, we 

have that * ,( )
max ( ) u vN

P y U = 0,2( (1,0) )P y U  0.5, and 

,1 min ( ) u vP y U  = 0,21 ( (1,1) )P y U  5.13. Moreover, by the definition of r in 

Section 5.2.2, we have r = 1, then 0 < c  1 r =1. Thus, the exponent SR  is smaller than 

or equal to 0.4244. Similarly, for the SC algorithm, *( )
*max ( ) ( )

N
P y y  = 

( (1,0) (0,0))P y y 0.24,  , ( )1 min ( ( ) ( ))N P y y  = 1 ( (1,1) (0,0))P y y  

 12.82. Thus, the exponent SC  is smaller than or equal to 0.561. We see that for this 

simple loss function, the values of the exponent for both SR and SC can not achieve the 

upper bound 1. 

    The other loss function is a two-dimensional function: 1 2max(| |,| |)t t  defined in the 

domain of 2{ 1, 0,1}  and suppose the noises  are i.i.d. (0,1)N . The loss function value 

equals 0 at the point (0, 0) and equals 1 at all the other points. For the SR algorithm, 

* ,( )
max ( ) u vN

P y U  = ,min ( ) u vP y U for this simple loss function. 

Moreover, by the definition of r in Section 5.2.2, we have r = 1, then 0 < c  1 r =1. 

Thus, the exponent SR  can achieve the upper bound 1. Similarly for the SC algorithm, 

we have that *( )
*max ( ) ( )

N
P y y  = , ( )min ( ) ( )N P y y for this 

simple loss function. Thus, the exponent SC  can achieve the upper bound 1. We see that 
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for this simple loss function, the values of the exponent for both SR and SC can achieve 

the upper bound 1. 

Moreover, for the SR algorithm, it has other properties as following: 1) If the feasible 

region is very large, then we have a large value for r, which leads to a small value for c. 2) 

The choice of is heavily based on the structure of the loss function. 3) The choices of u 

and v are not trivial. These coefficients directly affect the rate of convergence of the 

algorithm, but it is hard to control them. For the SC algorithm, we have similar arguments 

as the SR algorithm. The choice of  is still heavily based on the structure of the loss 

function. It is also hard to figure out the value of ,  since the structure of the loss 

function may not be clear. Compared with the SR algorithm and the SC algorithm, the 

rate of convergence of DSPSA in the big-O sense is just based on the choice of , which 

is independent on the structure of the loss function. In addition, as we have discussed, for 

SR  and SC , we have 0 < SR   1 and 0 < SC   1, and for , we have 0.5 <   1. 

Therefore, from Table 5.1, we know that SR and SC can not achieve higher rate of 

convergence than DSPSA in the big-O sense. But the real performance of DSPSA is still 

based on the structure of the loss function, since the constant multiplier of k  is 

different for various kinds of loss functions. 
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Chapter 6 

Numerical Comparison of DSPSA and 

Random Search Algorithms 

 

In Chapter 5, we have introduced the SR algorithm and the SC algorithm and 

discussed some convergence properties of both algorithms. We have also compared the 

rate of convergence of DSPSA, SR and SC theoretically in the big-O sense. In this 

chapter, we present numerical experiments on the comparisons of DSPSA, SR and SC. 

First we discuss the choice of coefficients in the maximum number of comparisons in 

each iteration for both the SR algorithm and the SC algorithm. Then, we consider the 

comparisons of the three algorithms for the separable loss function and the skewed 

quartic loss function. 
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6.1 Choice of Coefficients in the Maximum 

Number of Comparisons for Random Search 

Algorithms 

 In both Yan and Mukai (1992) and Gong et al. (1999), the authors do not discuss the 

choice of coefficients in kM  (maximum number of comparisons in the kth iteration) for 

the SR algorithm and the SC algorithm. Therefore, before running the SR algorithm and 

the SC algorithm, we need to determine the values of the coefficients of kM  for both 

algorithms. For the SR algorithm, besides the coefficients, we also need to pick the lower 

and upper bounds of the uniform distribution for the stochastic ruler.   

In both algorithms Mk = 0log (1 )c k k . In order to set the value for kM , we need 

to determine the values of the coefficients c,  and 0k . In Yan and Mukai (1992), the 

authors require that in the SR algorithm  ,1 min ( ( ) )u vP y U , 0 < c  1 r , and 

0log (1 )c k   1. In Gong et al. (1999), the authors require that in the SC algorithm 

 , \1 min P y y , 0 1c , 0log (1 )c k   1. These constraints are 

sufficient (not necessary) conditions that are mainly used for the proof of convergence of 

the algorithms, and we call these sufficient conditions as the “coefficients constraints.” In 

the numerical tests of Gong et al. (1999), the authors do not obey the coefficients 

constraints. In the following, we discuss both the coefficients set that satisfies the 

constraints and the coefficients set that does not satisfy the constraints. Later we will see 



157 
 

that after relaxing the coefficients constraints, we can yield better performance. Since we 

want to compare the SR algorithm and SC algorithm with DSPSA numerically, we try to 

find the coefficients sets that are as good as possible for the SR algorithm and the SC 

algorithm. In Yan and Mukai (1992) and Gong et al. (1999) the authors do not provide 

any guidelines on the coefficients selection, so it is very hard to find the optimal 

coefficients. Therefore, we just try our best to pick some reasonable sets of coefficients 

for SR and SC to do the comparisons. 

First we use a simple numerical example discussed in Section 5.4 to see how the 

performance of both SR and SC can be improved by relaxing the coefficients constraints. 

The loss function is a two-dimensional separable function 2 2
1 2( )L t t  in the domain of 

2{ 1, 0,1} . Suppose the noises  are i.i.d. (0,1)N . Here for both SR and SC algorithms, 

the neighborhood of  is ( ) \N .  

For the SR algorithm, based on the loss function, we set u = 0 and v = 2. Under the 

coefficients constraints, we require that  1 min ( , , )P u v  = 0,21 ( (1,1) )P y U  

5.13. We also need to have 0 < c  1 r , 0log (1 )c k   1. Here by the definition of r in 

Section 5.2.2, we have the radius of the domain r = 1, so 0 1c . The initial guess is set 

as 0
ˆ = [1, 1]T and the optimal solution is [0, 0]T. The number of replicates is 20, and the 

number of noisy measurements in each replicate is 20,000. The results of the tuning 

process are shown in Table 6.1. We list different sets of coefficients that satisfy the 

coefficients constraints and the final errors are shown in terms of both sample mean of 
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* *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L , where the 

sample mean is the arithmetic mean of the observed values across 20 replicates and q is 

the number of iterations when the SR algorithm hits 20,000 noisy measurements in each 

replicate (q is a random variable). Overall, the final errors are not 0 for all sets of 

coefficients, and the first coefficients set provides the smallest final error in terms of both 

criteria among all sets in Table 6.1. 

 

Table 6.1 Performance of the SR algorithm with different sets of coefficients that satisfy 

the coefficients constraints for the two-dimensional separable loss function. The first set 

of coefficients provides the smallest final error in terms of both sample mean of 

* *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L  among all sets 

in the table. The number of replicates is 20 and the number of noisy measurements of loss 

function in each replicate is 20,000. 

c  0k  

Sample Mean of
*

*
0

ˆ

ˆ
q

 

Sample Mean of
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

1 5.13 100 0.1061 0.075 

0.8 5.13 100 0.2475 0.175 

1 10 100 0.3889 0.275 

1 5.13 10 0.2475 0.175 

1 5.13 1000 0.3182 0.225 

  



159 
 

    Now we start to consider the case where we may violate the coefficients constraints, 

 ,1 min ( ( ) )u vP y U  and 0 < c  1 r (the other constraint 0log (1 )c k 1, 

cannot be relaxed, because this constraint makes kM  to be at least 1 in each iteration). 

First we relax the constraints, 0 < c  1 r  and  ,1 min ( ( ) )u vP y U   into the 

constraints, c > 0 and  > 1. We call the constraints,  > 1, c > 0, and 0log (1 )c k   1 

as the “relaxed coefficients constraints.” It is clear that the relaxed coefficients constraints 

are weaker than the coefficients constraints, which means the coefficients that satisfy the 

coefficients constraints also satisfy the relaxed coefficient constraints. Since Mk = 

0log (1 )c k k ,  we have  

0log(1 )
log( )k

cM k k . 

We see that both c and  affect the rate at which Mk increases and 0k  affects the value of 

Mk in the early iterations. Many sets of c and  can provide the same value of log( )c . 

For example, we see both 1c , 4  and 0.5c , 2  generate the same value for 

log( ) 1 log4c . Thus, we can set 1c  and only change the value of . In Table 6.2, 

we try different sets of coefficients that satisfy the relaxed coefficients constraints. From 

Table 6.2, we see that when we relax the coefficients constraints, the performance of the 

SR algorithm has been improved significantly. The final errors in terms of both sample 

mean of * *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L  are 0, 

where the sample mean is the arithmetic mean of the observed values across 20 replicates 
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and q is the number of iterations when the SR algorithm hits 20,000 noisy measurements 

in each replicate.  

 

Table 6.2 Performance of the SR algorithm with different sets of coefficients that satisfy 

the relaxed coefficients constraints for the two-dimensional separable loss function. 

When we relax the coefficients constraints, the performance of the SR algorithm has been 

improved significantly. The number of replicates is 20 and the number of noisy 

measurements of the loss function in each replicate is 20,000. 

c  0k  

Sample Mean of
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

1 1.5 100 0 0 

1 2 100 0 0 

1 1.5 10 0 0 

1 1.5 1000 0 0 

 

We pick the first set of coefficients in both Tables 6.1 and 6.2 and compare the 

performances of SR based on these two sets of coefficients. In Figure 6.1, we see that the 

performance based on the coefficients from Table 6.2 provides much better performance 

than that from Table 6.1, which indicates that relaxed coefficient constraints leads to 

significant better convergent performance. Compared with the coefficients constraints, 

the relaxed coefficients constraints allow us to pick smaller value for , which indicates 
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that kM  can increase faster. Thus, the relaxed constraints can handle the noise better for 

this two-dimensional separable loss function.  

 

 

 

 

 

 

 

 

 

Figure 6.1 Comparison for the SR algorithm between the best set of coefficients in Table 

6.1 that satisfies the coefficients constraints (dashed line) and the set in Table 6.2 that 

satisfies the relaxed coefficients constraints (solid line). After relaxing the coefficients 

constraints, the coefficients set provides better performance for the two-dimensional 

separable loss function. Each curve represents the sample mean of 20 independent 

replicates. 

 

For the SC algorithm, the sufficient conditions are , \1 min ( ( ) ( ))P y y  

= 1 ( (1,1) (0,0))P y y  12.82, 0 < c  1, 0log (1 )c k   1. The initial guess is set as 
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c = 1,  = 5.13, k0 = 100

 c =1,  = 1.5, k0 = 100
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0
ˆ = [1, 1]T. The number of replicates is 20, and the number of noisy measurements in 

each replicate is 20,000. We do the tuning process in Table 6.3. We list different sets of 

coefficients that satisfy the coefficients constraints and show the final errors in terms of 

both the sample mean of * *
0

ˆ ˆ
q  and the sample mean of 

* *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L , where the sample mean is the arithmetic mean of the 

observed values from 20 replicates and q is the number of iterations when the SC 

algorithm hits 20,000 noisy measurements in each replicate. Overall, the final errors in 

terms of both criteria above are not 0 for all sets, and the first set provides the smallest 

error in terms of both criteria. 
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Table 6.3 Performance of the SC algorithm with different sets of coefficients that satisfy 

the coefficients constraints for the two-dimensional separable loss function. The first set 

of coefficients provides the smallest final error among all sets in the table in terms of both 

sample mean of * *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L . 

The number of replicates is 20 and the number of noisy measurements of the loss 

function in each replicate is 20,000. 

c  0k  

Sample Mean of
*

*
0

ˆ

ˆ
q

  

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

1 13 2000 0.0354 0.025 

0.8 13 2000 0.2061 0.175 

1 20 2000 0.1061 0.075 

1 13 200 0.1768 0.125 

1 13 20000 0.1061 0.075 

 

Similarly, we discuss the case when we relax the coefficients constraints. We call the 

constraints:  > 1, c > 0, and 0log (1 )c k   1 as the “relaxed coefficients constraints.” 

By the same arguments as the SR algorithm, we keep the condition 0log (1 )c k   1, 

set 1c , and only change the value of . In Table 6.4, we do the tuning process. We list 

different sets of coefficients that satisfy the relaxed coefficients constraints, and show the 

final errors in terms of both the sample mean of * *
0

ˆ ˆ
q  and the sample mean 
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of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L , where the sample mean is the arithmetic mean of the 

observed values across 20 replicates and q is the number of iterations when the SC 

algorithm hits 20,000 noisy measurements in each replicate. From Table 6.4, we see that 

when we relax the coefficients constraints, the performance of the SC algorithm has been 

improved significantly. The final errors are all 0 in terms of both criteria. 

 

Table 6.4 Performance of the SC algorithm with different sets of coefficients after 

relaxing the coefficients constraints for the two-dimensional separable loss function. 

When we relax the sufficient conditions, the performance of the SC algorithm has been 

improved significantly. The final errors are all 0 in terms of both criteria. The number of 

replicates is 20 and the number of noisy measurements of the loss function in each 

replicate is 20,000. 

c  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

1 2 10 0 0 

1 3 10 0 0 

1 2 2 0 0 

1 2 100 0 0 

  

    We pick the first set of coefficients in both Tables 6.3 and 6.4 and compare the 

performance of SC based on these two sets of coefficients. In Figure 6.2, we see that the 
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performance based on the coefficients from Table 6.4 is much better than that from Table 

6.3. Compared with the coefficients constraints, the relaxed coefficients constraints allow 

us to pick smaller value for , which indicates that kM  can increase faster. Thus, we can 

handle the noise better. 

 

 

 

 

 

 

 

 

 

Figure 6.2 Comparison for the SC algorithm between the best set of coefficients in Table 

6.3 that satisfies the coefficients constraints (dash line) and the set in Table 6.4 that 

satisfies the relaxed coefficients constraints (solid line). After relaxing the coefficients 

constraints, the coefficients set provides better performance for the two-dimensional 

separable loss function. Each curve represents the sample mean of 20 independent 

replicates. 
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Overall, when we relax the coefficients constraints, the performances of both 

algorithms (SR and SC) have been improved significantly for this two-dimensional 

separable loss function. In Table 6.5, we summarize the coefficients constraints and the 

relaxed coefficients constraints. As we have discussed, the relaxed coefficients 

constraints are weaker than the coefficients constraints. Based on the analysis above on 

the effects of  and c on kM , we can always make c = 1, and only change the value of 

.   

 

Table 6.5 The coefficients constraints and relaxed coefficients constraints for both SR 

and SC. We see that the relaxed coefficients constraints are weaker than the coefficients 

constraints (the maximum number of comparisons in the kth iteration kM  =

0log (1 )c k k ). 

 Coefficients Constraints 
Relaxed Coefficients 

Constraints 

SR 
,1 min ( ( ) )u vP y U ,   

0 1c r ,  0log (1 ) 1c k . 

1 , 0c  

0log (1 ) 1c k . 

SC 
, \1 min P y y ,  

0 1c ,  0log (1 ) 1c k . 

1 , 0c  

0log (1 ) 1c k . 

 

In the numerical experiments in the next section, we tune the coefficients sets based on 
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the relaxed coefficients constraints. Our goal for the relaxation of the constraints is to 

improve the performance of the SR algorithm and the SC algorithm as much as we can.  

 

6.2 Numerical Experiments for Comparisons 

Based on Relaxed Coefficients Constraints of 

Stochastic Ruler and Stochastic Comparison  

In this section, we do numerical tests to compare the performance of the SR algorithm, 

the SC algorithm and the DSPSA algorithm. For the SR algorithm and the SC algorithm, 

we relax the coefficients constraints on these algorithm coefficients. We tune the 

coefficients to pick an appropriate set for each algorithm, then we use these sets to do the 

comparisons of SR, SC and DSPSA algorithms. 

The sequence generated by SR and SC is composed of multivariate integer points, so 

for SR and SC, ˆ ˆ[ ]k k . However, the sequence generated by DSPSA is composed of 

non-multivariate integer points. Therefore, we compare the sequence ˆ{ }k (equal to 

ˆ{[ ]}k ) from SR and SC with the sequence ˆ{[ ]}k  from DSPSA.  
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6.2.1 Numerical Experiments on Two-Dimensional 

Separable Loss Function over a Small Domain 

In Section 6.1, we see that for a two-dimensional separable loss function with small 

domain, the performances of both SR and SC are good when we pick some appropriate 

sets of coefficients that satisfy the relaxed coefficients constraints. In the following, first 

we compare the three algorithms, SR, SC, and DSPSA, for the same two-dimensional 

separable loss function with the same small domain.  

In Section 6.1, we figured out the appropriate values of coefficients for the SR 

algorithm and the SC algorithm, so we use them directly in the comparison here. Since all 

sets of coefficients in Tables 6.2 and 6.4 provide final errors being 0 (in terms of sample 

mean of both * *
0

ˆ ˆ
q  and * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L ), we try all of these 

sets and pick the one that provides the most efficient convergent performance. Therefore, 

for both the SR algorithm and the SC algorithm, we pick the first set of coefficients in 

both Tables 6.2 and 6.4. For DSPSA, based on the selection guidelines in Section 3.3, we 

set  = 0.501, A = 1000, a = 1. All three algorithms converge effectively to 0 error with 

20,000 noisy measurements, so in order to see their performance clearly, we use fewer 

noisy measurements in each replicate. Also we increase the number of replicates to 

reduce the effect of the noise to see a clearer comparison. We set the number of replicates 

to be 200, and the number of noisy measurements in each replicate to be 2500. In Figure 

6.3 we provide the comparison result for this two-dimensional separable loss function. 
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We see that the error is ultimately 0 for all the three algorithms for the two-dimensional 

separable loss function with small domain.  

 

 

 

 

 

 

 

 

 

Figure 6.3 Comparisons of SR, SC and DSPSA for the simple two-dimensional separable 

loss function with small domain. All the three algorithms converge to 0. Each curve 

represents the sample mean of 200 independent replicates. 

 

6.2.2 Numerical Experiments on High-Dimensional Loss 

Functions over Large Domain 

Let us consider two loss functions. The first loss function is a more general separable 
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2

1
( )

p

i
i

L t . 

The optimal solution of the separable loss function is *
p0 , where p0  is a p-

dimensional vector with all components being 0. The second loss function is a skewed 

quartic function (Spall, 2003, Ex 6.6) defined on p :  

3 4

1 1
( ) 0.1 ( ) 0.01 ( )

p p
T T

i i
i i

L B B B B , 

where ( )iB  represents the ith component of the vector B  and pB  is an upper 

triangular matrix of 1’s. The optimal solution of the skewed quartic loss function is 

*
p0 . 

We consider the high-dimensional case p = 200 for both loss functions, since we have 

already discussed low-dimensional small domain problem. We set the domain to be 

200, hence the search space has on the order of 26410  elements. 

The measurement noises  are i.i.d. N(0,1). The initial guess is set as 0
ˆ  = 20010 1  for 

each loss function, where 2001  is a 200-dimensional vector with all components being 1. 

Moreover, for the numerical comparisons, which will show in Section 6.2.2.2, we do 20 

replicates and in each replicate the number of noisy measurements is 20,000. 

