1,205 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Fall prediction using behavioural modelling from sensor data in smart homes.

    Get PDF
    The number of methods for identifying potential fall risk is growing as the rate of elderly fallers continues to rise in the UK. Assessments for identifying risk of falling are usually performed in hospitals and other laboratory environments, however these are costly and cause inconvenience for the subject and health services. Replacing these intrusive testing methods with a passive in-home monitoring solution would provide a less time-consuming and cheaper alternative. As sensors become more readily available, machine learning models can be applied to the large amount of data they produce. This can support activity recognition, falls detection, prediction and risk determination. In this review, the growing complexity of sensor data, the required analysis, and the machine learning techniques used to determine risk of falling are explored. The current research on using passive monitoring in the home is discussed, while the viability of active monitoring using vision-based and wearable sensors is considered. Methods of fall detection, prediction and risk determination are then compared

    Spectral parameters for finger tapping quantification

    Get PDF
    A miniature inertial sensor placed on fingertip of index finger while performing finger tapping test can be used for an objective quantification of finger tapping motion. Temporal and spatial parameters such as cadence, tapping duration, and tapping angle can be extracted for detailed analysis. However, the mentioned parameters, although intuitive and simple to interpret, do not always provide all the necessary information regarding the subject's motor performance. Analysis of frequency content of the finger tapping movement can provide crucial information about the patient's condition. In this paper, we present parameters extracted from spectral analysis that we found to be significant for finger tapping assessment. With these parameters, tapping's intra-variability, movement smoothness and anomalies that may occur within the tapping performance can be detected and described, providing significant information for further diagnostics and monitoring progress of the disease or response to therapy

    Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks

    Get PDF
    In this paper, we study the problem of activity recognition and abnormal behaviour detection for elderly people with dementia. Very few studies have attempted to address this problem presumably because of the lack of experimental data in the context of dementia care. In particular, the paper investigates three variants of Recurrent Neural Networks (RNNs): Vanilla RNNs (VRNN), Long Short Term RNNs (LSTM) and Gated Recurrent Unit RNNs (GRU). Here activity recognition is considered as a sequence labelling problem, while abnormal behaviour is flagged based on the deviation from normal patterns. To provide an adequate discussion of the performance of RNNs in this context, we compare them against the state-of-art methods such as Support Vector Machines (SVMs), Na¨ıve Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Models (HSMM) and Conditional Random Fields (CRFs). The results obtained indicate that RNNs are competitive with those state-of-art methods. Moreover, the paper presents a methodology for generating synthetic data reflecting on some behaviours of people with dementia given the difficulty of obtaining real-world data
    corecore