70,943 research outputs found

    Graph-based approaches to word sense induction

    Get PDF
    This thesis is a study of Word Sense Induction (WSI), the Natural Language Processing (NLP) task of automatically discovering word meanings from text. WSI is an open problem in NLP whose solution would be of considerable benefit to many other NLP tasks. It has, however, has been studied by relatively few NLP researchers and often in set ways. Scope therefore exists to apply novel methods to the problem, methods that may improve upon those previously applied. This thesis applies a graph-theoretic approach to WSI. In this approach, word senses are identifed by finding particular types of subgraphs in word co-occurrence graphs. A number of original methods for constructing, analysing, and partitioning graphs are introduced, with these methods then incorporated into graphbased WSI systems. These systems are then shown, in a variety of evaluation scenarios, to return results that are comparable to those of the current best performing WSI systems. The main contributions of the thesis are a novel parameter-free soft clustering algorithm that runs in time linear in the number of edges in the input graph, and novel generalisations of the clustering coeficient (a measure of vertex cohesion in graphs) to the weighted case. Further contributions of the thesis include: a review of graph-based WSI systems that have been proposed in the literature; analysis of the methodologies applied in these systems; analysis of the metrics used to evaluate WSI systems, and empirical evidence to verify the usefulness of each novel method introduced in the thesis for inducing word senses

    Finding predominant word senses in untagged text

    Get PDF
    In word sense disambiguation (WSD), the heuristic of choosing the most common sense is extremely powerful because the distribution of the senses of a word is often skewed. The problem with using the predominant, or first sense heuristic, aside from the fact that it does not take surrounding context into account, is that it assumes some quantity of handtagged data. Whilst there are a few hand-tagged corpora available for some languages, one would expect the frequency distribution of the senses of words, particularly topical words, to depend on the genre and domain of the text under consideration. We present work on the use of a thesaurus acquired from raw textual corpora and the WordNet similarity package to find predominant noun senses automatically. The acquired predominant senses give a precision of 64% on the nouns of the SENSEVAL- 2 English all-words task. This is a very promising result given that our method does not require any hand-tagged text, such as SemCor. Furthermore, we demonstrate that our method discovers appropriate predominant senses for words from two domainspecific corpora

    Semantic Heterogeneity Issues on the Web

    Full text link
    The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction

    Russian word sense induction by clustering averaged word embeddings

    Full text link
    The paper reports our participation in the shared task on word sense induction and disambiguation for the Russian language (RUSSE-2018). Our team was ranked 2nd for the wiki-wiki dataset (containing mostly homonyms) and 5th for the bts-rnc and active-dict datasets (containing mostly polysemous words) among all 19 participants. The method we employed was extremely naive. It implied representing contexts of ambiguous words as averaged word embedding vectors, using off-the-shelf pre-trained distributional models. Then, these vector representations were clustered with mainstream clustering techniques, thus producing the groups corresponding to the ambiguous word senses. As a side result, we show that word embedding models trained on small but balanced corpora can be superior to those trained on large but noisy data - not only in intrinsic evaluation, but also in downstream tasks like word sense induction.Comment: Proceedings of the 24rd International Conference on Computational Linguistics and Intellectual Technologies (Dialogue-2018
    corecore