For the SR algorithm and the SC algorithm, in the next subsection, we use a tuning 

process to pick the relatively good coefficients for them. For DSPSA, we have discussed 

the practical guidelines for coefficients selection in Section 3.3, so we follow these 
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guidelines to pick the coefficients, and we get  = 0.501, A = 1000, a = 0.05 for the 

separable loss function, and  = 0.501, A = 1000, a = 0.01 for the skewed quartic loss 

function. From numerical results on DSPSA, we have that the final error in terms of both 

sample mean of * *
10,000 0

ˆ ˆ[ ] [ ]  and * *
10,000 0

ˆ ˆ([ ]) ( ) ([ ]) ( )L L L L  are 

0 and 0 for the separable loss function, and 0.4242 and 0.013 for the skewed quartic loss 

function (10,000 iterations indicates 20,000 noisy measurements in DSPSA). The 

sequences ˆ{ }k  generated by DSPSA may not be composed of multivariate integer points, 

and the sequences ˆ{ }k  generated by the SR algorithm and the SC algorithms are all 

composed of multivariate integer points, so for DSPSA we use the criteria 

* *
10,000 0

ˆ ˆ[ ] [ ]  and * *
10,000 0

ˆ ˆ([ ]) ( ) ([ ]) ( )L L L L  to measure the final 

errors.  

 

6.2.2.1 Coefficient Selection on High-Dimensional Loss 

Functions over Large Domain for Stochastic Ruler and 

Stochastic Comparison 

In this subsection, we consider coefficient selection on high-dimensional cases for SR 

and SC. Under these cases, the domain will be significantly larger than the domain 

21,0,1  in the simple example in Section 6.2.1. For the SR algorithm, Yan and Mukai 

(1992) consider the general neighborhood structure ( )N . Therefore, we will try 
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both the global square-ring neighbor ( )N =  and the local square-ring neighbor 

( )N  = 1for allp
i it t i , and pick the one that achieves the better 

performance. For the SC algorithm, Gong et al (1999) only consider global square-ring 

neighbor ( )N , and they think that even though a good neighborhood structure 

can speed up the convergence, a poor neighborhood can hurt the speed. But in order to 

make the SC algorithm to provide as good performance as we can for the specific loss 

functions, we will try both the global square-ring neighbor and the local square-ring 

neighbor, and pick the one that achieves the better performance.  

For the sequence { }kM , we have four strategies, which apply to both SR and SC: 1) 

small 0M , low increasing rate; 2) small 0M , high increasing rate; 3) big 0M , low 

increasing rate; 4) big 0M , high increasing rate. There are possible problems with each 

strategy. A small 0M  may make the algorithm to accept new points too easy in the early 

iterations, which can easily lead the algorithm to bad points in the early iterations. A big 

0M  may make the algorithm too hard to accept new points in the early iterations, which 

may make ˆ
k  to be stuck at the initial guess in the early iterations. Moreover, the value 

of kM  is increasing in the whole process, big 0M  also indicates big kM  in the later 

iterations, which may make the whole sequence ˆ
k  to be harder to leave the initial 

guess. A low increasing rate of kM  may make the algorithm to continue its good/bad 

performance of the early iterations. A high increasing rate of kM  may make the 
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probability to accept new points decrease too fast. We use a numerical tuning process to 

find appropriate coefficients sets in the numerical tests below.  

 

6.2.2.1.1 Tuning Process for the Stochastic Ruler Algorithm 

First, we do the tuning process to decide the coefficients and the neighborhood 

structure that will be used for the SR algorithm. As we have discussed in Section 6.1, we 

can pick the coefficients based on the relaxed coefficients constraints, and set c = 1. 

Tables 6.6 and 6.7 show the results of tuning process for the separable loss function and 

the skewed quartic loss function.  

From Tables 6.6 and 6.7, we find that for the high-dimensional separable loss function 

and skewed quartic loss function, the best sets of coefficients in local square-ring 

neighborhood structure and global square-ring neighborhood structure lead to similar 

level of final errors in terms of both sample mean of * *
0

ˆ ˆ
q  and sample 

mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L  , where  the sample mean is the arithmetic mean 

of the observed values from 20 replicates and q is the number of iterations when the SR 

algorithm hits 20,000 noisy measurements in each replicate. In both Tables 6.6 and 6.7, 

the first set of coefficients in both neighborhood structures is the base set. Based on the 

base set no matter how we enlarge/shrink the range of the uniform distribution of the 

stochastic ruler, how we increase/decrease the growing rate of kM  (maximum number of 

comparisons), and how we increase/decrease the value of 0M , we cannot improve the 
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performance of the SR algorithm significantly relative to the performance with the base 

set. We see that no matter how the coefficients are adjusted, the final errors from the SR 

algorithm are always much larger than the final errors from DSPSA (discussed at the 

third paragraph of Section 6.2.2) in terms of the sample mean of * *
0

ˆ ˆ
q  for 

both loss functions. For the high-dimensional separable loss function, from Table 6.6, the 

final errors from SR in terms of sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L  are still 

much larger than the final errors from DSPSA. However, for the high-dimensional 

skewed quartic loss function, from Table 6.7, we see that the final errors from SR in 

terms of sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L  are very close to 0 relative to 

the error from DSPSA, because the skewed quartic loss function has a special skewed 

and twisted shape, and contains a large flat area.  
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Table 6.6 Performance of the SR algorithm on high-dimensional (p = 200) separable loss 

function with different sets of algorithm coefficients. Global neighborhood structure and 

local neighborhood structure provide similar level of final errors in terms of both sample 

mean of * *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L for the 

appropriate sets. The number of replicates is 20 and the number of noisy measurements 

of the loss function is 20,000. 

Neighbor 
Structure u v  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Global 0 6500 100 200 0.5503 0.3030 

Global  6500 100 200 0.5547 0.3077 

Global 500 6500 100 200 0.5536 0.3065 

Global 0 6000 100 200 0.9076 0.8579 

Global 0 7000 100 200 0.5648 0.3191 

Global 0 6500 200 200 0.5545 0.3076 

Global 0 6500 20 200 0.8226 0.7239 

Global 0 6500 100 100 0.5551 0.3082 

Global 0 6500 100 1000 0.5517 0.3045 

Local 0 19000 100 200 0.5946  0.3538  

Local  19000 100 200 0.6073 0.3691 

Local 1000 19000 100 200 0.6001 0.3603 

Local 0 18000 100 200 1 1 
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Table 6.6, continued 

Neighbor 
Structure u v  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Local 0 20000 100 200 0.6064 0.3680 

Local 0 19000 200 200 0.6053 0.3666 

Local 0 19000 20 200 0.6008 0.3612 

Local 0 19000 100 100 0.6080 0.3699 

Local 0 19000 100 1000 0.6101 0.3726 

 

Table 6.7 Performances of the SR algorithm on high-dimensional (p = 200) skewed 

quartic loss function with different sets of coefficients. Global neighborhood structure 

and local neighborhood structure can provide similar level of final errors in terms of the 

sample mean of * *
0

ˆ ˆ
q  for the appropriate sets. The final errors in terms of 

sample mean of * *
0

ˆ ˆ
q  are not close to 0 relative to the final errors in terms 

of sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L . The number of replicates is 20 and 

the number of noisy measurements of loss function is 20,000. 

Neighbor 
Structure u v  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Global 0 1 10 15 0.5953 0.000068 

       



177 
 

Table 6.7, continued 

Neighbor 
Structure u v  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Global  1 10 15 0.6842 0.2 

Global 0.5 1 10 15 0.5952 0.000069 

Global 0 2 10 15 0.599 0.000077 

Global 0 0.5 10 15 0.6398 0.1 

Global 0 1 15 15 0.6040 0.000070 

Global 0 1 5 15 0.7423 0.35 

Global 0 1 10 10 0.6036 0.000063 

Global 0 1 10 20 0.5964 0.000069 

Local 0 15000 100 200 0.6038 0.000840 

Local   15000 100 200 0.6090 0.000937 

Local 1000 15000 100 200 0.6032 0.000945 

Local 0 14000 100 200 0.9208 0.8003 

Local 0 16000 100 200 0.6014 0.000995 

Local 0 15000 200 200 0.6034 0.0014 

Local 0 15000 20 200 0.6017 0.0012 

Local 0 15000 100 100 0.5974 0.0018 

Local 0 15000 100 1000 0.6054 0.0014 
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6.2.2.1.2 Tuning Process for the Stochastic Comparison Algorithm 

For the SC algorithm, as we have discussed in Section 6.1, we can pick the coefficients 

based on the relaxed coefficients constraints, and set c = 1. In Gong et al (1999), the 

authors only consider global square-ring neighborhood ( ) \N . But here the search 

space has on the order of 26410  points. In order to have possible better performance for 

the SC algorithm, we also try the local neighborhood structure. Thus, we do the tuning 

process not only for the global square-ring neighborhood structure, but also for the local 

square-ring neighborhood structure.  

Tables 6.8 and 6.9 show the results of tuning process for the high-dimensional 

separable loss function and skewed quartic loss function. In both Tables 6.8 and 6.9, the 

first set in both neighborhood structures is the base set. Based on the base set, no matter 

how we increase/decrease the growing rate of kM , and how we increase/decrease the 

value of 0M , we cannot improve the performance of the SC algorithm significantly 

relative to the performance with the base set. We see that no matter how the coefficients 

are adjusted, the final errors from the SC algorithm are always larger than the final errors 

from DSPSA (discussed at the third paragraph of Section 6.2.2) in terms of the sample 

mean of * *
0

ˆ ˆ
q  for both loss functions. For the high-dimensional separable 

loss function, the final errors from SC are still larger than the final error from DSPSA in 

terms of the sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L . However, for the high-

dimensional skewed quartic loss function, from Table 6.9, we see that the final errors 
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from SC in terms of sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L  are already very 

close to 0 relative to the final errors in terms of sample mean of * *
0

ˆ ˆ
q , 

because the skewed quartic loss function has a special skewed and twisted shape, and 

contains a large flat area.  

From Table 6.8, we find that for the high-dimensional separable loss function, the best 

set of coefficients for the local square-ring neighborhood structure can lead to 

significantly better performance than the best sets of coefficients for the global square-

ring neighborhood structure. Thus, the performance of the SC algorithm can be improved 

for the separable loss function by using the local neighborhood structure. For the high-

dimensional skewed quartic loss function, from Table 6.9, we see that the appropriate sets 

of coefficients for both local square-ring neighborhood structure and global square-ring 

neighborhood structure can lead the sequence to the points with the similar level of final 

errors in terms of both the sample mean of * *
0

ˆ ˆ
q  and sample mean of 

* *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L . Therefore, compared with the global neighborhood structure, 

the local neighborhood structure does not improve the performance of SC for the skewed 

quartic loss function. 
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Table 6.8 Performance of the SC algorithm on high-dimensional (p = 200) separable loss 

function with different sets of coefficients. Local neighborhood structure can lead to 

better performance in terms of both the sample mean of * *
0

ˆ ˆ
q  and the 

sample mean of * *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L than global neighborhood structure. The 

number of replicates is 20 and the number of noisy measurements of loss function is 

20,000 in each replicate. 

Neighbor 
Structure 0k   

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Global 100 10 0.5279 0.2787 

Global 1000 10 0.5312 0.2822 

Global 10 10 0.5293 0.2803 

Global 100 100 0.5305 0.2815 

Global 100 5 0.5299 0.2809 

Local 100 10 0.1982 0.0393 

Local 1000 10 0.1995 0.0398 

Local 10 10 0.2008 0.0403 

Local 100 100 0.1985 0.0394 

Local 100 5 0.1997 0.0399 
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Table 6.9 Performance of the SC algorithm on high-dimensional (p = 200) skewed 

quartic loss function with different sets of coefficients. Global neighborhood structure 

and local neighborhood structure provide similar level of final errors in terms of both 

sample mean of * *
0

ˆ ˆ
q  and sample mean of * *

0
ˆ ˆ( ) ( ) ( ) ( )qL L L L  

for the appropriate sets. The final errors in terms of sample mean of * *
0

ˆ ˆ
q  

are not close to 0 relative to the final errors in terms of sample mean of 

* *
0

ˆ ˆ( ) ( ) ( ) ( )qL L L L  . The number of replicates is 20 and the number of noisy 

measurements of loss function in each replicate is 20,000. 

Neighbor 
Structure  0k  

Sample mean of 
*

*
0

ˆ

ˆ
q

 

Sample mean of 
*

*
0

ˆ( ) ( )

ˆ( ) ( )

qL L

L L
 

Global 100 10 0.5951 0.000057415 

Global 1000 10 0.6010 0.000069153 

Global 10 10 0.5978 0.000071960 

Global 100 5 0.5996 0.000064031 

Global 100 100 0.6109 0.0001065 

Local 100 10 0.6060 0.000073827 

Local 1000 10 0.6060 0.000074125 

Local 10 10 0.6057 0.000074743 

Local 100 5 0.5971 0.000099406 

Local 100 100 0.5969 0.000095786 
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6.2.2.2 Numerical Comparisons of Stochastic Ruler Algorithm, 

Stochastic Comparison Algorithm, and DSPSA algorithm 

Based on the discussions above, in the numerical comparison below, we pick local 

square-ring neighbor for both SR and SC algorithms for the high-dimensional separable 

loss function, and pick global square-ring neighbor for both SR and SC algorithms for the 

high-dimensional skewed quartic loss function. We do 20 replicates, and in each replicate 

the number of noisy measurements is 20,000. 

Now let us first consider the numerical comparison for the high-dimensional separable 

loss function. For the SR algorithm, based on the results of tuning process in the Table 

6.6, we pick the first set of the coefficients for the local neighborhood structure  = 100, 

c = 1, 0k  = 200, u = 0, v = 19000. For the SC algorithm, based on the results of tuning 

process in the Table 6.8, we pick the first set of the coefficients for the local 

neighborhood structure  = 10, c = 1, 0k = 100. For DSPSA, as we have discussed, we 

pick the coefficients  = 0.501, A = 1000, a = 0.05. In Figure 6.4 we have the 

comparison results of the three algorithms (SR, SC, and DSPSA) for the high-

dimensional separable loss function. The sequences ˆ{ }k  generated by DSPSA may not 

be composed of multivariate integer points, and the sequences ˆ{ }k  generated by the SR 

algorithm and the SC algorithms are composed of multivariate integer points, so in the 

numerical comparison below, we use the criteria of the sample mean of 

* *
0

ˆ ˆ[ ] [ ]k  and the sample mean of * *
0

ˆ ˆ([ ]) ( ) ([ ]) ( )kL L L L . 
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From Figure 6.4, we see that DSPSA has significant better convergence efficiency than 

the other two algorithms for the high-dimensional separable loss function. However, the 

SC algorithm has better performance than the other two algorithms in the early iterations. 

In Figure 6.4, the SR algorithm gets stuck after the error decrease by around 40%. For the 

SR algorithm, the lower and upper bounds of the uniform distribution of the stochastic 

ruler are fixed, so when the error decreases to some level, the upper bound may be too 

large. Thus, the points accepted after that may not be better points. But, when we reduce 

the value of the upper bound, we may come across another problem. Since the number of 

iterations is limited, a smaller value of the upper bound may reduce the probability of 

accepting new points, which may hurt the performance in the early iterations. Moreover, 

the local square-ring neighborhood structure does not help SR to improve the 

convergence speed (shown in Table 6.6), because in SR the loss function value at the 

candidate point is not compared with current point but compared with the stochastic ruler, 

and as we have discussed the upper bound of the stochastic ruler may hurt the efficiency 

of SR significantly. The SC algorithm provides much better performance than the SR 

algorithm in this case. For the SC algorithm, the local square-ring neighborhood structure 

does help to improve the convergence speed significantly, because the local square-ring 

neighborhood contains fewer points than the global square-ring neighborhood, and fewer 

neighbor points make SC to accept new point more efficiently in the comparison between 

current point and candidate point. Thus, the performance by using local square-ring 

neighborhood is significantly better than by using global square-ring neighborhood for 

SC, which can be seen in Table 6.8.  
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Figure 6.4 Comparison of SR, SC and DSPSA in terms of sample mean of 

* *
0

ˆ ˆ[ ] [ ]k  for high-dimensional (p = 200) separable function. DSPSA 

provides better convergence rate than the other two algorithms. However, the SC 

algorithm has better performance than the other two algorithms in the early iterations. 

Each curve represents the sample mean of 20 independent replicates. 
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structure  = 10, c = 1, 0k  = 100. For DSPSA, as we discussed, we pick the coefficients 

 = 0.501, A = 1000, a = 0.01. In Figures 6.5 and 6.6, we have the comparison results of 

the three algorithms (SR, SC and DSPSA) for high-dimensional skewed quartic loss 

function.  

From Figure 6.5 and 6.6, we see that even though DSPSA performs much better than 

the other algorithms in terms of sample mean of * *
0

ˆ ˆ[ ] [ ]k , the SR algorithm 

and the SC algorithm provide better performance in terms of sample mean of

* *
0

ˆ ˆ([ ]) ( ) ([ ]) ( )kL L L L , because the skewed quartic loss function has a special 

skewed and twisted shape, and contains a large flat area. 

 

 

 

 

 

 

 

 

 

 



186 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Comparison of SR, SC and DSPSA in terms of sample mean of 

* *
0

ˆ ˆ[ ] [ ]k for high-dimensional (p = 200) skewed quartic loss function. 

DSPSA provides better convergence rate than the other two algorithms. Each curve 

represents the sample mean of 20 independent replicates. 
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Figure 6.6 Comparison of SR, SC and DSPSA in terms of sample mean of

* *
0

ˆ ˆ([ ]) ( ) ([ ]) ( )kL L L L  for high-dimensional (p = 200) skewed quartic loss 

function. The sequences generated by SR and SC converge to 0 faster than DSPSA. Each 

curve represents the sample mean of 20 independent replicates. 
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DSPSA, we have already figured out the guidelines of coefficients selections. In addition, 

from these numerical results, we see that even though the SR algorithm and the SC 

algorithm provide bad performance in terms of sample mean of * *
0

ˆ ˆ[ ] [ ]k  

for the high-dimensional loss functions, the performance in terms of sample mean of 

* *
0

ˆ ˆ([ ]) ( ) ([ ]) ( )kL L L L  seems good for some special shape of loss function 

(the skewed quartic loss function). For DSPSA, the performance in terms of both sample 

mean of * *
0

ˆ ˆ[ ] [ ]k  and sample mean of * *
0

ˆ ˆ([ ]) ( ) ([ ]) ( )kL L L L  

are quite reasonable and stable. Furthermore, no comparisons of noisy loss function 

values is involved in the whole process of DSPSA, which might make DSPSA work 

better to handle the noise than the SR algorithm and the SC algorithm in other problem 

settings.  

 

 

 

 

 

 

 

 



189 
 

 

 

Chapter 7  

Application of DSPSA in Resource 

Allocation in Public Health 

 

In this chapter, we consider the application of DSPSA towards developing optimal 

public health strategies for containing the spread of influenza given limited societal 

resources. We use DSPSA to do the simulation based optimization to solve the optimal 

intervention method for H1N1 to achieve the minimal loss to the economy. The loss to 

the economy includes the cost related to the interventions and the cost induced by people 

who become infected. In the following, we introduce open source software for 

intervention strategies: FluTE, and based on the simulation results of FluTE we use 

DSPSA to determine the optimal intervention strategy instead of just doing sensitivity 

analysis on the effect of each intervention method. 
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7.1 Background 

Seasonal influenza epidemics and worldwide epidemics (pandemics) have caused 

many deaths and much economic loss throughout history. As recently as 2009, the H1N1 

virus was responsible for millions of confirmed infections and thousands of deaths 

throughout the world. H1N1 has also caused billions of dollars of loss to the economy. 

