4 research outputs found

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    Manufacturing process data analysis pipelines: a requirements analysis and survey

    Get PDF
    Smart manufacturing is strongly correlated with the digitization of all manufacturing activities. This increases the amount of data available to drive productivity and profit through data-driven decision making programs. The goal of this article is to assist data engineers in designing big data analysis pipelines for manufacturing process data. Thus, this paper characterizes the requirements for process data analysis pipelines and surveys existing platforms from academic literature. The results demonstrate a stronger focus on the storage and analysis phases of pipelines than on the ingestion, communication, and visualization stages. Results also show a tendency towards custom tools for ingestion and visualization, and relational data tools for storage and analysis. Tools for handling heterogeneous data are generally well-represented throughout the pipeline. Finally, batch processing tools are more widely adopted than real-time stream processing frameworks, and most pipelines opt for a common script-based data processing approach. Based on these results, recommendations are offered for each phase of the pipeline. Document type: Articl

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Diseño de organizaciones virtuales ubícuas utilizando desarrollo dirigido por modelos

    Full text link
    Hoy en día los avances en la miniaturización de sistemas electrónicos han impulsado el desarrollo de dispositivos o artefactos que incorporan capacidades computacionales y de comunicación. Estos dispositivos pueden proveer de una serie de servicios en diferentes entornos gracias a su tecnología empotrada, como por ejemplo: reconocimiento de personas, localización de usuarios en un entorno, ajuste automático de la temperatura e iluminación de un entorno, etc. Este potencial de procesamiento y comunicación, está permitiendo crear nuevas aplicaciones distribuidas, donde el rol principal no lo tiene el computador personal, sino los diferentes dispositivos empotrados en el entorno: sensores, interfaces, actuadores, teléfonos móviles, etc., Esto ha generado novedosas áreas de aplicación como: Internet de Cosas (Internet of Things), Computación Móvil, Redes de Sensores, Sistemas Ubícuos, Inteligencia Ambiental, etc. Estos avances han conducido al desarrollo de un nuevo paradigma, computación orientada a la interacción, es decir, la computación ocurre a través de los actos de comunicación entre las entidades. Por lo tanto, es lógico pensar que este paradigma requiere, desde un punto de vista de diseño, el desarrollo de aplicaciones en diferentes plataformas de software y de hardware, debido a lo heterogeneo de los sistemas de computación, lenguajes, sistemas operativos, y objetos (dispositivos físicos: sensores, actuadores, interfaces, etc.) dispersos en el entorno. Dicha heterogeneidad presente en los sistemas ubícuos, representa todo un reto a la hora de diseñarlos. La ingeniería de software basada en sistemas multi-agente, en particular, los sistemas multi-agente abiertos (como las Organizaciones Virtuales), tiene la capacidad de abordar los retos al diseñar sistemas ubícuos. A ello hay que unir, que varias metodologías de desarrollo de software han adoptado el enfoque “dirigido por modelos” (model-driven) para realizar el análisis y el diseño del software. Dicho enfoque puede ser adoptado en los sistemas multi-agente, para mejorar el proceso de desarrollo y la calidad del software basado en agentes. Así mismo, el desarrollo dirigido por modelos proporciona un soporte apropiado para abordar este tipo de sistemas, ya que nos permite el uso de modelos como principal elemento abstracto para el diseño del sistema, por medio de la interconexión de un conjunto de componentes visuales. En este trabajo proponemos el desarrollo de sistemas ubícuos utilizando una organización virtual, creando una Organización Virtual Ubícua, la cual es diseñada usando el enfoque de desarrollo dirigido por modelos. De forma más detallada, este trabajo presenta tres propuestas. La primera, presenta un conjunto de meta-modelos para diseñar una Organización Virtual Ubícua, llamado πVOM, que utiliza conceptos generales que se abstraen de las metodologías y de las plataformas de agentes, lo permite diseñar aplicaciones utilizando abstracciones generales de alto nivel, evitando los detalles de implementación de bajo nivel. Así mismo, se presentan dos modelos de transformaciones, que permiten obtener el modelo de implantación de la organización (con los agentes, entidades y dispositivos), por medio de transformaciones semi-automáticas dadas por la metodología model-driven, reduciendo la brecha entre las fases de diseño y de implementación para este tipo de sistema. La segunda propuesta presenta una arquitectura de implantación que define una estructura de capas funcionales basada en servicios, que soporta la interacción de las entidades de la organización virtual. La arquitectura de implantación permite la interoperabilidad de diferentes entidades, plataformas de software y hardware, proporcionando a los miembros de la organización virtual la capacidad de administrar y controlar los dispositivos del entorno (del sistema ubícuo). La tercera propuesta presenta una plataforma de ejecución de agentes empotrados llamada Andromeda, que permite ejecutar agentes empotrados sobre sistema operativo Android que cumplen con el modelo de agente de πVOM. Los agentes en Andromeda pueden acceder a los dispositivos del entorno, tal y como sucede en los sistemas ubícuos. Las propuestas presentadas fueron evaluadas empíricamente con dos ejemplos, que permiten mostrar sus bondades.Aguero Medina, J. (2015). Diseño de organizaciones virtuales ubícuas utilizando desarrollo dirigido por modelos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52597TESI
    corecore