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Abstract

Background: Discovering robust markers for cancer prognosis based on gene expression data is an important yet
challenging problem in translational bioinformatics. By integrating additional information in biological pathways or a
protein-protein interaction (PPI) network, we can find better biomarkers that lead to more accurate and reproducible
prognostic predictions. In fact, recent studies have shown that, “modular markers,” that integrate multiple genes with
potential interactions can improve disease classification and also provide better understanding of the disease
mechanisms.

Results: In this work, we propose a novel algorithm for finding robust and effective subnetwork markers that can
accurately predict cancer prognosis. To simultaneously discover multiple synergistic subnetwork markers in a human
PPI network, we build on our previous work that uses affinity propagation, an efficient clustering algorithm based on a
message-passing scheme. Using affinity propagation, we identify potential subnetwork markers that consist of
discriminative genes that display coherent expression patterns and whose protein products are closely located on the
PPI network. Furthermore, we incorporate the topological information from the PPI network to evaluate the potential
of a given set of proteins to be involved in a functional module. Primarily, we adopt widely made assumptions that
densely connected subnetworks may likely be potential functional modules and that proteins that are not directly
connected but interact with similar sets of other proteins may share similar functionalities.

Conclusions: Incorporating topological attributes based on these assumptions can enhance the prediction of
potential subnetwork markers. We evaluate the performance of the proposed subnetwork marker identification
method by performing classification experiments using multiple independent breast cancer gene expression datasets
and PPI networks. We show that our method leads to the discovery of robust subnetwork markers that can improve
cancer classification.
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Introduction
In this work, we focus on one of the problems in transla-
tional genomics which is the identification of biomarkers
from microarray gene expression data to classify type
or state of complex disease. This problem is generally
challenging and practically difficult because it normally
involves with: 1) Small sample size of clinical data, 2) Large
number of potential markers, and 3) Heterogeneity across
patient and samples.
Several studies have been working on identifying gene

markers which are selected based solely on gene expres-
sion data. These markers have shown to be useful to
build classifiers for disease prediction. However, there are
some limitations of these gene-based markers. For exam-
ple, given two large-scale-dataset studies of breast cancer
metastasis [1, 2]. Both studies tried to find out what would
be the gene markers to look at in order to estimate the
risk of cancer metastasis. Both of them identified around
70 gene markers with 60–70% of accuracy. However, they
shared only 3 genes in common from 55 of possible genes
that might share across two platforms [3]. These gene-
based markers yielded low performance on cross-dataset
experiments. Afterward, many studies have been pro-
posed to improve prediction accuracy and reproducibility
of the identified biomarkers.
As cancer is a complex disease which its progression

involves dysregulation of multiple genetic processes, there
is an alternative approach based on the assumption that
genes which are known to be in common pathways [4–8]
or genes whose protein products are functionally related
in protein-protein interaction (PPI) networks [9–11]
should be interpreted together as a single feature. This
approach analyzes gene expression data at “modular”
level by integrating biological information, such as known
molecular pathways or PPI networks. Many studies have
shown that this “integrative approach” tends to be more
robust than single gene markers and may improve classi-
fication accuracy.
This approach has drawn the attention to several stud-

ies to find what might be the effective way to integrate
the expression of genes that belong to the same module.
Several ideas have been proposed such as using mean or
median, sum, or difference of the expression levels of the
gene that belong to the same modules as modular activ-
ity. PPI network has been shown to overcome the limited
numbers of known pathway information. Chuang et al.
[9], one of the first studies in this field, proposed a greedy
search algorithm for finding discriminative subnetwork
markers. Su et al. [10] proposed dynamic programming
method to identify and greedily combined paths con-
taining differentially expressed and coexpressed genes to
obtain subnetwork markers for predicting breast cancer
metastasis. More recently, in our previous work [11], we
utilized amessage-passing clustering algorithm to identify

subnetwork markers with high-accuracy disease predic-
tion. The method is capable to simultaneously predict
multiple non-overlapping subnetworkmarkers whichmay
lead to cover more genes with lower computational cost
compared to the existing methods.
With these advantages, we adopt our previous message-