There are many intervention methods, including vaccination, antiviral courses, school 

closure, isolation of ascertained people, quarantine of family members of symptomatic 

people, and the use of masks and alcohol-based hand gels. In this chapter, we use the 

DSPSA algorithm to determine the best combination of interventions to achieve the least 

economic loss to society. 

Due to the novelty of the H1N1 virus strain, most people are not immune to it. New 

vaccines for H1N1 need time to be tested and produced. Generally, the production of 

vaccines for each year adheres to the following schedule: In February, the World Health 

Organization selects the three virus strains to be used in the fall vaccination program. 

Then, the production of vaccines for each strain takes place in 11-day old embryonated 

eggs. The clinical trials to evaluate vaccines on people start in May and June, and the 

filling and packaging are done in July and August. The vaccines ship out in September 

and vaccinations begin to take place in October. The immunity takes two weeks to build 

up after the vaccination. The schedule of vaccine manufacturing is tight, and many 

disruptions may happen, such as an insufficient number of eggs and/or a delay in picking 

the strains.  
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Generally, the number of vaccines is not sufficient to cover 100% of the population. 

Also, different vaccines have different restrictions for different people. Due to a shortage 

of vaccines, we need to determine which groups of people should be given priority to 

receive the vaccination, so as to achieve better intervention results. Antiviral agents can 

also be used for treatment of infected people and protection of susceptible people. 

However, unlike the vaccines, the antiviral agents are effective only during the period in 

which they are being taken. A single course of antiviral agents is enough for ten days of 

protection for susceptible people or five days of treatment for infected people. In addition, 

if school closure becomes necessary, the cost is significant, because it takes additional 

teaching hours to make up missed classes, and often parents are forced to take time off 

from work.  

Vaccinations, antiviral agents, and school closure are the three main methods that can 

help to control an epidemic and reduce costs incurred from hospitalizations and treatment 

in the ICU. Policymakers want to find the optimal intervention strategy to achieve the 

best result in terms of loss to society. Generally, researchers set up a base case, such as no 

intervention, and then they do the sensitivity analysis by adding some interventions (e.g. 

Halder et al., 2011, Khazeni et al., 2009). However, none of these papers solve this 

problem by using an optimization algorithm. Moreover, due to the noise in the loss 

function, a stochastic optimization algorithm is needed. Thus, we will use DSPSA to find 

the best combination of interventions to achieve the least economic loss to society. 
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7.2 Introduction of the Simulator (FluTE) 

We use software available online to simulate the spread of the influenza virus. The 

simulation outputs are used to calculate the noisy measurements of the objective loss 

function value. The software is called FluTE and it is freely available at 

www.cs.unm.edu/~dlchao/flute/. This software is created based on a new stochastic model 

of the epidemic within a large population, and it is used to help policymakers prepare for 

future influenza seasonal epidemics or pandemics (Chao et al., 2010, Chao et al., 2011). 

In this new stochastic model, the infection processes are based on real historical influenza 

data. The model is calibrated to the data gathered from the 1957/1958 Asian (H2N2) and 

the 2009 pandemic (H1N1). The calibration involves tuning the contact probabilities of 

two individuals to make the final age-specific illness attack rates similar to the data in the 

1957/1958 Asian (H2N2) and the 2009 pandemic (H1N1).  

We will now briefly discuss the basic structure and assumptions of this simulator. 

Basically, FluTE is based on a person-by-person model that simulates the spread of 

influenza among a large population. The structure of the synthetic population is based on 

real communities in the United States, and the synthetic social network generated in the 

model is constructed according to the realistic contact networks. The model of the 

transmission of the diseases and the infectious process is based on the natural history of 

influenza. After setting up the population and the way influenza spreads, Chao et al. 

(2010) discuss the simulation of interventions. Among many interventions, Chao et al. 

(2010) mainly consider three ways, and we discuss them as follows:  
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The first way is the primary pharmaceutical intervention: vaccination. Vaccination can 

help people to reduce the probability of becoming infected, the probability of becoming 

ill if infected, and the probability of transmission of the infection.  These probabilities are 

the key properties of the efficiency for different vaccines. Generally, vaccines need two 

weeks to reach maximum efficacy.  

The second type of intervention is antiviral agents. People who take antiviral agents 

can reduce the probability of susceptibility, the probability of becoming ill if infected, 

and the probability of transmission during the period when the antiviral agents are taken.  

The third type of intervention is to close school. School closure reduces the contacts 

within school, but it also increases daytime contact within family members and the 

neighborhood.  

 

7.3 Input Parameters of FluTE and Loss Function 

The inputs and outputs of the software FluTE are written in text files. There are many 

possible input parameters (shown in the README file of FluTE). We list some of the 

important ones in Table 7.1:  
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Table 7.1 Key Input Parameters for FluTE. 

Parameter name: Parameter type 

[dimension of the parameter] 
Meanings 

datafile: string Input data file names (e.g. seattle, la, usa) 

R0: real 

Basic reproductive number: the average number 

of people an infected individual infects in 

susceptible population 

preexistingimmunitybyage: 

real[5] 

Vector of 5 real numbers representing the 

fractions of individuals in each age group with 

pre-existing immunity: all preschoolers (0 – 4 

years), all school-age children (5 – 18 years), all 

young adults (19 – 29 years), all older adults (30 

– 64 years), and all elderly (65 + years) 

vaccinationfraction: real Fraction of assigned people to get vaccination 

runlength: integer Number of simulated days  

vaccinepriorities:       

integer [13] 

A vector represents the vaccine priority for 13 

categories of people. 0 indicates no vaccination, 

1 indicates highest priority, 2 indicates next-

highest priority, etc. The categories are: 

essential workforce, pregnant women, members 

of families containing infants, high risk 

preschoolers, high risk school-age children, high 

risk young adults, high risk older adults, high 

risk elderly, all preschoolers, all school-age 

children, all young adults, all older adults, and 

all elderly. 
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Parameter name: Parameter type 

[dimension of the parameter] 
Meanings 

vaccinedoses: integer[2] 

The vaccine ID followed by the number of 

vaccine doses available at the beginning of the 

simulation 

vaccineproduction:      

integer [runlength+1] 

Vaccine ID followed by the number of doses 

that become available each day 

vaccinedata: integer, real[3], 

real[6], Boolean 

Vaccine ID followed by the vaccine efficiency 

parameters and restrictions of the vaccines on 5 

groups of people and pregnant women  

vaccinebuildup:             

integer, integer, real [29] 

Vaccine ID followed by the day that the boost 

should be given and how the efficacy of the 

vaccine is built up over the 29 days after the 

vaccine is given 

vaccineefficacybyage:     

real [5] 

A vector indicates the vaccine efficacy for each 

group. 

AVEs:real Antiviral agents efficacy for susceptible people 

AVEi:real Antiviral agents efficacy for infected people 

AVEp:real 
Antiviral agents efficacy for illness given 

infected 

responsedelay: integer 
Number of days before initiating reactive 

strategies 

ascertainmentdelay: integer 
Number of days to be taken to ascertain a 

symptomatic individual 

ascertainmentfraction: real Fraction of symptomatic individuals who can be 
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Parameter name: Parameter type 

[dimension of the parameter] 
Meanings 

ascertained 

essentialfraction: real 
Fraction of working-age adults that are essential 

workforce 

pregnantfraction: real [5] 
Fraction of people who are pregnant in each of 

five groups 

highriskfraction: real [5] 
Fraction of people who are at high risk from 

influenza in each of five groups 

seedinfected: integer 
Number of people at time 0 to infect the whole 

population 

antiviralpolicy: string 

Represents the policy by which people get 

antiviral agents. Possible values include: 

“none”, “treatmentonly” (treat the ascertained 

people only), “HHTAP” (all family members 

get antiviral agents if one member is 

ascertained), “HHTAP100” (special option for 

Los Angeles county) 

schoolclosuredays: integer Number of days to close schools 

     

    Some of these inputs are related to the properties of vaccines and H1N1, and some are 

assigned as the variables of the optimization problem. In the optimization problem, we 

can change the values of the vaccination fraction, the vaccination priorities, the antiviral 

policy, and the time of school closure. The outputs of the simulator contain information 

including the number of communities, the vaccines used, the antivirals used, the total 
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number of symptomatic individuals by age, etc. Based on these outputs, we can set up the 

basic formula of the loss function of the optimization problem. We know that the cost of 

intervention and the cost of hospitalization change in opposite directions, which means 

that more money used for interventions can reduce the cost of hospitalization, while less 

money used for interventions may increase the cost of hospitalization. The objective 

function is to find out the best tradeoff point to minimize the total cost of the epidemic to 

the economy.  The loss function ( )L  is defined as: 

vaccination cost + antivirals cost +school closure cost 

+hospitalization cost + ICU cost+death cost,
 

and  is the vector of variables that contains the input parameters related to the 

intervention strategies, which will be discussed in detail in the next section. The noisy 

measurements of the loss function can be calculated, all based on the outputs of the 

simulator. 

We now discuss in detail the cost components of L in the above. The total cost of 

vaccination is composed of two parts: one part is related to the cost of the vaccine itself, 

and the other part is related to the side effects of the vaccine. The cost per vaccine 

includes production costs, administration fees, and the cost of patient time. According to 

the Khazeni et al. (2009) paper, the cost per vaccine is approximately $30. Khazeni et al. 

(2009) also show that about 0.001% of the population could have severe adverse 

reactions to the vaccines, which results in hospitalization (the cost of hospitalization is 

discussed below). 
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The total cost of antiviral agents is equal to the antiviral cost per course times the 

number of courses used. The antiviral cost per course includes the production cost and 

dispensing cost, which is approximately $56 per course (Halder et al., 2011).  

The school closure cost is equal to the average cost per day per student times the 

number of students and the number of school closure days. In Halder et al. (2011), they 

show that the average cost for school closure is around $20 per day per student. But this 

value only contains the cost to make up missed classes and does not include the cost to 

the parents, since they need to take time off from work to stay at home to care for their 

infected children. Based on a report by the Brookings Institute 

(http://www.pbs.org/newshour/updates/health/july-dec09/flu-costs_10-08.html), the average 

cost of closing school is between $35 and $157 per student per day. Also, Araz et al. 

(2012) show that on average, parents need to take 2.5 working days off per week to take 

care of students if school is closed. Halder et al. (2011) indicate that the average wage per 

week for a person is $836. Thus, the cost to take care of students per day is around $80 

dollars. Adding $80 dollars to the cost of making up missed classes ($20), this comes to 

around $100 in total per student per day of school closure. In FluTE, each community 

(500-3000 individuals) has two elementary schools, one middle school and one high 

school, which have 79, 128 and 155 students, respectively. Thus, the total cost for one 

community of school closure is around $181,000 per week.  

The cost of hospitalization or ICU is calculated as the expected value of the expense 

for people who require hospital or ICU care. Khazeni et al. (2009) show 3.3% of 

symptomatic individuals need five days of hospitalization, and among these individuals, 
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10% need ten days in the ICU. Chao et al. (2011) provide a different percentage on Web 

Table 7, where high risk people might have a higher rate of hospitalization, but they do 

not consider the ICU care. We follow Chao et al. (2011)’s table for hospitalization rate, 

and also assume 10% ICU care, as shown by Khazeni et al. (2009). Khazeni et al. (2009) 

also show that the average cost of medical hospitalization and ICU per day per person are 

$1,830 and $3,739, respectively, and we calculate the total cost of hospitalization or ICU 

based on these two values. 

The cost of mortality is calculated as the expected value of future earnings. Molinari et 

al. (2007) list the cost of mortality for different groups of people, and we use their results 

in our problem. In addition, Chao et al. (2011) indicate that high risk people could have a 

higher mortality rate, and we also follow their result. 

 

7.4 Practical Implementation of DSPSA by Using 

FluTE 

We want to solve the optimization problem by figuring out the optimal value for the 

vaccine fraction (F), vaccine priorities (P), antiviral policy (A) and length of school 

closure (S). We see that there are 1+13+1+1 = 16 variables for which we need to solve. 

Here we assume F {0, 0.1, 0.2, …, 1} (F may not be integer, then in DSPSA, we map 

the value to integer by multiplying 10, and in the input of the simulator we map the value 

back to the domain of F through dividing 10), P  {0, 1, 2, 3}13, A  {0, 1, 2, 3} (0: 
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“none”, 1: “treatmentonly”, 2: “HHTAP100”, 3: “HHTAP”), and S   {0, 1, …, 

runlength 7 } (We measure the school closing time in terms of weeks, and in the input 

of the simulator we map the value of weeks back to days by multiplying 7). Then we set 

= [10F, PT, A, S]T for the optimization problem min ( )L . 

However, from the output of the simulator, we cannot get the value of ( )L  because of 

the noise in the simulation. There are many randomness parts in the simulation. For 

example, whether an individual is asymptomatic after infection is random. Whether an 

individual has contact with an infected person on a specific day is random. For a vaccine 

dose, among the people who are in the same level of priority, the people to be picked are 

random. Due to many randomness issues in the simulation, the outputs of the simulator 

involve a lot of noise. Thus, we can only get the noisy measurements ( )y  of the loss 

function. The levels of the noises compared with the loss function values are different 

with different inputs and settings of the simulator. In Table 7.3, we will see the noise 

level for the real problem based on different inputs.  

From the description of DSPSA in Section 2.1, we know that there are two main parts 

of the algorithm: the perturbation part (generating perturbation direction k ), and the 

calculation part (calculating the gradient-like vector and 1
ˆ

k ). In this chapter, for k , 

we always use the distribution where the ki  are independent Bernoulli random variables 

taking the values 1  with probability 1 2 . Figure 7.1 shows how DSPSA can be used to 

solve the discrete stochastic optimization problem through the simulation results from 

FluTE. We see that the role of FluTE is to generate a simulation result of the loss 
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function. The simulation takes a long time when the population is very large or when the 

average number of people that an infected individual infects in a susceptible population is 

big. 

 

 

 

 

 

Figure 7.1 The process used to solve the epidemic problem by using DSPSA.  The 

simulator generates outputs that are used to calculate the noisy measurements of the loss 

function. 

 

In DSPSA, we need to determine the coefficients , a and A. By the guidelines of  the 

coefficients selection in Section 3.3, we pick  = 0.501, A = 0.1  (number of allowed 

iterations). For the choice of a, we pick a such that the multiplication of 0a  and 

approximated value of 0 0
ˆˆ ( )g  is equal to the desired change magnitude in the early 

iterations.  
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7.5 Solution in Extreme Cases of Free and Very 

Expensive Interventions 

Before presenting the main numerical experiments in Section 7.6, we do a test for two 

extreme cases: 1) free interventions 2) expensive interventions (no hospitalization, ICU 

and mortality cost) as sanity checks. 

For these two extreme cases, we assume the number of available vaccines and antiviral 

agents is infinite, so that for the vaccine priority of any group we only need to choose 

between 0 and 1 (without/with vaccination), which implies that for these two extreme 

cases, P   {0, 1}13. In addition, there are a finite number of choices for the vaccine 

fraction, the antivirals policy, and the weeks of school closure. Thus, the feasible domain 

is related to a finite number of unit hypercubes. Even though in Chapter 2, we only 

discussed the binary case in Theorem 2.2, we think that for the case of finite number of 

unit hypercubes, similar results can be derived. Therefore, before running the numerical 

tests, we first check the inner product condition ( *( ) ( ) 0Tg m  for all m  

and all *{ }) for these extreme cases.  

We have discussed the inner product condition for the binary case in Section 2.3. Thus, 

here we can check the inner product condition for the extreme cases by using a similar 

idea.  
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For any point  = 1{ , ..., }pt t   *  = * *
1{ , ..., }pt t  and m , suppose ( )

il
m  and 

( )
iu m  are the lower and upper bound in the ith coordinate of the unit hypercube centered 

with m , respectively. Let i = ( ) ( ) ( )and { , } fori ji j jt l t l u j im m m  and i = 

( ) ( ) ( )and { , } fori ji j jt u t l u j im m m .  

When the interventions are free, adding any intervention decreases the number of 

symptomatic persons, which reduces the total cost. Therefore,  

 ( ) ( )
i i

L L , (7.1) 

for all 1, ...,16i . By similar arguments of Section 2.3, we know that inequality (7.1) 

indicates that   

 ( ) 0T
ig m e , (7.2) 

for all 1, ...,16i . Since the optimal solution is to vaccinate 100% of the population, take 

HHTAP as the antivirals policy, and close school for all weeks, we have 

 * 0 , (7.3) 

which means * 0i it t  for all i. Since *,  there exist i  such that * 0i it t . 

Combining the results of inequality (7.2) and (7.3), we have  

 *( ) ( ) 0Tg m . (7.4) 

Thus, inequality (7.4) shows that the inner product condition is satisfied for the free 

intervention case.  



204 
 

    When the interventions are expensive (the cost of hospitalization, ICU, and mortality is 

0), adding any intervention increases the total cost. Therefore, we have that for any point 

*  

 ( ) ( )
i i

L L  

for all i = 1, …, 16 for the expensive interventions case. By similar arguments of Section 

2.3, we have    

 ( ) 0T
ig m e , (7.5) 

for all i = 1, …, 16. Since the optimal solution is to have no intervention, then we have 

 * 0 , (7.6) 

which means * 0i it t  for all i. Since * , there exist i  such that *
i i

t t > 0. 

Combining the results of inequalities (7.5) and (7.6), we have *( ) ( ) 0Tg m , 

which indicates that the inner product condition holds true for the expensive intervention 

extreme case.  

    Overall, the inner product condition holds true for both extreme cases. In addition, due 

to the characteristics of the simulator and the loss function, we see that the other 

conditions in Theorem 2.2 are obviously true here. Thus, DSPSA will converge to *  in 

both extreme cases. 

For these two extreme cases, we consider a population with 20,000 people (with 

10,000 working-age individuals, among whom 7,390 are employed). We set the run 
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length (runlength) to be 28, which indicates that the software runs the simulation for 

28 days (4 weeks), and let the number of initial infected people be 20. We set R0 = 2 (see 

Table 7.1), which indicates that on average one infected person transmits the virus to 2 

people. As we mentioned in the second paragraph of this section, we assume the 

availability of vaccines and antiviral agents is infinite in the extreme cases, so that for the 

vaccine priority of any group we only need to choose between 0 and 1 (without/with 

vaccination). Moreover, we assume that the vaccine builds up immunity immediately. In 

addition, we also assume that the data on the percentage of high risk/pregnant people and 

the data on pre-existing immunity are the same as that of Chao et al. (2011). In the 

following numerical tests, we plot the graph in terms of loss function value and check the 

final intervention policy generated by DSPSA. Because we do not know the exact form 

of the loss function, we can only plot the noisy measurements of the loss function. In the 

following paragraphs, we present the results of the numerical tests for the extreme cases.  

