2,160 research outputs found

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Transcription Factor-DNA Binding Via Machine Learning Ensembles

    Full text link
    We present ensemble methods in a machine learning (ML) framework combining predictions from five known motif/binding site exploration algorithms. For a given TF the ensemble starts with position weight matrices (PWM's) for the motif, collected from the component algorithms. Using dimension reduction, we identify significant PWM-based subspaces for analysis. Within each subspace a machine classifier is built for identifying the TF's gene (promoter) targets (Problem 1). These PWM-based subspaces form an ML-based sequence analysis tool. Problem 2 (finding binding motifs) is solved by agglomerating k-mer (string) feature PWM-based subspaces that stand out in identifying gene targets. We approach Problem 3 (binding sites) with a novel machine learning approach that uses promoter string features and ML importance scores in a classification algorithm locating binding sites across the genome. For target gene identification this method improves performance (measured by the F1 score) by about 10 percentage points over the (a) motif scanning method and (b) the coexpression-based association method. Top motif outperformed 5 component algorithms as well as two other common algorithms (BEST and DEME). For identifying individual binding sites on a benchmark cross species database (Tompa et al., 2005) we match the best performer without much human intervention. It also improved the performance on mammalian TFs. The ensemble can integrate orthogonal information from different weak learners (potentially using entirely different types of features) into a machine learner that can perform consistently better for more TFs. The TF gene target identification component (problem 1 above) is useful in constructing a transcriptional regulatory network from known TF-target associations. The ensemble is easily extendable to include more tools as well as future PWM-based information.Comment: 33 page

    Discriminative pattern discovery for the characterization of different network populations

    Get PDF
    Motivation: An interesting problem is to study how gene co-expression varies in two different populations, associated with healthy and unhealthy individuals, respectively. To this aim, two important aspects should be taken into account: (i) in some cases, pairs/groups of genes show collaborative attitudes, emerging in the study of disorders and diseases; (ii) information coming from each single individual may be crucial to capture specific details, at the basis of complex cellular mechanisms; therefore, it is important avoiding to miss potentially powerful information, associated with the single samples. Results: Here, a novel approach is proposed, such that two different input populations are considered, and represented by two datasets of edge-labeled graphs. Each graph is associated to an individual, and the edge label is the co-expression value between the two genes associated to the nodes. Discriminative patterns among graphs belonging to different sample sets are searched for, based on a statistical notion of 'relevance' able to take into account important local similarities, and also collaborative effects, involving the co-expression among multiple genes. Four different gene expression datasets have been analyzed by the proposed approach, each associated to a different disease. An extensive set of experiments show that the extracted patterns significantly characterize important differences between healthy and unhealthy samples, both in the cooperation and in the biological functionality of the involved genes/proteins. Moreover, the provided analysis confirms some results already presented in the literature on genes with a central role for the considered diseases, still allowing to identify novel and useful insights on this aspect

    Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms

    Get PDF
    BACKGROUND: Microarray technology produces gene expression data on a genomic scale for an endless variety of organisms and conditions. However, this vast amount of information needs to be extracted in a reasonable way and funneled into manageable and functionally meaningful patterns. Genes may be reasonably combined using knowledge about their interaction behaviour. On a proteomic level, biochemical research has elucidated an increasingly complete image of the metabolic architecture, especially for less complex organisms like the well studied bacterium Escherichia coli. RESULTS: We sought to discover central components of the metabolic network, regulated by the expression of associated genes under changing conditions. We mapped gene expression data from E. coli under aerobic and anaerobic conditions onto the enzymatic reaction nodes of its metabolic network. An adjacency matrix of the metabolites was created from this graph. A consecutive ones clustering method was used to obtain network clusters in the matrix. The wavelet method was applied on the adjacency matrices of these clusters to collect features for the classifier. With a feature extraction method the most discriminating features were selected. We yielded network sub-graphs from these top ranking features representing formate fermentation, in good agreement with the anaerobic response of hetero-fermentative bacteria. Furthermore, we found a switch in the starting point for NAD biosynthesis, and an adaptation of the l-aspartate metabolism, in accordance with its higher abundance under anaerobic conditions. CONCLUSION: We developed and tested a novel method, based on a combination of rationally chosen machine learning methods, to analyse gene expression data on the basis of interaction data, using a metabolic network of enzymes. As a case study, we applied our method to E. coli under oxygen deprived conditions and extracted physiologically relevant patterns that represent an adaptation of the cells to changing environmental conditions. In general, our concept may be transferred to network analyses on biological interaction data, when data for two comparable states of the associated nodes are made available

    Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network

    Get PDF
    BACKGROUND: Discovering robust markers for cancer prognosis based on gene expression data is an important yet challenging problem in translational bioinformatics. By integrating additional information in biological pathways or a protein-protein interaction (PPI) network, we can find better biomarkers that lead to more accurate and reproducible prognostic predictions. In fact, recent studies have shown that, “modular markers,” that integrate multiple genes with potential interactions can improve disease classification and also provide better understanding of the disease mechanisms. RESULTS: In this work, we propose a novel algorithm for finding robust and effective subnetwork markers that can accurately predict cancer prognosis. To simultaneously discover multiple synergistic subnetwork markers in a human PPI network, we build on our previous work that uses affinity propagation, an efficient clustering algorithm based on a message-passing scheme. Using affinity propagation, we identify potential subnetwork markers that consist of discriminative genes that display coherent expression patterns and whose protein products are closely located on the PPI network. Furthermore, we incorporate the topological information from the PPI network to evaluate the potential of a given set of proteins to be involved in a functional module. Primarily, we adopt widely made assumptions that densely connected subnetworks may likely be potential functional modules and that proteins that are not directly connected but interact with similar sets of other proteins may share similar functionalities. CONCLUSIONS: Incorporating topological attributes based on these assumptions can enhance the prediction of potential subnetwork markers. We evaluate the performance of the proposed subnetwork marker identification method by performing classification experiments using multiple independent breast cancer gene expression datasets and PPI networks. We show that our method leads to the discovery of robust subnetwork markers that can improve cancer classification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1224-1) contains supplementary material, which is available to authorized users
    • …
    corecore