For the free interventions case, as we have discussed, the optimal solution is to use all 

possible interventions: vaccinating 100% of all people, giving all members of ascertained 

people antiviral agents (HHTAP), and closing schools for the full four weeks period of 

interest. We set the number of iterations at 1,000. By the guidelines of coefficients 

selection in Section 3.3, we pick  = 0.501, a = 0.00005, A = 100. The initial policy for 

use in starting the algorithm is the case of no intervention expressed as {0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0}. In order to see the performance of DSPSA, we pick this really bad 

initial guess. By using DSPSA, we can get the sequence to converge to the optimal 

solution of all possible interventions. The expression of the policy that we get from 
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DSPSA is {10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4}, which indicates that we can use 

DSPSA to achieve the optimal policy. Figure 7.2 shows the values of the noisy 

measurements of the loss function for each iteration. The optimal loss function value is 

not 0, because even if all of the intervention methods are used, there are still some people 

who may get infected. We find that in the first several iterations the noisy loss function 

values decrease a lot, because the value of school closure time increases from 0 to 4 

weeks, and the value of antiviral agents policy changes from none to HHTAP. But after 

these iterations, the magnitude of the vibration of the noisy loss function seems 

significant compared to the noisy loss function values.    

 

Figure 7.2 Performance of DSPSA on free intervention case. The sequence generated by 

DSPSA converges to the optimal policy . 
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For the expensive intervention case, we set the hospitalization fee, the ICU fee and 

mortality cost related to the infection to be 0, and set the intervention fee to be nonzero. 

We know that the solution is no intervention. We set the number of iterations at 1,000. 

By the guidelines of coefficients selection in Section 3.3, we pick  = 0.501, a = 

0.000005, A = 100. In order to see the performance of DSPSA clearly, we pick the initial 

policy to be using all possible interventions expressed as {10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 3, 4}, which is a really bad initial guess under this extreme case. By using DSPSA, 

we can reach the optimal solution of no intervention. The expression of the policy that we 

get from DSPSA is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, which indicates that we can 

use DSPSA to achieve the optimal policy. Figure 7.3 shows the value of noisy 

measurements of the loss function in each iteration. The optimal loss function value is 0, 

since the costs of hospitalization, ICU and mortality are all 0. We find that in the first 

several iterations the noisy loss function values decrease a lot, because the value of 

school closure time decreases from 4 weeks to none. The optimal solution is no 

intervention, with all costs related to the infected people (hospitalization cost, ICU cost 

and morality cost) being 0, so the noisy measurements of the loss function on the optimal 

solution are always 0.  

 

 

 

 



208 
 

 

Figure 7.3 Performance of DSPSA on expensive intervention case. The sequence 

generated by DSPSA converges to the optimal policy.  
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extreme cases. The procedure to solve the real problem is as following. First, let us set up 

the data file. We pick 20 tracts of Los Angles (LA) containing a total population of 

100,096, and we set this as a synthetic city having similar census properties to the whole 

nation. There are 9 different vaccines produced by 5 manufacturers and the detailed 

availability information is shown in Web Table 3 of Chao et al. (2011). This Web Table 3 
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provides the US H1N1 vaccine supply information, and the supply for the synthetic city 

here is assumed to be proportional to the national supply by population. Chao et al. (2011) 

show that the vaccine would be deployed in the LA counties 9 days later. We start the 

simulation on September 1, 2009, and the total length of simulation days is set to be 175 

days (25 weeks). Although, in reality, the vaccines start to be available near the peak of 

the infections, we are also interested in the situation when the vaccines are available 

earlier than in the “real” situation because we want to check the effect if the vaccines are 

available earlier. Therefore, we also do simulations for “early vaccination,” in which case 

we assume that the vaccines are available 30 days earlier than in the “real” situation. We 

compare the performance for these two situations (early vaccination case and late 

vaccination case). The key parameters are set as below (except for the parameter 

“seedinfected”, all other parameters are consistent with the paper of Chao et al., 

2011): 

 

Table 7.2 Key parameters for the real problem. These parameters are for both early 

vaccination case and late vaccination case. 

Parameter name Values 

R0 
1.3 (This value is most consistent with the 

cumulative illness levels of H1N1.) 

preexistingimmunitybyage { 0.056, 0.0658, 0.0173, 0.0095, 0.0004 } 

runlength 140 
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Parameter name Values 

vaccinedoses 
{0, 0} {1, 0} {2, 0} {3, 0} {4, 0} {5, 0} {6, 

0} {7, 0}{8, 0} 

vaccinedata 

{0, 0.4, 0.4, 0.67, 1, 0, 1, 1, 1, 1, 1}, 

{1, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 0}, 

{2, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 1}, 

{3, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 0}, 

{4, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 1}, 

{5, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 0}, 

{6, 0.4, 0.4, 0.67, 1, 1, 0, 0, 0, 0, 1}, 

{7, 0.4, 0.4, 0.67, 1, 1, 1, 0, 0, 0, 1}, 

{8, 0.4, 0.5, 0.83, 1, 0.2, 0.2, 0, 1, 1, 1} 

vaccinebuildup 
{0, 0, 0, 0.002, 0.013, 0.038, 0.083, 0.152, 

0.249, 0.379, 0.545, 0.751, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 

vaccineefficacybyage {1, 1, 1, 1, 0.6} 

AVEs 0.3 

AVEi 0.62 

AVEp 0.6 

responsethreshhold 0 

responsedelay 1 

ascertainmentdelay 1 
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Parameter name Values 

ascertainmentfraction 0.8 

essentialfraction 0.069 

pregnantfraction { 0,0,0.0262,0.0182,0 } 

highriskfraction { 0.089,0.089,0.212,0.212,0.01} 

seedinfected 100  

schoolclosurepolicy All 

 

Before doing the numerical experiments, let us first test the magnitude of the noise 

relative to the loss function value, and the effect of each intervention method. Even 

though we do not know the optimal solution, from these tests we can at least have a 

limited idea regarding the optimal solution. We consider the intervention policies: 1) no 

intervention, 2) only HHAP, 3) vaccination of 50% of the people for early vaccination, 4) 

vaccination of 50% of the people for late vaccination, 5) vaccination of 50% of high risk 

people for early vaccination, 6) vaccination of 50% of high risk people for late 

vaccination, 7) vaccination of 50% of high risk people and essential workforce for early 

vaccination, 8) vaccination of 50% of high risk people and essential workforce for late 

vaccination, 9) one week of school closure, and 10) HHTAP and vaccination of 50% of 

high risk people for late vaccination. We simulate 20 replicates for each policy and get:  
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Table 7.3 Noisy measurements of the loss function for the ten different intervention 

policies and the corresponding sample means and sample standard deviations (SD) 

derived from unbiased variance estimation (the values are in terms of millions of dollars). 

Repl-

icate 
1 

No 

interv-

ention 

2 

HHAP 

3 

50% 

early 

vaccina-

tion 

 

4 

50% late 

vaccina-

tion 

5 

50% 

high risk 

early 

vaccina-

tion 

6 

50% 

high risk 

late 

vaccina-

tion 

7 

50% 

high risk 

and 

essential 

workfo-

rce early 

vaccina-

tion 

8 

50% 

high risk 

and 

essential 

workfo-

rce late 

vaccina-

tion 

9 

One 

week 

school 

closure 

10 

HHTAP 

50% 

high risk 

late 

vaccina-

tion 

1 5.86 3.44 4.97 6.20 4.18 4.75 3.95 4.99 15.0 2.66 

2 6.05 2.21 4.92 6.20 4.27 4.97 4.08 5.08 14.8 3.48 

3 5.83 3.05 4.76 6.25 3.76 4.81 4.01 4.97 15 1.84 

4 5.60 3.48 4.46 5.74 4.36 4.69 3.82 4.78 14.7 2.99 

5 5.74 3.39 4.17 6.12 4.05 4.79 4.07 4.82 15.1 2.46 

6 5.70 3.01 4.59 5.99 4.16 4.91 4.03 5.05 14.8 2.87 

7 5.63 3.63 4.57 5.93 4.12 4.79 3.98 4.88 14.9 2.39 

8 5.68 3.85 4.57 6.01 4.01 4.84 3.89 4.89 15.0 2.90 

9 5.56 2.70 4.24 5.95 3.92 4.61 4.10 4.76 15.1 3.07 

10 5.85 2.97 4.88 5.95 4.39 4.86 4.34 4.68 15.0 2.55 

11 5.70 2.82 5.05 6.65 4.15 5.34 4.36 5.31 14.5 2.57 
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Repl-

icate 
1 

No 

interv-

ention 

2 

HHAP 

3 

50% 

early 

vaccina-

tion 

 

4 

50% late 

vaccina-

tion 

5 

50% 

high risk 

early 

vaccina-

tion 

6 

50% 

high risk 

late 

vaccina-

tion 

7 

50% 

high risk 

and 

essential 

workfo-

rce early 

vaccina-

tion 

8 

50% 

high risk 

and 

essential 

workfo-

rce late 

vaccina-

tion 

9 

One 

week 

school 

closure 

10 

HHTAP 

50% 

high risk 

late 

vaccina-

tion 

12 5.65 2.17 4.41 6.22 4.18 4.74 3.88 4.90 15.0 2.67 

13 5.84 2.73 5.06 6.34 4.38 5.03 4.30 5.04 15.0 2.81 

14 5.76 3.48 4.75 6.15 4.31 5.17 4.19 5.13 14.8 1.85 

15 5.48 3.34 5.06 6.16 4.28 5.05 4.43 4.89 14.7 3.16 

16 5.87 3.45 4.98 6.22 4.00 4.68 4.36 4.71 14.8 2.07 

17 5.54 3.10 5.00 6.43 4.16 5.08 4.42 5.11 15.0 2.98 

18 5.59 3.56 4.80 6.14 4.20 5.05 4.15 5.00 14.9 2.48 

19 5.76 2.04 5.18 6.53 4.26 5.14 4.23 5.26 14.8 2.86 

20 5.71 3.07 5.10 6.34 3.98 4.99 4.01 4.68 15 3.28 

Mean 5.72 3.07 4.78 6.18 4.16 4.91 4.13 4.94 14.9 2.70 

SD 0.14 0.51 0.30 0.22 0.16 0.19 0.19 0.18 0.15 0.44 

     

From the standard deviations, we see that different intervention policies may involve 

different levels of noise. Some noise levels are significantly large relative to the loss 

function values (e.g. the policy of HHTAP and vaccination of 50% of high risk people for 
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late vaccination), and some are not (e.g. policy of one week of school closure). However, 

it is not enough to just discuss the noise level compared to the loss function values. It is 

also necessary to discuss the noise level compared to the difference between any two 

policies, because it affects the performance of DSPSA significantly. As we know,

1ˆ ˆ ˆˆ ( ) ( ( ) ( ))k k k k ky yg . Thus, if the difference between two policies contains huge 

noise compared to the value of the difference itself, then the value of ˆˆ ( )k kg  contains 

significant noise, which may affect the efficiency of DSPSA. In the tests of the ten 

policies above, we find that for both the early vaccination case and the late vaccination 

case, the noise level of the policies is significantly larger than the difference between the 

policy of vaccinating 50% of the high risk people and the policy of vaccinating 50% of 

the high risk people and the essential workers (between policy 5 and policy 7, and 

between policy 6 and policy 8). In addition, comparing the result of all policies in Table 

7.3, we see that the effect of antiviral agents is the most significant in reducing the total 

cost. Even though the protective effect of antiviral agents is limited, the availability of 

them is assumed to be infinite. Thus, antiviral agents still can help to reduce the total cost 

to society significantly.  The effect of the vaccination is corrupted by the availability. 

Also, we see that if the vaccination is available 30 days earlier, the intervention effect of 

the vaccination is better. Moreover, we see that vaccination is more efficient if it focuses 

on special subgroups. Furthermore, the cost of school closure is very significant. These 

tests give us a brief idea of the effects of these intervention policies, which is quite 

similar to the sensitivity analysis discussed by other papers (e.g. Chao et al., 2011). In the 

following paragraphs, we start to solve the problem by using DSPSA, and after obtaining 
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the results we will check whether the solution is consistent with the sensitivity analysis 

here.   

First, we start to solve the discrete stochastic optimization for the case of early 

vaccination. The initial guess is the policy that uses no intervention, expressed as {5, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. The number of iterations is 10,000. Based on the 

guidelines of coefficients selection in Section 3.3, the coefficients are set to be: a = 

0.0000002 (this value makes the multiplication of 0a  and the magnitude of elements in 

0 0
ˆˆ ( )g  approximately 0.05), A = 1,000, =0.501.  

In Figure 7.4, we plot the graph in terms of the noisy loss function values (total loss to 

the economy) from one run of DSPSA. The plot is based on a noisy loss evaluation at 

each ˆ[ ]k ; this evaluation is not needed in running the algorithm. The solution from 

DSPSA that we get is: {3, 0, 0, 1, 0, 0, 3, 2, 0, 3, 1, 0, 0, 0, 3, 0}, which is the expression 

of the policy where we give all family members antiviral agents if one member is 

ascertained (HHTAP), and to vaccinate 30% of the assigned groups (members of families 

containing infants, high risk young adults, high risk older adults, all preschoolers, and all 

school-age children). Among these groups, members of families containing infants and 

all school-age children have the highest priority. High risk older adults have the second 

priority. The high risk young adults and the preschoolers have the lowest priority. For the 

early vaccination case, vaccines are available before the peak time of H1N1. Under this 

case, our result is consistent with the results in Yang et al. (2009) and Chao et al. (2011), 

where they claim that if the vaccines are available early, it is better to vaccinate school 

students first. In particular, our results support Basta et al. (2009), where the authors 
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show numerically that “School-aged children have high influenza illness attack rates and 

play a key role in influenza transmission.” 

Second, we solve the discrete stochastic optimization for the case of late vaccination 

(reality case). The initial guess for the reality case is the policy without using any 

intervention expressed as {5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. The number of 

iterations is 10,000. The coefficients are set to be: a = 0.00000025 (this value makes the 

multiplication of 0a  and the magnitude of elements in 0 0
ˆˆ ( )g  approximately 0.05), A = 

1,000, and  = 0.501. In Figure 7.5, we show the total cost to the economy through 

iterations for late vaccination (related to “reality”). The solution that we get is: {2, 0, 0, 0, 

0, 0, 1, 2, 0, 0, 3, 0, 0, 0, 3, 0}, which is the expression of the policy where we give all 

family members antiviral agents if one member is ascertained (HHTAP), and to vaccinate 

20% of the assigned groups (high risk young adults, high risk older adults, and all school-

age children). Among these groups, high risk young adults have the highest priority. High 

risk older adults have a lower priority. All school-age children have the lowest priority. It 

seems that when the vaccines are available late near the peak time of H1N1, it is better to 

first vaccinate the high risk adults, rather than the students. This result is also consistent 

with the arguments of Chao et al. (2011), where they claim that when sufficient amounts 

of vaccines are available near the peak of a pandemic, the recommendation of vaccination 

strategy would change from vaccinating children to protecting high risk persons.  
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Figure 7.4 Noisy loss values for DSPSA run for the early vaccination case. The solution 

indicates that for the early vaccination case, school-age children should have high priority 

to take the vaccination. 
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Figure 7.5 Noisy loss values for DSPSA run for the late vaccination case (reality case). 

The solution indicates that for the late vaccination case high risk adults may have higher 

priority to take the vaccination.  

 

In summary, because of the limited availability of the vaccines, for both early 

vaccination case and late vaccination case, our results show that it is preferable to use 

HHTAP for the antivirals policy. Even though the antiviral agents only take effect during 

a short period, they are still very useful when vaccination is limited. The cost of school 

closure is significant, so we would not use the intervention of school closure. Compared 

with late vaccination case, we find early vaccination can help to reduce more loss to the 
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economy. All these results are consistent with the sensitivity analysis in Section 7.6. In 

regard to the priorities of the vaccinations, we would prefer to give school age children 

higher priority in the early vaccination case, and give high risk adults higher priority in 

the late vaccination case. Generally, in dealing with the epidemics intervention strategy 

problem, most researchers do the sensitivity analysis to achieve a relatively better 

solution, but they do not solve this problem by using a stochastic optimization algorithm 

(e.g. Halder et al., 2011, Khazeni et al., 2009). On the contrary, DSPSA is an algorithm 

that solves the optimal combination of interventions to achieve the least economic loss to 

society under the noisy measurements. Thus, DSPSA can provide a better result than just 

doing the sensitivity analysis. 
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Chapter 8 

Conclusions 

 

In this chapter, we summarize the results of this dissertation and discuss some related 

future work. In Section 8.1, we review the research problem and our contributions in this 

dissertation. In Section 8.2, we consider the potential opportunities for future research in 

DSPSA. 

 

8.1 Summary 

Discrete stochastic optimization problems are very important in many real-world 

applications, such as transmission problems in networks, facility locating problems, and 

resource allocation problems. Two key characteristics of discrete stochastic optimization 

problems are: 1) the domain is defined on the discrete points; 2) there is noise in the 

measurements of the loss function. Due to the discrete domain, many well developed 
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algorithms for continuous stochastic optimization problems, such as stochastic 

approximation algorithms, cannot be used directly. In addition, the noise makes many 

algorithms designed for deterministic discrete optimization problems not applicable 

directly. 

Nevertheless, some algorithms have been designed in order to solve the discrete 

stochastic optimization problems. There are three major classes of algorithms that include 

statistical approaches type algorithms, random search type algorithms, and stochastic 

approximation type algorithms. For the statistical approaches type, the algorithms can 

only guarantee that the solution is the optimal one with some confidence probability, 

which is less than 1. For the random search type, the generated sequence can converge to 

the optimal solution under some conditions. Multiple comparisons are needed in each 

step, and the number of comparisons in each iteration goes to infinity as k . For the 

stochastic approximation type (designed for discrete problems), the basic idea is to 

implicitly make use of the function structure. Some stochastic approximation type 

algorithms focus on constructing the continuous extension of the discrete loss function, 

which involves many noisy measurements in each iteration to get the estimate of the 

gradient (the number of noisy measurements in each iteration could be proportional to the 

problem dimension). Then, for high-dimensional problem, the cost of noisy 

measurements of the loss function might be high. For the other stochastic approximation 

type algorithms, such as Hill et al. (2004), the number of noisy loss function 

measurements in each iteration is only two, but the theoretical analysis on the 

convergence properties for these algorithms are not well developed.   
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By the “No Free Lunch Theorem” (Spall 2003, Subsection 1.2.2), we know no one 

algorithm can beat all others across a broad range of problem types. We need to 

recognize and manage the trade-off between the robustness and efficiency. Here we 

mainly focus on the part of efficiency and introduce the algorithm of DSPSA in Section 

2.1. The algorithm of DSPSA is a new discrete version of SPSA. DSPSA implicitly 

makes use of the function structure to provide efficient performance for the loss functions 

that satisfy some sufficient conditions. However, at the same time the robustness of 

DSPSA is sacrificed because of these conditions, which indicates that for some loss 

functions DSPSA may not provide sequences that converge to the optimal solution. 

Overall, DSPSA inherits several good properties of SPSA algorithm, but it also 

introduces some difficulties.  

Besides introducing the new algorithm DSPSA, we also show the theoretical analysis 

of convergence properties of DSPSA. In Section 2.2, we show that under some conditions, 

the sequence generated by DSPSA converges to the optimal solution. These conditions 

are only sufficient but not necessary. In Section 4.5, the numerical test on the skewed 

quartic loss function indicates that even though the skewed quartic loss function does not 

satisfy the sufficient conditions, DSPSA still can provide a sequence convergent to the 

optimal solution.  

After showing that the DSPSA algorithm converges, we further discuss in Chapter 3 

the rate of convergence of DSPSA. Rate of convergence analysis is not an easy job. 

Different algorithms use different criteria when considering the convergence rate. Since 

DSPSA inherits the idea of SPSA and the elements in the sequence ˆ{ }k  may not be 
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multivariate integer points, it is natural to use the mean square error as the criterion to 

discuss the convergent rate for DSPSA. Under some conditions, we determine an upper 

bound for the mean square error. Based on this upper bound, we analyze the finite sample 

performance and asymptotical performance of DSPSA. We find the upper bound is 

composed of two terms: 1) a term related to the initial guess, and 2) a term related to the 

extra error introduced in each iteration. The first term is more significant in the early 

iterations and the second term starts to be significant in the later iterations, which implies 

that different selections of coefficients of gain sequence are preferred in different stages 

of DSPSA performance. We determine the practical selection and asymptotically optimal 

selection of values of coefficients for DSPSA based on the criterion of mean square error. 

These guidelines of coefficient selections can help people choose the appropriate set of 

coefficients in a practical problem. In the numerical tests in Chapter 4, we follow these 

guidelines to pick the coefficients. Furthermore, based on the upper bound, we show that 

the rate of convergence of DSPSA is (1 )O k , where  is the decaying rate of the gain 

sequence. This rate of convergence result (in the big-O sense) helps us to compare 

DSPSA with other discrete stochastic optimization algorithms. 

Many of the discrete stochastic algorithms other than DSPSA are random search type 

algorithms. Moreover, for random search type algorithms, the sequence converges to the 

optimal solution, and the theoretical analysis is well developed. The stochastic ruler 

algorithm and the stochastic comparison algorithm are two basic representatives of the 

random search type algorithms. Therefore, we pick the stochastic ruler algorithm and the 

stochastic comparison algorithm to do the comparison with DSPSA. As we have 
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mentioned, different types of algorithms use different criteria when considering the rate 

of convergence, so we set up a bridge between DSPSA and the other two random search 

type algorithms by considering the criterion *ˆ([ ] )kP . We calculate *ˆ([ ] )kP  for 

the three algorithms (DSPSA, stochastic ruler algorithm, and stochastic comparison 

algorithm) in the big-O sense. We compare the three algorithms theoretically in Chapter 5 

and numerically in Chapter 6.  

After finishing these theoretical analyses and numerical tests, we discuss the 

application of DSPSA towards developing optimal public health strategies for containing 

the spread of influenza, given limited societal resources. We use an online free simulator 

(FluTE) to simulate the real process of virus spreading. Due to the randomness in the 

synthetic social networks and transmission of the diseases, the output of FluTE involves 

noise. Furthermore, due to the complexity of the model in the simulator, it takes a long 

time to do a single simulation for a large population. We use DSPSA to solve for the 

optimal intervention policies in a public health decision problem related to the H1N1 

virus. The objective function is defined as the total economic loss of H1N1 to society. 

The goal is to solve for the optimal intervention strategy, including vaccination priority, 

antiviral agent policy and time of school closure, to minimize the total economic cost of 

H1N1. Some researchers have used FluTE to do sensitivity analysis to discuss the 

effectiveness of some intervention policies. However, as to our knowledge, no one has 

used the discrete stochastic optimization algorithms to solve the problem simulated by 

FluTE directly. Our attempt in solving the problem by DSPSA is new for the simulator 

FluTE. 
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Overall, this dissertation introduces a new algorithm DSPSA, discusses the 

convergence properties, compares it with other algorithms, and uses it for an application 

in a public health problem. At last, let us summarize the good properties and the 

difficulties of DSPSA. The good properties of DSPSA include: 1) DSPSA is a simple 

algorithm and easily implemented in software; 2) The number of “tuning” coefficients to 

be picked is small; 3) DSPSA implicitly makes use of loss function structure, which leads 

to very efficient performance for some loss functions that satisfy some sufficient 

conditions; 4) The number of noisy measurements of the loss function is only two in each 

iteration; 5) The theoretical analysis of convergence properties are available in this 

dissertation. The difficulties of DSPSA include: 1) DSPSA is only a locally convergent 

algorithm; 2) Not all sufficient conditions are easy to check. 3) For non-integer-grid 

domain, we need to do reformulation before using DSPSA. These difficulties are also 

true for many other discrete stochastic algorithms.  

    In addition to the main body of the thesis, there are three appendices. In Appendix A, 

we consider the analysis of practical step size selection in stochastic approximation 

algorithms for continuous problem settings. The practical gain sequence selection is 

different from the theoretical optimal selection (derived from asymptotical performance). 

We provide a formal justification of the reasons why we choose this gain sequence in 

practice. In Appendix B, we consider the rate of convergence of SPSA for time-varying 

loss functions. One important application of time-varying loss function is in the model-

free adaptive control with nonlinear stochastic systems, and model-free adaptive control 

is useful in many practical areas. Therefore, the results in Appendix B show the 
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reasonable performance of SPSA in model-free control in the big-O sense. In Appendix C, 

we do the numerical experiments on the properties of the upper bound for 
2*ˆ

kE  

discussed in Chapter 3. We show that the numerical results in Appendix C are consistent 

with the theoretical analysis in Section 3.2. 

 

8.2 Future Work  

In this dissertation, there are some potential issues that have not been considered or 

solved, and these problems can provide direction for future work. 

The first issue is the consideration of mixed discrete-continuous problems. In such 

mixed problems, some variables are constrained to be integers while some variables can 

be non-integers. For these kinds of problems, we may have several research directions. 

First, we can divide the set of variables into two groups, with one group containing 

integer variables and the other group containing non-integer variables. For the group of 

integer variables, we can use DSPSA directly, and for the group of non-integer variables, 

SPSA (Spall, 1992) can be used directly. The second possible way is to discretize the 

continuous domain and use DSPSA directly.  

The second issue is the problem that we have already discussed in Section 2.1 on the 

discrete mapping problem. For DSPSA, we assume that the domain is the subset of p . 

However, for some problems, the original domain of the loss function is discrete, but may 

not be the subset of p  (e.g. the original domain can be { } or 
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{…, apple, banana, lemon, … }). Therefore, we need to map the original domain to p  

before using DSPSA. We have not found any paper that mainly discusses the problem of 

mapping an arbitrary discrete domain to p . Therefore, we think it is an interesting and 

important problem to be considered in the future. 

    The third issue that we are interested in is related to the second one, which also focuses 

on expanding the applicability of DSPSA to more general problems. In the second 

problem, we focus on mapping the discrete domain to p  to make DSPSA applicable for 

the discrete problem that is not defined on p . Here we can consider modifying the 

DSPSA algorithm description to make it applicable for more general types of domains, 

not only integer. The basic goal of the third problem is similar to the second one, but the 

two go in different research directions.  

The fourth issue is the possible extension of the perturbation direction . In the 

numerical tests of this thesis, we mainly consider the case when the components of  are 

independent Bernoulli random variables taking the values 1  with probability 1 2 . We 

do just one numerical test on the case when the components of  are discrete uniformly 

distributed over the set { 1, 3} in Section 4.6. In the future, we can analyze more non-

Bernoulli distribution cases for  and determine the optimal distribution for the 

perturbation directions. For the algorithm of SPSA on the continuous settings, Sadegh 

and Spall (1998) find that the asymptotically optimal distribution for the components of 

the simultaneous perturbation vector is a symmetric Bernoulli distribution. However, Cao 

(2011) shows that a non-Bernoulli distribution can achieve better finite sample 
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performance than the Bernoulli distribution for some loss functions. Since DSPSA 

inherits many properties of SPSA, we believe that we can do similar analysis on DSPSA. 

The fifth issue is how to use all the old information up to the current iteration. There 

are several possible ways that we can make use of the old information. For the first way, 

when the gain sequence is small, the sequence ˆ{ }k  moves within one unit hypercube for 

a while, then it might be good to use old noisy measurements of the loss function in that 

unit hypercube to decrease the effect of noise in DSPSA. The second way could be that 

we can set the solution at iteration k to be 0
ˆ ( 1)k

ki k (same as iterate averaging in 

Section 4.5.3 of Spall, 2003), which might improve the performance of DSPSA when the 

sequence bounces around the optimal solution. The third way could be similar to the idea 

of Andradottir (1999), where an extra optimization step is added to determine the current 

solution based on all old information (the current solution is the point with the smallest 

average noisy loss function based on all old information). 

In summary, this dissertation introduces the DSPSA algorithm, discusses its 

convergence properties, compares it with other discrete stochastic optimization algorithm, 

and uses it in a public health problem. In the future, we want to follow the research 

directions  discussed above to further generalize the DSPSA algorithm, and analyze more 

properties related to DSPSA. 
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Appendix A  

Analysis of Practical Step Size 

Selection in Stochastic Approximation 

Algorithms 

     

    For many popular stochastic approximation algorithms, such as the stochastic gradient 

method and the simultaneous perturbation stochastic approximation method, the practical 

gain sequence selection is different from the optimal selection, which is theoretically 

derived from asymptotical performance. We provide formal justification for the reasons 

why we choose such gain sequence in practice.  
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A.1 Introduction 

    Stochastic approximation (SA) algorithms are widely used in many stochastic 

optimization problems (e.g., Spall, 2003, Kushner and Yin, 2003, Fu, 1994). The stochastic 

gradient (SG) algorithm and the simultaneous perturbation stochastic approximation 

(SPSA) algorithm are two examples of SA methods. All SA algorithms include step-size 

parameters, frequently referred to as “gain sequences.” The gain sequences are critical for 

practical implementation and asymptotic analysis. This appendix provides a rigorous basis 

for practical gain selection principles that appear in the literature relative to finite-sample 

implementation of SA algorithms. Although such principles have been presented as 

informal “rules of thumb,” we show that they have a rigorous foundation. Hence, the 

finite-sample theory here complements well-known asymptotic theory for SA. 

The general form of the SA algorithm is  

1
ˆ ˆ ˆˆ ( )k k k k ka g , 

where ˆ
k  is the estimated optimal point from iteration k, ˆˆ ( )k kg  is the estimator of the 

gradient at ˆ
k , and the gain sequence (step size) is (1 )ka a A k . Rubinstein and 

Kroese (2007, p. 215) say: “The crucial question in implementations is the choice of the 

step sizes.” We see that the choice of coefficients is a very important issue.  

For the stochastic gradient algorithm, when  = 1, the rate of convergence of ˆ
k  is 

maximized (Section 4.4 in Spall, 2003). But in practical problems,  = 1 may not be the 

optimal choice. Many authors use  = 0.501 in their numerical experiments, such as 
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Hutchison and Spall (2009). In the Section 4.4 of Spall (2003), the author also discusses the 

roles of coefficients a and A briefly.  

For SPSA, Spall (1992) shows that the theoretical optimal choice of gain sequence 

through asymptotical distribution is to pick  = 1. Later Spall (1998b, 2003) discusses in 

detail about the rule to pick up the coefficients for real world problems with finite number 

of iterations, where  equals 0.602, A equals 10% or less of the maximum number of 

allowed iterations, and a is chosen such that 0.602(1 )a A  [magnitude of components in 

gradient estimator] is equal to the smallest of the desired change magnitudes of the 

sequence in the early iterations. After checking many applications that use SPSA, we find 

that people often directly use Spall’s rule of gain sequence (e.g., Bangerth et al., 2006, 

Maryak and Spall, 2005, and Schwartz et al., 2006).  

To the best of our knowledge, for both SG and SPSA, almost no paper provides formal 

reasons and conditions for the practical gain sequence selection, even though many people 

use the practical choice directly. In this appendix, we provide a mathematical justification 

for why practical gain sequence selections are different from theoretical ones. In the 

process, we are able to provide more precise guidance with respect to particular problem 

characteristics. In fact, it appears that this appendix is one of very few that provide 

finite-sample theory for SA (another paper with finite-sample theory relative to a different 

aspect of SA is Cao, 2011). In Section A.2, we discuss the practical gain sequence selection 

for SG and SPSA, and in Section A.3, numerical results are presented. This appendix is 

concluded by Section A.4. 
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A.2 Formal Analysis 

In this section we provide mathematical justifications on the practical gain sequence 

selections for both SG and SPSA. For both algorithms, the loss function ( )L  that we 

consider is strictly convex.  

 

A.2.1 Stochastic Gradient 

    The formula for the stochastic gradient algorithm is given by  

 1
ˆ ˆ ˆˆ ( )k k k k ka g , (A.1) 

where ˆˆ ( )k kg  is the unbiased estimate of gradient. Suppose ˆˆ ( )k kg  = ˆ ˆ( ) ( )k k kg , 

ˆ( )kg  is the real gradient at point ˆ
k , and ˆ ˆ( ) 0k k kE . Substituting  ˆˆ ( )k kg  into 

eqn. (A.1), we have 

 * *
1

ˆ ˆ ˆ ˆ( ) ( )k k k k k k ka ag . (A.2) 

By calculating the norm to the squared of both sides of eqn. (A.2) and taking expectation 

on them, we have 

2 2* * * *
1

22

ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) 2 ( ) ( )

ˆˆ ( ) .

T T
k k k k k k k k k

k k k

E E a E a E

a E

g

g
 

 

(A.3) 
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Suppose ( )L  is twice continuously differentiable, and ( )  is the Hessian matrix of 

( )L . Since ( )L  is a strictly convex function, ( )  is a positive definite matrix. For 

ˆ( )kg , there exists k  on the line segment of ˆ
k  and *  such that  

*ˆ ˆ( ) ( )( )k k kg . 

Then, we have  

* * *ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )T T
k k k k kE Eg , 

which is positive. By Corollary 5.4.5 of Horn and Johnson (1985), there exists 0k  

such that  

 
2* * *ˆ ˆ ˆ( ) ( )( )T

k k k k kE E . (A.4) 

In addition, the third term on the right-hand side of eqn. (A.3) can be written as 

 

* *

*

ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) 2 ( ) ( )

ˆ ˆ ˆ2 ( ) ( )

0.

T T
k k k k k k k k k

T
k k k k k

a E a E E

a E E  

 

(A.5) 

Furthermore, the last term of the right-hand side of eqn. (A.3) is  

 

2 22 2

2 22

ˆ ˆ ˆˆ ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( ) .

k k k k k k k

T
k k k k k k k

a E a E

a E E E

g g

g g
 

 

(A.6) 

By the law of total expectation, we have  
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ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

0.

T T
k k k k k k k

T
k k k k

E E E

E E

g g

g  

Moreover,  

2 * *ˆ ˆ ˆ( ) ( ) ( ) ( )( )T T
k k k k kE Eg . 

Thus, eqn. (A.6) can be written as  

 

22 2 * *

22

ˆ ˆ ˆˆ ( ) ( ) ( ) ( )( )

ˆ( ) .

T T
k k k k k k k k

k k k

a E a E

a E

g
 

 

(A.7) 

Plugging the results of eqn. (A.4), (A.5) and (A.7) into eqn. (A.3), we have  

2 2* * 2 * *
1

22

ˆ ˆ ˆ ˆ(1 2 ) ( ) ( ) ( )( )

ˆ( ) .

T T
k k k k k k k k k

k k k

E a E a E

a E
 

 

(A.8) 

By the recursive relationship in eqn. (A.8), we get 

 

2 2* *
1 0

0

2 * *

0 1

22

0 1

ˆ ˆ(1 2 )

ˆ ˆ(1 2 ) ( ) ( ) ( )( )

ˆ(1 2 ) ( ) .

k

k j j
j

kk
T T

j j i i i i i
i j i

kk

j j i i i
i j i

E a E

a a E

a a E

 

 

 

 

(A.9) 

    The first term in eqn. (A.9) is corresponding to the initial guess; the second term and the 

third term are positive. In addition we know  
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(1 )i
aa

A i
, 

and 0.5 1. Suppose 0
ˆ  is far away from the optimal solution *  and k  does not 

change significantly in the early iterations for different sets of coefficients, which means 

the change of k  from different sets of coefficients is insignificant compared to the value 

of k  itself. The loss functions satisfying the assumptions have smooth Hessian matrix 

when point is far from the optimal solution. In order to have stable performance in the early 

iterations, the last two terms of eqn. (A.8) should have small values. It can be achieved by 

small value of step size, which is equivalent to control the value of a not too big and the 

value of A not too small. The first term of eqn. (A.8) is significant due to the initial guess 

term. The rest terms of eqn. (A.8) have coefficients 2
ia , and it makes the last two terms less 

significant when the step size is small.  Then, the first term on the right-hand side of eqn. 

(A.9) is the dominant term in the early iterations, so we prefer bigger value of ia , which 

can be achieved by smaller value of (  = 0.501), larger value of a and smaller value of 

A. We see that the requirements for a and A are on the opposite sides for stability and better 

finite sample performance. Therefore, we need to pick a relative large and pick A relative 

small in the domain that satisfies the stability requirement.  

Now we discuss a detailed rule for the choice of a and A. Due to the restriction of the 

budget, the number of iterations may be limited. In order to achieve reasonable 

performance for the limited number of iterations, we want A to be proportional to the 

maximum number of allowed iterations N: A N . In addition, we want that the effect of 
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A would disappear in later iterations to achieve proper decaying gain. Therefore, we prefer 

A to be in the lower rate than N, which indicates  = 0.1, 0.01, 0.001,... Moreover, as we 

have discussed, we want (1 )a A i  to be reasonable small in the early iteration to keep 

the stability of the algorithm, but we also do not want the gain step too small in the later 

iteration to keep reasonable speed. We know the effect of A disappears when k is large; 

while the effect of a is always there.  It means that we prefer to pick larger A instead of 

smaller a to keep the stability of the algorithm, because we still need a not to be too small 

for better finite sample performance. Therefore, among all the choices of , we prefer 

larger value, which is 0.1. It indicates that 0.1A N  satisfies all the requirements, 

including the stability and finite sample performance. After getting the rule of A, we can 

get the rule for a by considering the performance in the early iterations of the algorithm. 

For example, we can make the multiplication of 0a  and approximated magnitude value of 

0 0
ˆˆ ( )g  to equal the desired change magnitude in the early iterations, and it leads the 

possible choice of a.  

In contrast, for good asymptotic performance of the algorithm, we want the sequence to 

bounce as little as possible around the optimal solution, which is achieved by small values 

of the gain sequence in the very late iterations. It is equivalent to say for asymptotical 

performance, we prefer big (  = 1). Thus, we see that the theoretical optimal selection 

of coefficients is for better asymptotical performance, while the practical selection of 

coefficients focuses on better finite sample performance.   
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A.2.2 Simultaneous Perturbation Stochastic 

Approximation  

    The basic formula for SPSA algorithm discussed in Spall (1992) is  

1
ˆ ˆ ˆˆ ( )k k k k ka g , 

where ˆ
k  is the estimate for the optimal solution *  at the kth iteration, ka  is the gain 

sequence and  

1ˆ ˆ( ) ( )ˆˆ ( )
2

k k k k k k
k k k

k

y c y c
c

g , 

where ( )y  is the noisy measurement of the loss function ( )L , kc  is a positive scalar, 

1,...,k k kp  is the direction of perturbation, and 1
11 ,...,1k k kp . We also 

assume that ( ) ( ) ( )y L  and , 0E . Moreover, the form of ka  and kc  are  

(1 )k
aa

A k
,     

(1 )k
cc
k

. 

The assumptions for  and  are discussed in Spall (1992): 1 , 2 2 1 , and 

3 2 0 . Spall (1992) also shows that the asymptotical optimal coefficient choices are 

1  and 1 6 , but in practical finite sample implementations, people often use 

0.602  and 0.101. In the following, we show the reasons for the practical choice of 

, , and discuss the choice of the other coefficients of a , A , c .   
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    First we add and subtract  ˆ( )k ka g  to the right-hand side of the algorithm formula and 

get 

 * *
1

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )k k k k k k k k ka a ag g g , (A.10) 

where ˆ( )kg  is the real gradient of function ( )L  at point ˆ
k . In Spall (1992) the loss 

function is assumed to be strictly convex. By calculating the norm to the squared of both 

sides of eqn. (A.10) and taking the expectation on them, we have 

 

2 2* * *
1

2* 2

ˆ ˆ ˆ ˆ2 ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ2 ( ) ( ) ( ) ( ) .

T
k k k k k

T
k k k k k k k k

E E a E

a E a E

g

g g g
 

 

(A.11) 

Suppose ( )  is the Hessian matrix of ( )L . Since ( )L  is a strictly convex function, 

then ( )  is a positive definite matrix. For ˆ( )kg , there exists  k  on the line segment of 

ˆ
k  and * such that  

*ˆ ˆ( ) ( )( )k k kg . 

Therefore, we have  

* * *ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )T T
k k k k kE Eg , 

which is positive. By Corollary 5.4.5 of Horn and Johnson (1985), there exists 0k  

such that  

 
2* * *ˆ ˆ ˆ( ) ( )( )T

k k k k kE E . (A.12) 



 

239 
 

In addition, the third term on the right-hand side of eqn. (A.11) can be written as 

 

*

*

*

2 *

ˆ ˆ ˆˆ2 ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ2 ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ2 ( ) ( ) ( )

ˆ ˆ2 ( ) ( ) ,

T
k k k k k

T
k k k k k k

T
k k k k k k

T
k k k k k

a E

a E E

a E E

a c E

g g

g g

g g

b

 

 

 

 

(A.13) 

where   

2
1ˆ ˆ ˆ ˆˆ( ) ( ) ( )k k k k k k
k

E
c

b g g , 

 1 2 3
1 2 3 1 2 3

1 2 3

(3) (3)
, , , ,

1 ( ) ( )
12

l

ki ki ki
kl k ki i i i i i

kii i i
b E L L , 

and k , k  are on the line segment between ˆ
k  and ˆ

k k kc . By the result of Lemma 1 

in Spall (1992), we have ˆ( ) (1)k k Ob . Furthermore, the last term of the right-hand side of 

eqn. (A.11) is 
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2
22 2 1

2

2 1
2

2
1

2

2

2
2

ˆ ˆ( ) ( )ˆˆ ( )
2

ˆ ˆ( ) ( )

4

ˆ ˆ( ) ( )
2

4

k k k k k k k k
k k k k k

k

k k k k k k T
k k k

k

Tk
k k k k k k k k k k

k

k k T
k k k

k

L c L ca E a E
c

L c L c
a E

c

a E L c L c
c

a E
c

g

1 .

 

 

 

 

 

 

(A.14) 

Moreover, by the law of total expectation, we have  

 

1

1

1

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ,

ˆ ˆ ˆ( ) ( ) ,

0.

T
k k k k k k k k k k

T
k k k k k k k k k k k k

T
k k k k k k k k k k k k

E L c L c

E E L c L c

E L c L c E

 

Therefore, eqn. (A.14) can be written as  

 

2
22 2 1

2

2

2 1
2

ˆ ˆ( ) ( )
ˆˆ ( )

4

.
4

k k k k k k T
k k k k k k

k

k k T
k k k

k

L c L c
a E a E

c

a E
c

g

 

 

 

(A.15) 

Plugging the results of eqn. (A.12), (A.13) and (A.15) into eqn. (A.11), we have  
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2 2* * 2 *
1

2

2 1
2

2

2 1
2

ˆ ˆ ˆ ˆ(1 2 ) 2 ( ) ( )

ˆ ˆ( ) ( )

4

.
4

T
k k k k k k k k k

k k k k k k T
k k k

k

k k T
k k k

k

E a E a c E

L c L c
a E

c

a E
c

b

 

 

 

 

(A.16) 

By the recursive relationship in eqn. (A.16), we get 

2 2* *
1 0

0

2 *

0 1

2

2 1
2

0 1

2

2 1
2

0 1

ˆ ˆ(1 2 )

ˆ ˆ2 (1 2 ) ( ) ( )

ˆ ˆ( ) ( )
(1 2 )

4

(1 2 )
4

k

k j j
j

kk
T

j j i i i i i
i j i

kk i i i i i i T
j j i i i

i j i i

kk i i T
j j i i i

i j i i

E a E

a a c E

L c L c
a a E

c

a a E
c

b

.

 

 

 

 

 

 

(A.17) 

The first term on the right-hand side of eqn. (A.17) is corresponding to the initial guess, 

and the third term and the forth term are positive.  

    Suppose 0
ˆ  is far away from the optimal solution * , and k  does not change 

significantly on different set of coefficients, which means the change of k  from different 

sets of coefficients is insignificant compared to the value of k  itself. The loss functions 

satisfying the assumptions have smooth Hessian matrix when point is far from the optimal 

solution. In order to have stable performance, the last two terms of eqn. (A.16) should have 
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reasonable small values, which can be achieved by controlling the value of a not too big 

and controlling the value of A not too small. The first term in eqn. (A.16) is significant due 

to the initial guess part and the rest terms in eqn. (A.16) have corresponding coefficients 

2
i ia c  and 2 2

i ia c ( 2 2 1), which makes the last three terms less significant for small 

value of ia  and ic . Then, the first term on the right-hand side of eqn. (A.17) is the 

dominant term for finite sample case, so we prefer bigger value of ia  which can be 

achieved by smaller value of ( 0.602 ), larger value of a, and smaller value of A. We 

can see the stability requirements and better finite sample requirements are on the opposite 

sides for a and A, so we need to pick a relative large and pick A relative small in the domain 

that satisfies the stability requirements. The detailed rule of the choice of a and A is the 

same as that for the algorithm of SG.  

    The feasible domain for  and  is a triangle composed of three lines 1 , 

2 2 1 , and 3 2 0 . The triangle is equivalently defined by one achievable 

corner point, ( , ) (1 6,1)  and two unachievable corner points, (0.1, 0.6) and (1/2, 1). In 

a numerical implementation, we see that when 0.602 , we have to choose 0.101 

approximately. This pair of values is very close to the unachievable extreme point of the 

triangle domain with the smallest coefficient values, (0.1, 0.6). In addition  

 
2 2 2

1 1
2 2

( ) ( ) (1 ) .
4 4

T Ti i i i
i i i i

i

iE E
c c

 

Then, it is reasonable to pick c at the level approximately equal to the standard derivation 

of the measurement noise, because it can control the effect of noise.  
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For good asymptotic performance of the algorithm, we want the sequence to bounce as 

little as possible around the optimal solution, which is achieved by small values of the gain 

sequence in the very late iterations. It is equivalent to say for asymptotical performance, we 

prefer big ( 1). When 1, we must have 1 6  and it is the feasible extreme 

point of the triangular domain. Thus, for SPSA, we have the similar result: the theoretical 

optimal selection of coefficients is for better asymptotical performance; while the practical 

selection of coefficients focuses on better finite sample performance.   

 

A.3 Numerical Experiments 

    Obviously, in practice, only a finite number of iterations can be performed for any 

problem. In this section, we present two simple numerical experiments to show that the 

theoretical optimal gain sequence may perform worse than the practical selection for finite 

sample performance. We also show that when the initial condition is close to the optimum, 

the asymptotically optimal gains may be preferred.  

    We do the numerical tests on both SG and SPSA. The first example is a test with SG 

applied in online training to a special case of state-space model considered in Spall (2012). 

This special case is shown in Spall (2003, Example 13.7), and the data are distributed 

according to 2( , )i iz N q , where the iq are known. Here we suppose 1iq , 1, 

and 2 1  (more general forms in the above references have iq  being non-identical 

across i). We use the idea of online training to estimate the parameters  and . In each 
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step we want to maximize the log likelihood function 

2 2( ) 2( ) 2log 2 ( )i iz q
ie q  based on the observation at that time. It is equivalent 

to minimize the negative log likelihood function. Here ˆ ˆ ˆ, T
k k k , then the estimated 

gradient is 
22 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ), ( ) ( )

T

k k k k k i k k i k k k k iz q q z qg in the 

kth iteration. The dimension of the case here is 2, and ( 1 )ka a k A . The initial 

guess is set to be [5, 5]T  in all runs. The total number of observations in each replicate is 

1000 and the number of replicates is 50. By the rule of A, we have A = 0.1 1000  = 100. 

For practical selection, we choose 0.501, and for the asymptotically optimal selection, 

we choose 1 . After computing some values of 0 0
ˆˆ ( )g , we know that the mean 

magnitude of the components in 0 0
ˆˆ ( )g  is approximately 0.16. Suppose we want the 

elements of  move by a magnitude of 0.01 in the early iterations. Then, for the practical 

selection, a = 0.65 is according to 0.5010.65 101 0.16   0.01; for the asymptotically 

optimal selection, a = 6.5 is according to 6.5 101 0.16  0.01. Thus, we compare two 

sets of coefficients: 1) (practical) a = 0.65, A = 100, 0.501; 2) (asymptotically optimal 

) a = 6.5, A = 100 1. Figure A.1 shows that the practical choice of coefficients 

provides better performance than the asymptotically optimal one.  
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Figure A.1 Comparison of practical selection and asymptotically optimal selection of 

coefficients for a simple case of state-space model. Each curve represents the sample mean 

of 50 independent replicates. 

 

The second example is a test with SPSA applied to the skewed quartic loss function 

(Spall, 2003, Example 6.6): ( )L  = T TB B  + 3
10.1 ( )p

ii B  + 4
10.01 ( )p

ii B , where 

( )iB  represents the ith component of vector B  and pB  is an upper triangular matrix of 

1’s. We consider the case of dimension p = 200, and the measurement noise  is i.i.d 

N(0,1). For the perturbation 1 2[ , ,..., ]Tk k k kp , each component ki  is independent 

Bernoulli random variable taking the values 1 with probability 1 2 . Here 

( 1 )ka a k A  and ( 1)kc c k .  
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We consider two initial values for  in the search process. The first initial value is 

20010 1  , where 2001  is a 200-dimensional vector with each component being 1.  This 

initial guess is far away from the optimal solution 2000 , where 2000  is a 200-dimensional 

vector with each component being 0. The total number of iterations in each replicate is 

1000 and the number of replicates is 50.  By the rule of A and c, we have A = 0.1 1000  = 

100 and c = 1. For practical selection, we choose 0.602  and 0.101, and for the 

asymptotically optimal selection, we choose 1 and 1 6 . After computing some 

values of 0 0
ˆˆ ( )g , we know that the mean magnitude of the components in 0 0

ˆˆ ( )g  is 

approximately 300. Suppose we want the elements of  move by a magnitude of 1.5 in the 

early iterations. Then, for the practical selection, we have that a = 0.08 is according to 

0.6020.08 101 300 1.5 ; for the asymptotically optimal selection, a = 0.5 is according 

to 0.5 101 300 1.5. Thus, we compare two sets of coefficients: (1) (practical) a = 

0.08, c = 1, A = 100, 0.602 , 0.101 ; (2) (asymptotically optimal  and ) a = 0.5, 

c = 1, A = 100, 1, 1 6 .  

We also want to check the asymptotical performance for both sets of coefficients, so we 

also compare the performance for the initial guess 2000.12 1 , which is close to the optimal 

solution. Therefore, plot (a) in Figure A.2 shows that the practical choice of coefficients 

provides better performance than the asymptotically optimal one, when the initial guess is 

far away from the optimal solution. We see that the asymptotically optimal selection of 

coefficients also provides reasonable finite sample performance for skewed quartic loss 

function. Plot (b) in Figure A.2 shows that when the initial guess is close to the optimal 
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solution, the asymptotically optimal selection of coefficients provides better and more 

stable performance.  

 

 

 

 

 

                                     (a)                                                                  (b) 

Figure A.2 Comparisons of practical selection and asymptotically optimal selection of 

coefficients for the skewed quartic loss function. Plot (a) shows the comparison when the 

initial guess is far away from the optimal solution. Plot (b) shows the comparison when the 

initial guess is close to the optimal solution. Each curve represents the sample mean of 50 

independent replicates. 

 

A.4 Conclusions 

Stochastic approximation algorithms are widely used in many applications related to 

stochastic optimization. This appendix discusses the practical gain sequence selection for 

stochastic approximation algorithms, especially for SG and SPSA. For the choice of 

coefficients of the gain sequence (step size), people often use those popular “rules of 

thumb” directly, such as Spall (1998b, 2003). But to our knowledge, nobody has provided 
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formal justifications for those practical gain sequence selection. In our appendix, we show 

formally that in order to have better finite sample performance the selection of gain 

sequence is different from the theoretical optimal gain sequence derived from the 

asymptotic distribution. This result provides reasons for those popular used practical rules 

of coefficient choices. From the proof we can see the rules for the practical coefficient 

selection are useful for those problems with bad initial guess and smooth Hessian matrix.  
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Appendix B 

Rate of Convergence Analysis of 

Simultaneous Perturbation Stochastic 

Approximation Algorithm for Time-

Varying Loss Function 

     

    A popular method for continuous stochastic optimization problem is simultaneous 

perturbation stochastic approximation (SPSA). Spall (1992) introduces SPSA and 

discusses the rate of convergence of SPSA for fixed loss functions. In this appendix, we 

use different criteria to discuss the rate of convergence of SPSA for time-varying loss 

functions. The rate of convergence result shows that SPSA is an effective algorithm for 
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time-varying problems, such as the model-free adaptive control of nonlinear stochastic 

systems with unknown dynamics. The analysis here is for continuous stochastic 

optimization, which is different from the rate of convergence analysis in Chapter 3 on the 

discrete case.  

 

B.1 Introduction 

The continuous stochastic optimization problem with time-varying loss function is 

widely used in the real world. Many people use SPSA directly for time-varying problems 

without formal justification on the efficiency of SPSA. We want to provide a formal 

result on the rate of convergence of SPSA on time-varying loss function.  

Let us first see some examples of the applications related to time-varying problems. 

Neely (2006) considers the energy optimal control problem for time-varying wireless 

networks. The transmission rates are determined by link channel conditions from time to 

time, and the link conditions may change dramatically because of the environmental 

effects. Moore and Schneider (1996) mention the problem of simulated power-plant 

process on chemical process engineering, where the performance of the system depends 

on variations of the unsensed chemicals over time. Schwartz et al. (2006) consider 

simulation based optimization problem for the finical decision making and forecasting in 

inventory management of supply chain under the variations of supply and demand. 

Now let us discuss one important application of time-varying loss function, which is in 

the model-free adaptive control with nonlinear stochastic systems. Model-free adaptive 
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control is useful in many practical areas: wastewater treatment system, bio-inspired 

terrestrial micro-robot design, nuclear steam generator water level control, airplane 

design, and etc. Spall and Cristion (1998) discuss the problem of developing a model-free 

controller for general nonlinear stochastic systems by using SPSA. The reasons to use 

SPSA are that 1) the functions governing the system are not known; 2) the dimension of 

the problem may be high; 3) noise is involved in the system; and 4) the gradient is not 

generally computable. Spall and Chin (1994) consider the problem of optimal traffic light 

timing by using the model-free approach with SPSA. Spall and Cristion (1996) and Spall 

(1997) are two licensed U.S. patents related to the model-free control by using SPSA. 

Furthermore, many other papers have considered the model-free control problem by 

using SPSA or similar algorithms (Ji and Familoni, 1999, Song et al., 2008, Zhou et al., 

2008, Hahn and Oldham, 2010, Dong and Chen, 2012) in many practical areas. But none 

of these papers offer a formal rate of convergence analysis. The formal result on the rate 

of convergence of SPSA algorithm can provide theoretical support on the efficiency of 

the algorithm, which is quite similar to the purpose of the work of Stark and Spall (2003) 

where the authors discuss the formal rate of convergence analysis for evolutionary 

computation algorithms (such as genetic algorithms).     

Spall (1992) introduces the algorithm of SPSA and discusses the rate of convergence 

in terms of asymptotical normality for the case   6 , where  is the decaying rate of 

the finite difference approximation (1 )kc c k  (c > 0) and  is the decaying rate of 

the gain sequence (1 )ka a k A  (a > 0, A  0). But the asymptotical normality 

result requires fixed loss function and does not work for time-varying problems. We use 
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the mean square error as the measure of rate of convergence in the analysis, and discuss 

the rate of convergence for time-varying loss function by using SPSA. We show that 

SPSA is an efficient algorithm in solving time-varying problems in terms of big-O sense. 

Suppose ( )kL  is the loss function at time k, and ( )ky  is the corresponding noisy 

measurement of the loss function with mean 0 noise. The objective function for the time-

varying case here is  

 min ( ) min ( ( ))k kL E y , 

Suppose the optimal solution at time k is *
k , and there exists a *  such that * *

k  as 

k . Let ˆ
k  be the sequence generated by SPSA. 

This appendix is organized as: In Section B.2, we provide the description of SPSA. In 

Section B.3, we discuss the rate of convergence of SPSA under the criterion of 

2*ˆ
kE . In Section B.4, numerical results are presented. This appendix is concluded 

by Section B.5. 

 

B.2 Description of SPSA for Time-Varying Loss 

Function 

The basic steps of SPSA for time-varying function are listed below. As we have 

mentioned above, ( )kL  is the time-varying loss function, ( )ky  is the noisy measurement 
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of the loss function, and ka  = 1a A k , kc  = 1c A k , where a, c, ,  are 

positive and A is nonnegative. 

Step 1 Pick an initial guess 0
ˆ . 

Step 2 Generate 1 2[ , ,..., ]Tk k k kp , where k  has a user-specified distribution 

satisfying conditions discussed in Theorem B.1 below. A special case is when 

the ki  are independent Bernoulli random variables taking the values 1 with 

probability 1 2 . 

Step 3 Evaluate noisy measurements of loss function at ˆ
k k kc  and ˆ

k k kc : 

( )
ky  = ˆ( )k k k kL c  + 

( )
k  and ( )

ky  = ˆ( )k k k kL c  + ( )
k . Form the 

estimate of ˆˆ ( )k kg  

( ) ( )
1ˆˆ ( ) ,

2
k k

k k k
k

y y
c

g  

where ( )
k , ( )

k  are noise and 1 1 1
1,...,

T
k k kp . 

Step 4 Update the estimator according to the recursion  

 1
ˆ ˆ ˆˆ ( ).k k k k ka g  
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B.3 Rate of Convergence Analysis of SPSA in 

Time-Varying Loss Function 

Spall and Cristion (1998) show that under some conditions, SPSA converges for time-

varying loss function: *ˆ
k  a.s., where *  is the asymptotical optimal solution. Since 

the asymptotical normality result may not be derived for time-varying loss function, then 

we consider the 
2*ˆ

kE  as the criteria of convergence rate for the algorithm. The 

conditions we consider here for the mean square error convergence are not consistent 

with the conditions in Spall and Cristion (1998), because Spall and Cristion (1998) 

consider the almost sure convergence.   

Theorem B.1 Assume ( )kL  is a strictly convex function on p  for all k, and *  is 

the asymptotical optimal solution. Assume also (i) ka  = (1 )a A k , kc  = 

(1 )c A k , ka  > 0, kc  > 0, ka   0, kc   0 as k  , and 1 kk a  = , 

2
1 k kk a c  < ; (ii) the components of k  are independently and symmetrically 

distributed about 0 with | |ki  and 1| |ki  being uniformly bounded; (iii) for all k, 

( ) | , 0k k k kE  and the variance of k  is uniformly bounded over k; (iv) 

2ˆ ˆ( ) ( )k k k k k k k kE L c L c  is uniformly bounded over k; (v) there exists 0  

such that *ˆ ˆ( ) ( )T
k k kE g   

2*ˆ
kE  for all k; (vi) for all , (3) ( )kL   
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3 T T T
kL  exists continuously with individual elements smaller than or equal to

, where  is a positive constant; (vii) 2 1 2a ; Then  

 
22*

4

1
6

ˆ
1 .

6

k

O
k

E

O
k

 

    Remark: Since ( )kL  is a strictly convex function for all k, the Hessian matrix ( )k  

is positive definite. Thus, there exists k  on the line segment of ˆ
k  and *  such that 

ˆ( )k kg  = *ˆ( )( )k k k . Then *ˆ ˆ( ) ( )T
k k kg  = * *ˆ ˆ( ) ( )( )T

k k k k . By 

Corollary 5.4.5 of Horn and Johnson (1985), we have that there exists 0k and 0k  

such that 
2*ˆ

k k
* *ˆ ˆ( ) ( )( )T

k k k k  
2*ˆ

k k , which implies that 

2*ˆ
k k   *ˆ ˆ( ) ( )T

k k kg  
2*ˆ

k k . Therefore, condition (v) is related to 

the curvature of the loss function. 

Proof. The recursive formula of SPSA is  

 1
ˆ ˆ ˆˆ ( )k k k k ka g . (B.1) 

Subtracting both sides of eqn. (B.1) by * and calculating the norm squared for both sides, 

we have  

 
2 2 2* * * 2

1
ˆ ˆ ˆ ˆ ˆˆ ˆ2 ( ) ( ) ( )T

k k k k k k k k ka ag g . (B.2) 
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Adding and subtracting *ˆ ˆ2 ( ) ( )T
k k k ka g  to the right-hand side of eqn. (B.2), where 

ˆ( )k kg  is the real gradient of function  ( )kL  at point ˆ
k . Then, we have   

2

1

2 22

2

22

*ˆ

* *ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2 ( ) ( ) ( ) ( )

* * *ˆ ˆ ˆ ˆ ˆ ˆˆ2 ( ) 2 ( ) ( )

ˆˆ ( ) .

k

T

k k k k k k k k k k k k

T T

k k k k k k k k k k k

k k k

a a

a a

a

g g g g

g g g

g

 

 

 

 

 

  (B.3) 

Taking expectation on both sides of eqn. (B.3), we get 

 

2*
1

2* *

2* 2

ˆ

ˆ ˆ ˆ2 ( )

ˆ ˆ ˆ ˆˆ ˆ2 ( ) ( ) ( ) .

k

T
k k k k k

T
k k k k k k k k k

E

E a E

a E a E

g

g g g

 

 

 

(B.4) 

By condition (v), we get that the recursive relationship (B.4) can be written as 

 

2 2* * *
1

22

ˆ ˆ ˆ ˆ ˆˆ(1 2 ) 2 ( ) ( )

ˆˆ ( ) .

T
k k k k k k k k k

k k k

E a E a E

a E

g g

g

 
 

(B.5) 

Since 0ka , then there exists large integer value N , such that when k N , 1 2 ka  > 

0. Then by the recursive formula (B.5), we have that for k N  
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2*
1

2* *

1

*
1 1 1 1 1 1

2* 2

1

ˆ

ˆ ˆ ˆ ˆˆ(1 2 ) (1 2 )2 ( ) ( )

ˆ ˆ ˆˆ... (1 2 )2 ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ2 ( ) ( ) (1 2 ) ( )

k

k k T
i N i N N N N N N

i N i N

T
k k k k k k k

T
k k k k k k i N N N

i N

E

a E a a E

a a E

a E a a E

g g

g g

g g g

2 22 2
1 1 1

ˆ ˆˆ ˆ... (1 2 ) ( ) ( ) .

k

k k k k k k ka a E a Eg g

 

 

 

 

 

 

 (B.6) 

Let (1 2 )
k

k i
i N

T a , then inequality (B.6) can be written as 

2*
1

*22
2*

ˆ

ˆ ˆ ˆˆ2 ( ) ( )ˆˆ ( )
ˆ .

k

T
i i i i i ik ki i i

k N k k
i ii N i N

E

a Ea E
T E T T

T T

g gg
 

 

(B.7) 

    In the following, we consider the rate of convergence of the three terms on the right-

hand side of inequality (B.7) separately. First we discuss the upper and lower bounds of 

kT . By the definition of kT , we have log kT = log(1 2 )k
ii N a . By Taylor expansion, 

we have  

2 3

1

1 1log(1 2 ) 2 (2 ) (2 ) ...
2 3

(2 ) ,

i i i i

j
i

j

a a a a

a
j

 

so 
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1 1

(2 ) (2 )log
j jk k

i i
k

i N j j i N

a aT
j j

. (B.8) 

For each fixed j, we have  

(2 ) (2 )
(1 )

j jk k
i

j
i N i N

a a
j j A i

, 

and it is a decreasing function on i. Therefore,  

1

1

(2 ) (2 ) (2 )
(1 ) (1 ) (1 )

k kkj j j

j j j
i NN N

a a adx dx
j A x j A i j A x

, 

then let us solve the lower and the upper bounds of  (2 ) (1 )k j j
i N a j A i  in the 

inequality above for different cases: 1) j  2 ( j  > 1); 2) j = 1,  = 1 ( j  = 1); 3) j = 1 

0.5 1 ( j  < 1). 

    Case 1: j  2 ( j  > 1) 

 

1 1

1 1

(2 ) 1 1
( 1) (1 ) (2 )

(2 )
(1 )

(2 ) 1 1 .
( 1) ( ) (1 )

j

j j

jk

j
i N

j

j j

a
j j A N A k

a
j A i

a
j j A N A k

 

 

 

 

(B.9) 
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    Case 2: j = 1, 1 

 

(2 )2 log(2 ) log(1 )
(1 )

2 log(1 ) log( ) .

jk

j
i N

aa A k A N
j A i

a A k A N

 
 

(B.10) 

    Case 3: j = 1, 0.5 1 

 

1 1

1 1

2 (2 )(2 ) (1 )
1 (1 )

2 (1 ) ( ) .
1

jk

j
i N

a aA k A N
j A i

a A k A N

 
 

(B.11) 

Combining the results of inequalities (B.9) and (B.11), we have that for the case of

0.5 1 

1 1
1 1

2

1

1 1
1 1

2

2 (2 ) 1 1(2 ) (1 )
1 ( 1) (1 ) (2 )

(2 )

2 (2 ) 1 1(1 ) ( ) ,
1 ( 1) ( ) (1 )

j

j j
j

jk
i

j i N

j

j j
j

a aA k A N
j j A N A k

a
j

a aA k A N
j j A N A k

 

so by eqn. (B.8) we get the lower and upper bounds for kT  as  
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 1 1

1 1
2

1 1

1 1
2

2exp (2 ) (1 )
1

(2 ) 1 1exp
( 1) (1 ) (2 )

2exp (1 ) ( )
1

(2 ) 1 1exp
( 1) ( ) (1 )

j

j j
j

k

j

j j
j

a A k A N

a
j j A N A k

T

a A k A N

a
j j A N A k

.

 

 

 

 

 

 

(B.12) 

Similarly combining the results of inequalities (B.9) and (B.10), we have that for the case 

of 1 

1 1
2

1

1 1
2

(2 ) 1 12 log(2 ) log(1 )
( 1) (1 ) (2 )

(2 )

(2 ) 1 12 log(1 ) log( ) ,
( 1) ( ) (1 )

j

j j
j

jk
i

j i N

j

j j
j

aa A k A N
j j A N A k

a
j

aa A k A N
j j A N A k

 

so by eqn. (B.8) we get the lower and upper bounds for kT  as  

 

2

2 1 1
2

2

2 1 1
2

1 (2 ) (2 ) 1 1exp
( 1)1 (1 ) (1 ) (2 )

1 (1 ) (2 ) 1 1exp .
( 1)1 ( ) ( ) (1 )

a j

a j j
j

k

a j

a j j
j

A k a
j jA N A N A k

T

A k a
j jA N A N A k

 

 

 

(B.13) 
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Moreover, let us further discuss the lower and upper bounds in the inequalities (B.12) 

and (B.13) to make them simpler. In the following, we will show that some terms in the 

lower and upper bounds in the inequalities (B.12) and (B.13) are uniformly bounded. 

First we show that  

1
2

(2 ) 1
( 1) (1 )

j

j
j

a
j j A k

 

is uniformly bounded for all k.  

1
2

1
2

1 1
2 2

1
2

(2 ) 1
( 1) (1 )

1 (2 )
1 (1 )

(2 ) (2 )
1 (1 ) (1 )

1 (2 )
1 (1 )

2 1

j

j
j

j

j
j

j j

j j
j j

j

j
j

a
j j A k

a
j j A k

a a
j A k j A k

a
j A k

2

2 1 1
3

2 2

2 1 ( 2) 1
1

2

2 1

(2 ) 1 (2 )
1(1 ) (1 )

(2 ) 1 (2 )
2 1 2 1(1 ) (1 )

(2 ) (2 )
2 1 (1 )

j

j
j

j

j
j

a a
jA k A k

a a
jA k A k

a a
A k

2

1

2
2

2 1
1

(1 )

(2 ) (2 (1 ) )(2 ) .
(2 1)(1 )

j

j
j

j

j

j A k

a a A ka
jA k
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By Taylor expansion, we have  

 
1

2 (2 (1 ) )log 1
(1 )

j

j

a a A k
jA k

. 

Therefore,  

 

1
2

2
2

2 1
1

2
2

2 1

2
2

2 1

(2 ) 10
( 1) (1 )

(2 ) (2 (1 ) )(2 )
(2 1)(1 )

(2 ) 2(2 ) log 1
(2 1)(1 ) (1 )

(2 ) 2(2 ) log 1
(2 1)(1 ) (1 )

j

j
j

j

j

a
j j A k

a a A ka
jA k

a aa
A k A k

a aa
A N A N

,

 

 

 

 

 

 

(B.14) 

which indicates that  

1
2

(2 ) 1
( 1) (1 )

j

j
j

a
j j A k

 

is uniformly bounded on k. By similar calculation, we also have 

 
1

2

2
2

2 1

(2 ) 10
( 1) (1 )

(2 ) 2(2 ) log 1 ,
(2 1)(1 ) (1 )

j

j
j

a
j j A N

a aa
A N A N

 

 

 

(B.15) 
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1

2

2
2

2 1

(2 ) 10
( 1) (2 )

(2 ) 2(2 ) log 1 ,
(2 1)(2 ) (2 )

j

j
j

a
j j A k

a aa
A N A N

 
 

(B.16) 

and 

 
1

2

2
2

2 1

(2 ) 10
( 1) ( )

(2 ) 2(2 ) log 1 ,
(2 1)( ) ( )

j

j
j

a
j j A N

a aa
A N A N

 
 

(B.17) 

which indicates that 

1
2

(2 ) 1
( 1) (1 )

j

j
j

a
j j A N

 and 1
2

(2 ) 1
( 1) ( )

j

j
j

a
j j A N

 

are bounded, and 

1
2

(2 ) 1
( 1) (2 )

j

j
j

a
j j A k

 

is uniformly bounded on k. In all, for 0.5 1, by inequality (B.12), (B.14), (B.15), 

(B.16) and (B.17), there exist , 0  such that  

 1 12 2exp (1 ) exp (1 )
1 1k

a aA k T A k . (B.18) 

Similarly, for 1, by inequality (B.13), (B.14), (B.15), (B.16) and (B.17), there exist 

, 0  such that  
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 2 2
1 1

(1 ) (1 )ka aT
A k A k

. (B.19) 

After getting the upper and lower bounds of kT  from inequality (B.18) and (B.19), we 

know that the first term on the right-hand side of inequality (B.7)  
2*ˆ

k NT E  goes to 

0 at the rate of  

 

1

2

2exp (1 ) , 0.5 1,
1

1 , 1.a

aO A k

O
k

 
 

(B.20) 

   Now let us start to discuss the second term on the right-hand side of inequality (B.7). 

By the definition of ˆˆ ( )k kg  and condition (iii), we have 

2
2 1

22

1 1
2 2

22

2
2

1

ˆ ˆ( ) ( )ˆˆ ( )
2

ˆ ˆ( ) ( )

4 4

ˆ ˆ( ) ( )

4 4

k k k k k k k k k k
k k k

k

k kk k k k k k k k T T
k k k k

k k

p k kk k k k k k k k
ki

ik k

L c L cE E
c

L c L c
E E

c c

L c L c
E E

c c

g

2
2

1
.

p

ki
i

 

Due to condition (ii), (iii), and (iv), there exists 0  such that 
2 2ˆˆ ( )k k kE cg . Thus, 

the second term on the right-hand side of inequality (B.7) can be bounded as  
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22 2 2ˆˆ ( )k ki i i i i
k k

i ii N i N

a E a cT T
T T

g
. 

Now let us calculate the rate of convergence of  

2 2k
i i

k
ii N

a cT
T

. 

Through inequality (B.18) and (B.19) on the lower and upper bounds of kT , we have  
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(B.21a) 

 

(B.21b) 

and we see that the difference between the lower and upper bound is a constant scalar. In 

the following, we calculate the rate of convergence of the lower (upper) bound. 

 When 0.5 1 , by ignoring the multiplier of constant scalar, the term in the 

inequality (B.21a) is  
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First we will show that 1 (2 2 )2exp (1 ) (1 )
1

a A i A i  is an increasing 

function on i. The derivative of 1 (2 2 )2exp (1 ) (1 )
1

a A i A i  is  
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Due to condition (i), we know 2 2  > 1, which implies that  

2 2 2 0
11

a
A iA i

. 

Therefore, 1 (2 2 )2exp (1 ) (1 )
1

a A i A i  is an increasing function on i, 

which follows that  
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then  
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(B.22) 

In the following, we will solve out the rate of convergence of the lower and upper bounds 

in inequality (B.22). For the lower bound, we have 
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(B.23) 

Now let compare the rate of convergence of the third term on the right-hand side of eqn. 

(B.23) with the term on the left-hand side of eqn. (B.23). For the ratio of the term on the 



269 
 

left-hand side of eqn. (B.23) over the third term on the right-hand side of eqn. (B.23), 

after ignoring the multipliers, by L’Hôptial’s rule we have  
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which indicates that the term on the left-hand side of eqn. (B.23) goes to 0 at a lower rate 

than the third term on the right-hand side of eqn. (B.23) that can be expressed as 
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Since the second term on the right-hand side of eqn.(B.23) goes to 0 at a higher rate than 

the term on the left-hand side of eqn. (B.23) (second term = o(term on the left-hand side)), 

then the term on the left-hand side of eqn. (B.23) and the first tem on the right-hand side 

of eqn. (B.23) go to 0 at the same rate, which means  
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Similarly, for the upper bound we get  
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Therefore, when 0.5 1 , by inequality (B.22) and relationship (B.21a), we have 

2 2( )k
k i i ii NT a c T  = ( 2 )1O k , which indicates that the second term  
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ii N

a E
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T

g
 

on the right-hand side of inequality (B.7) goes to 0 at the  rate of  
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 ( 2 )
1 .O

k
 (B.24) 

    When  = 1, by ignoring the multiplier of constant scalar, the term in inequality 

(B.21b) is 
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Moreover, when 2a   2 2 , 2 (2 2 )(1 ) aA i  is an increasing function on i, then 

we have 
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Similarly, when 2 2 2a , 2 (2 2 )(1 ) aA i  is a decreasing function on i, then we 

have 
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and due to condition (vii)  2 1 2a , we have 
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Then because of condition (vii), we have the lower and upper bounds of  

2 2( )k
k i i ii NT a c T  for both cases go 0 at the rate of  
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Therefore, when 1 we have 2 2( )k
k i i ii NT a c T  = (1 2 )1O k , which indicates that 

the second term  
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on the right-hand side of inequality (B.7) goes to 0 at the  rate of  

 (1 2 )
1O

k
. 
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Overall, we have that the second term on the right-hand side of inequality (B.7) goes to 0 

at the rate of  

 ( 2 )
1 .O

k
 

    Now let us start to discuss the third term on the right-hand side of inequality (B.7). We 

have 
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By Cauchy–Schwarz inequality, we have 
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By condition (ii), (iii), (vi) and using similar arguments as in the Lemma 1 of Spall 
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which indicates that  
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By Jensen’s inequality, we further have
2* *ˆ ˆ

k kE E . Then the third term 

on the right-hand side of inequality (B.7) is bounded by the upper bound  
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which implies that inequality (B.7) can be rewritten by substituting the third term on the 

right-hand side by its upper bound 
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(B.25) 

    Before showing the rate of convergence of the third term on the right-hand side of 

inequality (B.25), let us first show that 
2*ˆ

kE  converges to 0. By way of 

contradiction, suppose 
2*ˆ

kE  does not converge to 0. For the inequality (B.25), we 

have shown that the first term and the second term on the right-hand side converge to 0. 

Since the term on the left-hand side of inequality (B.25) 
2*ˆ

kE  does not converge 

to 0, then there exists 0 , such that we have a relationship between the third term on 

the right-hand side of inequality (B.25) and the term 
2*ˆ

kE on the left-hand side of 

inequality (B.25) as  
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Meanwhile, by the similar arguments for the rate of convergence of the second term on 

the right-hand side of inequality (B.25), we have 
22k
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 goes to 0 at the rate of 

21O k . But 
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kE  does not converge to 0, then we have 
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which is a contradiction. Thus, we have 
2*ˆ 0kE  

Since the first, second, and the third term on the right-hand side of inequality (B.25) 

goes to 0 at least at the polynomial rates in the big-O sense, then we can assume that 

2*ˆ 0kE  in terms of 2( )tO k  for 0t . Next, we solve out the value of t. Since 

2*ˆ 0kE  in terms of 2( )tO k , then by the similar arguments for the rate of 

convergence of the second term on the right-hand side of inequality (B.25), we have that 

the third term on the right-hand side of inequality (B.25) goes to 0 at the rate of  

 2
1

tO
k

. (B.26) 
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In summary, by formula (B.20), (B.24) and (B.26), we have the convergent rate of 

each term on the right-hand side of inequality (B.25), which is summarized in Table B.1. 

 

Table B.1 The convergence rate of each term in inequality (B.25).  

 1 0.5 1 

First term  2
1
aO

k
 

12 (1 )
1

a A k
O e  

Second term (1 2 )
1O

k
 ( 2 )

1O
k

 

Third term ( 2 )
1

tO
k

 ( 2 )
1

tO
k

 

2*ˆ
kE  2

1
tO

k 2
1

tO
k

 

From Table B.1, we know that the first term goes to 0 at a higher rate than the second and 

the third terms (first term = O(second term)). Moreover, since all terms on the right-hand 

side of inequality (B.25) are positive, then the multiplier of the leading term in the big-O 

function must be positive for all terms. In Table B.1, we have that when 2t   2 , 

the third term go to 0 at a rate not slower than the rate at which the second term goes to 0 

(third term = O(second term)), which implies the rate of convergence of 
2*ˆ

kE  = 
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( 2 )1O k . Therefore, 2t = 2 , which follows that  ( 2 ) 2 2   2 , 

implying   6 . Thus, when   6 ,  
2*ˆ

kE  = ( 2 )(1 )O k . On the other 

side, when 2t  < 2 , the second term go to 0 at a rate not slower than the rate at 

which the third term goes to 0 (second term = O(third term)), which implies the rate of 

convergence of 
2*ˆ

kE  = ( 2 )1 tO k . Therefore, 2t = 2t , which follows that  

2 2  < 2 , implying  < 6 . Thus, when  < 6 ,  
2*ˆ

kE  =  4(1 )O k . 

In all, we have 
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(B.27) 

Q.E.D. 

Theorem B.1 shows the rate of convergence of SPSA in the big-O sense for the 

problem of time-varying loss function. By these results, we see that when  = 6 , 

2  = 4 , which make these two forms of convergence rate in eqn. (B.27) to be 

consistent at the critical point. The optimal rate of convergence for 
2*ˆ

kE  can be 

achieved when 1 and 1 6 , which is  2 3(1 )O k . Time-varying problem is a more 

general case of the fixed loss function problem, and compared with the rate of 

convergence result in Spall (1992), we find that our result is consistent with Spall (1992) 

for the case of   6 . We also discuss the case of  < 6 , which is not considered 
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in Spall (1992), and our result indicates that only using the coefficients that satisfy   

6  might be enough for practical users.  

 

B.4 Numerical Results 

From condition (i) of Theorem B.1, we have  > 0,  > 0, 2 2 > 1 and   1. In 

the following, we do the numerical experiments to test the results of the rate of 

convergence in eqn. (B.27). We will pick two sets of ( , )  with one set satisfying 

6  and with the other set satisfying 6 . We will plot figures to show that the 

results in eqn. (B.27) are true. 

The time-varying loss function we consider is a simple periodical function ( )kL  = 

(1 1 (mod( ,30) 2))T k , where mod ( , )  is a modulo function that returns the 

remainder of division of one number by another.  The noises  are i.i.d. (0,1)N . We set 

a = 0.1, c = 0.1, and A = 1000. The dimension of the problem is p = 10. The initial guess 

is set as 0
ˆ  = [1, …, 1]T. We do 10 replicates with 100,000 iterations in each replicate. In 

Figure B.1, we show the result for the set  = 1 and  = 10 , and we see that this set 

of  ( , )  satisfyies 6 . Figure B.1 plots the sample means of the values of 

2*ˆ
kk  for  = 4  = 2 5  and  = 2  = 4 5 . We see that  the sample mean of 

24 *ˆ
kk  goes to a constant scalar, while the sample mean of 

22 *ˆ
kk is 
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diverging. These results are consistent with eqn. (B.27), which indicates under the case of 

6 , the rate of convergence of 
2*ˆ

kE = 4(1 )O k  and 21 k  goes to 0 at a 

faster rate than 
2*ˆ

kE . In Figure B.2, we show the result for the set  = 1 and  = 

5 , and we see that this set of ( , )  satisfies 6 . Figure B.2 plots the sample 

means of the values of 
2*ˆ

kk  for  = 4  = 4 5  and  = 2  = 3 5 . We see 

that the sample mean of 
22 *ˆ

kk  goes to a constant scalar, while the sample 

mean of 
24 *ˆ

kk goes to a really large value. These results are consistent with eqn. 

(B.27), which indicates under the case of 6 , the rate of convergence of 

2*ˆ
kE = 2(1 )O k  and 41 k  goes to 0 at a faster rate than 

2*ˆ
kE . 
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Figure B.1 The numerical result for the case of  = 1,  = 10 . The set ( , )  

satisfies 6 . The vertical axis represents the sample mean of 
2*ˆ

kk  for  = 

4  = 2 5  and  = 2  = 4 5 . We see that for the case of 6 , the curve for the 

sample mean of 
24 *ˆ

kk  is flat for large k. However, the curve for the sample mean 

of 
22 *ˆ

kk  is diverging. The number of replicates is 10, and the number of 

iterations in each replicate is 100,000. 
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Figure B.2. The numerical result for the case of  = 1,  = 5 . The set ( , )  satisfies 

6 . The vertical axis represents the sample mean of 
2*ˆ

kk  for  = 4  = 

4 5  and  = 2  = 3 5 . We see that for the case of 6 , the curve for the sample 

mean of 
22 *ˆ

kk  is flat for large k. However, the curve for the sample mean of 

24 *ˆ
kk  is diverging. The number of replicates is 10, and the number of iterations 

in each replicate is 100,000. 
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Overall, we see that under some conditions, the rate of convergence of ˆ{ }k  is based 

on the value of  and . When the set of ( , )  satisfies 6 , we have 

2* 4ˆ (1 )kE O k . When 6 , we have 
2* 2ˆ (1 )kE O k . We see 

that these rates are reasonable, so the SPSA method is a quite good method for time-

varying loss function. 

 

B.5 Conclusions 

    This appendix discusses the rate of convergence of SPSA for time-varying loss 

function rather than the fixed loss function of former rate of convergence analysis (Spall, 

1992). Of course, the MSE (and closely related variance of the estimator) are popular 

measures of accuracy in practical problems. We show that the rate of convergence in 

terms of MSE 
2*ˆ

kE  is 2(1 )O k  when 6 , and 4(1 )O k  when 6 . 

By the result of the convergence rate discussed here, we see that SPSA is an efficient 

algorithm in solving the time-varying problems in the big-O sense. Time-varying 

problem is a more general case of the fixed loss function problem considered in Spall 

(1992), we find that our result is consistent with Spall (1992) for the case of   6 . 

We also discuss the case of  < 6 , which is not discussed in Spall (1992), and our 

result indicates that only considering the coefficients that satisfy   6  might be 

enough for practical users, who want to use SPSA to solve problems, because in our 
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results the case of  < 6  may not achieve higher convergence rate than the case of  

 6  in the big-O sense. 
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Appendix C 

Numerical Experiments Results on the 

Properties of the Upper Bound for 

Mean Squared Error 

 

After discussing the properties of the upper bound on 
2*ˆ

kE  theoretically in 

Chapter 3, we now present the result of some tests to see the properties of the upper 

bound numerically. In this appendix, we only consider the case when ki  are 

independent Bernoulli random variables taking the values 1  with probability 1 2 . Thus 

in the inequality (3.3a) and (3.3b), we replace l  with p.  
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C.1 Effects of Coefficients in the Gain Sequence 

In inequality (3.3a), we find the upper bound is a function of , A, a, , b, l , and

2*
0

ˆE . In this section, we do the tests on 1) the importance of the first term in the 

upper bound in inequality (3.3a), and 2) the effects of the coefficients , A, and a on the 

upper bound in inequality (3.3a). We use the sensitivity analysis for these tests, which 

means in each test we only change one coefficient and fix all the rest. In Section 3.2, we 

discuss the properties of the upper bound, and here we do the numerical tests to confirm 

these results.  From Proposition 3.1, we know that the importance of the first term in the 

upper bound in inequality (3.3a) is strictly decreasing (monotone) with k. In addition, 

from Propositions 3.2 and 3.3, the effects of the coefficients , A, and a on the upper 

bound in inequality (3.3a) are monotone at different stages (early iterations and late 

iterations). Since all these relationships are monotone, we can just pick one reasonable 

sets of coefficients as the base case. For example, suppose the base case of coefficients is: 

 = 0.65, A = 100, a = 0.1. Other parameters of the upper bound are:  = 1, b = 10, l  = 

100, 
2*

0
ˆE  = 100. The number of iterations is m = 10000. 

Note that a potential future research direction would be to consider some or all of 

these SA coefficients as “nuisance parameters” (e.g., Basu, 1977; Spall, 1989; and Spall 

and Garner, 1990). Such a characterization might allow a formal (theoretical) 

quantification of the effect of the coefficients on the MSEs of the SA parameter estimates. 

We do not pursue this direction here, rather relying on numerical experiments.  
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First of all, we show in Figure C.1 about the decaying of the importance of the first 

term  

1 1 2*
0

2 (1 ) 2 (1 ) ˆexp
1 1

a A a A k E  

over the upper bound in the inequality (3.3a). We plot the cases of  = 0.55 and  = 

0.65. We see that the ratio of the first term over the upper bound (we call it the proportion 

of the first term) is decreasing and it decreases faster for the case when  is smaller. 

From this phenomenon, we see that in the early iterations the first term of the upper 

bound is more significant than the second term.  

 

Figure C.1 Proportion of the first term over the upper bound for = 0.55 and =  0.65. 

The proportion of the first term decreases with k.  
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 = 0.55,  a = 0.1,  A = 100 
 = 0.65,  a = 0.1,  A = 100 
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The upper bound is a function on the coefficients of , a and A. In the following 

numerical tests, we discuss the effects of these coefficients on the value of the upper 

bound in inequality (3.3a). These numerical tests just provide the properties of the upper 

bound and do not provide the exact rules of coefficients selection.  

In Figure C.2, we find that a lower value of  provides a smaller upper bound in the 

early iterations; while a higher value of  provides a lower upper bound in the later 

iterations. Thus, we see that there is a crossing point for the upper bounds based on 

different values of .  

 

Figure C.2 The plots of the upper bounds for the case of  = 0.55 and  = 0.65. Smaller 

 provides lower upper bound in the early iterations, and bigger  provides lower upper 

bound in the later iterations. The vertical axis is in the logarithm scale. 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-1

10
0

10
1

10
2

Number of Iterations

V
al

ue
s 

of
 th

e 
U

pp
er

 B
ou

nd
 (L

og
 S

ca
le

)

 

 
 = 0.55, a = 0.1,  A = 100 
 = 0.65,  a = 0.1,  A = 100 



288 
 

In Figure C.3, we consider the effect of a, and we see that larger a provides lower 

upper bound for early iterations, but it does not lead to lower upper bound in the later 

iterations. Comparing the upper bound for a = 0.1 with the upper bound for a = 1, we see 

that the upper bound for a = 1 provides lower values in the early iterations, but a = 1 is 

too large for the later iterations. Thus, there is a clear crossing point between the upper 

bounds for a = 0.1 and a = 1, which can be seen in Figure C.3. In Figure C.4, we discuss 

the effect of A, and we see that the effect of A disappears gradually with the increase of k. 

 

 

Figure C.3 Effect of coefficient a for the cases of a = 0.1 and a = 1. Bigger a provides 

lower upper bound in the early iterations, and smaller a provides lower upper bound in 

the later iterations. 
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Figure C.4 Effect of coefficient A for the cases of A = 10 and A = 1000. Smaller A 

provides lower upper bound in the early iterations. The vertical axis is in the logarithm 

scale. 

 

In all, these numerical results are consistent with the theoretical analysis of the 

properties of the upper bounds in Section 3.2. Moreover, in Section 4.2 we see that the 

performance of DSPSA in multiple settings has the same properties as the upper bound, it 

indicating that the upper bound is meaningful in the sense that it captures the true 

properties of the performances of DSPSA.  
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C.2 Discussions on the Choice of  and b 

After discussing the effects of , A, and a on the upper bound, we start to consider the 

other two important parameters in the upper bound:  and b. In the following, we check 

the properties of the upper bound relative to the choice of  and b. We consider the 

special case that ki  are independent Bernoulli random variables taking the values 1

with probability 1 2 . From the condition (v) of Theorem 3.1, we have the relationship 

that  

0 <  * * *ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( )T T
k k k kE Eg  

for all 0k . Furthermore, b is a uniform upper bound for  

2( )k kE  + 
2ˆ ˆ( ) ( )k kE L L   

when 0k . The choices of  and b affect the tightness of the upper bound on 

2*ˆ
kE . Generally, it is not easy to find the good values of  and b. 

Different from the numerical tests of the effects of , A, and a on the upper bound in 

inequality (3.3a), here we want to discuss the effects of  and b on the tightness of the 

upper bound in inequality (3.3a). Due to the definition of  and b, we need to specify the 

loss function in the tests below, while in the numerical tests in Section C.1 we do not 

need to specify the form of the loss function. Here we use the discrete separable quadratic 



291 
 

function T  as an example to discuss the choice of  and b. Suppose the noises k  are 

i.i.d. normal distributed 2(0, )N , 

By the same arguments in Proposition 2.3, we have  

* * * *ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ) 2( ) ( ) 2( ( ) ) ( )T T T
k k k k k k kg . 

Then, by condition (v) in Theorem 3.1 we have for all k 

 
* * *

* *

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ) ( )
2

ˆ ˆ( ) ( )

T T
k k k k k

T
k k

E E

E
. (C.1) 

From inequality (C.1), we know  is the uniform lower bound for all 0k . When the 

initial guess is far away from the optimal solution * , then in the early iterations, the 

magnitude of ˆ ˆ( )k k  is significantly small compared to that for *ˆ
k . Thus, for the 

case of far-away initial guess, we ignore the second term of the numerator on the right-

hand side of inequality (C.1), which indicates in the early iterations, we have 2 . In 

the later iterations, ˆ
k  is very close to the optimal solution * , and we know the 

magnitude of ˆ ˆ( )k k  is much more significant than that of *ˆ
k  , which indicates 

that the upper bound for  in inequality (C.1) is very large in the late iterations. Overall, 

based on the discussions above, we can choose  as   

 2 . (C.2) 

    Now let us consider the value of b, and b is a uniform upper bound for  



292 
 

2( )k kE  + 
2ˆ ˆ( ) ( )k kE L L  . 

Since the noises k  are i.i.d. normal distributed 2(0, )N , we have 2( )k kE = 22 . 

Furthermore, for the discrete separable quadratic function of interest, we have 

 

2

2

2

ˆ ˆ( ) ( )

1 1ˆ ˆ( ) ( )
2 2

1 1ˆ ˆ ˆ( ) ( )
2 2

ˆ ˆ ˆ4 ( ) ( ) .

k k

k k k k

k k k k k

T T
k k k k k

E L L

E L L

E E L L

E E

 

 

 

 

 

(C.3) 

Since the components of k  are independently Bernoulli 1  distributed, then we have 

ˆT
k k k pE I , which implies that eqn. (C.3) can be written as  

2ˆ ˆ ˆ ˆ( ) ( ) 4 ( ) ( ) .T
k k k kE L L E  

As we know that b is the uniform upper bound for all 0k . Therefore, when the initial 

guess is far away from the optimal solution, then the choice of b is restricted by some 

large values of 
2ˆ ˆ( ) ( )k kE L L  in the early iterations, which implies that in order to 

fit the performance of DSPSA well in the early iterations, the value of b might be very 

large, which might be too big for the later iterations. Thus, tight performance of the upper 

bound in (3.3a) in the early iterations might not indicate the tight performance for later 
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iterations. Under the case of an initial guess far from * and the separable quadratic loss 

function, we assume the initial guess provides the largest value of 
2ˆ ˆ( ) ( )k kE L L , 

then we estimate the value of b as  

 2
0 0

ˆ ˆ2 4 ( ) ( )Tb . (C.4) 

    By using the estimated value of  and b in formula (C.2) and (C.4), we test the effects 

of   and b on the upper bound for the separable quadratic function numerically. Let us 

set the coefficients to be 0.501, A = 1000, a = 0.05, and based on this setting we 

have 2 (1 ) 1a A k  for all 0k .We test both low-dimensional (p = 5) and high-

dimensional cases (p = 200). The initial guess are 510 1  and 20010 1 , respectively. The 

noises of the loss function are i.i.d. (0,1)N . The number of replicates is 20 and in each 

replicate the number of iterations is 10000. 

Here the initial guess is far from the optimal solution; the noise is not large; the gain 

step size is small. Then, the sequence ˆ
k  has a low probability to go far more away 

than the initial guess. Thus, the unit hypercube centered by 0
ˆ( ) 10.5 p1  may have 

the largest value among all 
2ˆ ˆ( 2) ( 2)k k k kE L L with 0k . Then, we can 

set b = 2 + 0 0
ˆ ˆ4 ( ) ( )T  = 2207 for p = 5, and b = 2 + 0 0

ˆ ˆ4 ( ) ( )T  = 88202 for p = 

200. In Figure C.5, we see that the upper bound is fairly accurate for the actual 

performance of DSPSA for the separable quadratic loss function in the low dimensional 

case. However, in Figure C.6, for the high dimensional case, the bound is really tight for 
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the early iterations and not very tight for the later iterations. In both Figure C.5 and 

Figure C.6, we divide the mean square error and the upper bound of the mean square 

error by 
2*

0
ˆ to normalize them. The vertical axis in both Figure C.5 and Figure C.6 

is the sample mean of 
2*ˆ

k  over  
2*

0
ˆ  , where the sample mean of 

2*ˆ
k  

is the arithmetic mean of the observed values of 
2*ˆ

k across independent replicates. 

 

 

 

 

 

 

 

 

 

Figure C.5 Performance of DSPSA and the upper bound for the separable loss function 

for the case of dimension 5 ( =2 and b = 2207). The upper bound is really tight for this 

case. Each curve represents the sample mean of 20 independent replicates. 
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Figure C.6 Performance of DSPSA and the upper bound for the separable quadratic loss 

function on dimension of 200 ( =2 and b = 88202). The upper bound is tight in the early 

iterations, and the upper bound is not very tight in the later iterations. Each curve 

represents the sample mean of 20 independent replicates. 
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in the early iterations, and it means that the first term of the upper bound fits the 

performance of DSPSA really well in the early iterations.  

From Figure C.7, we see that the proportion of the first term decreases faster for the 

high-dimensional case than for the low-dimensional case. For the low-dimensional case, 

the proportion of the first term is still higher than 50% when the error is already very 

close to 0. Thus, the upper bound does a good job for the low-dimensional case. However, 

for the high-dimensional case, the proportion of the first term decreases too fast. When 

the second term starts to dominate the upper bound, the value of b estimated by the initial 

guess might be too large for the later iterations.  

 

Figure C.7 Proportion of the first term (initial guess term) in the upper bound for both 

low-dimensional case and high-dimensional case. The proportion of the first term 

decreases faster under high-dimensional case.   
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Here we propose one way to improve the tightness of the upper bound in the later 

iterations. We have picked 2  in the numerical test above, but by condition (v) in 

Theorem 3.1 we know all positive values smaller than 2 are also valid. Thus, in our 

proposed way, we pick a smaller value for  and at the same time we decrease the value 

of b. We explain the reasoning in the following. The first term of the upper bound (3.3a) 

only contains , so decreasing the value of  hurts the tightness of the upper bound in 

the early iterations. Due to this sacrifice in the early iterations, in practice we can 

decrease the value of b to improve the tightness of the upper bound in the later iterations, 

even though by the definition of b, decreasing the value of b is not allowed.   

In Figure C.8, we show the graph for high-dimensional case when we set =1.2 and b 

= 5000. Similar as Figure C.5 and C.6, we divide the mean square error and the upper 

bound of the mean square error by 
2*

0
ˆ to normalize them. The vertical axis in 

Figure C.8 is sample mean of 
2*ˆ

k  over  
2*

0
ˆ , where the sample mean of 

2*ˆ
k  is the arithmetic mean of the observed values of 

2*ˆ
k across independent 

replicates. 

Comparing Figure C.6 with Figure C.8, we see that when decreasing the values of  

and b at the same time, the upper bound in early iterations is still reasonable and the 

tightness in later iterations has been significantly improved. 
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Figure C.8 Performance of DSPSA and the upper bound for the separable loss function 

on dimension of 200 ( =1.2 and b = 5000). The upper bound is reasonably tight in both 

early iterations and late iterations.  Each curve represents the sample mean of 20 

independent replicates. 
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