passing based approach while incorporating the topolog-
ical information from the PPI network to identify the
potential functional modules–or subnetworks. Initially,
we adopt widely made assumptions that densely con-
nected subnetworks may likely be potential functional
modules and that proteins that are not directly connected
but interact with similar sets of other proteins may share
similar functionalities. We employ association indices to
estimate the topological information.
Association indices have been shown to be one of pow-

erful tools for measuring similarity between genes [12].
For example, Jaccard index has been successfully used
to measure neighborhood similarity for clustering and
constructing Power Graph in the work of Royer et al. [13].
In this paper, we propose a novel method for incorpo-

rating PPI network topological information to enhance
identification of subnetwork markers for predicting can-
cer prognosis. We utilize various association coefficients
to estimate the topological similarity and also apply dif-
ferent approaches to integrate into our previous message-
passing based method. We assess the identified subnet-
work markers and evaluate their discriminative power
and their classification performance through experiments
using publicly available independent breast cancer gene
expression datasets and PPI networks.

Materials andmethods
Datasets
In this study, we obtained two independent breast can-
cer microarray gene expression datasets from the public
domain, which we refer to as GSE2034 [2] and NKI295
[14]. GSE2034 was profiled on the Affymetrix U133a plat-
form (GPL96) and downloaded from the Gene Expression
Omnibus (GEO) database [15]. NKI295 was profiled on
Agilent Hu25K platform and downloaded from the sup-
plement information from Chang et al. [16]. We used both
datasets as published by their original studies. GSE2034
contains expression profiles of 286 breast cancer patients,
NKI295 contains expression profiles of 295 patients. For
108 patients in GSE2034 and 78 patients in NKI295,
metastasis had been detected within 5 years of surgery.
We labeled them as “metastatic”, while the remainder was
labeled as “non-metastatic”.
Four publicly available human PPI networks were used

in this study which we refer to as Chuang, HPRD, GASO-
LINE, and BioGRID. Chuang was obtained from a previ-
ous study by Chuang et al. [9]. HPRD was downloaded
from the Human Protein Reference Database Release 9
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[17]. GASOLINE was obtained from the work of Micale
et al. [18]. It was derived from STRING database [19]
considering only experimentally verified protein interac-
tions. BioGRID was downloaded from the Biological Gen-
eral Repository for Interaction Datasets version 3.4.134
(Homo Sapiens) [20]. We did not combine all the PPI
networks because they were compiled based on different
criteria and domain of interest.
Table 1 shows the number of unique proteins and

interactions for each PPI network. BioGRID contains the
largest number of interactions while HPRD contains the
largest number of proteins.
We overlaid the gene microarray datasets with each PPI

network by mapping each gene to its corresponding pro-
tein in the network. After removing the proteins that do
not have corresponding genes in both gene expression
datasets, we obtained an induced networks with the statis-
tics shown in Table 2. After data integration, the numbers
of proteins are quite similar to each other. BioGRID still
contains the largest number of interactions while the
others contain approximately the same.

Affinity propagation-based subnetwork identification
We adopt the subnetwork identification procedure from
our previous study [11], where we utilized a message-
passing clustering algorithm, called affinity propagation,
to cluster genes whose protein products interact with each
other or are closely located in PPI network. The input
of this clustering algorithm is the measure of similar-
ity between genes. We originally defined the similarity
of genes based entirely on the discriminative power to
distinguish between the two class labels as follows:

sDP(i, k) = tk + min {tik − ti, tik − tk} − α|ti − tk| (1)

where ti, and tk are t-test statistics score of the log-
likelihood ratio (LLR) between metastatic and non-
metastatic samples of genes i, and k, respectively. tik is the
t-test score of the summation of the LLRs of genes i, and k.
The LLR, λ, of gene i, λ(xi), is based on probabilistic

inference strategy proposed in [7] and it is computed by

λ(xi) = log
[
f 1(xi)/f 2(xi)

]
, (2)

Table 1 The number of proteins and interactions for each PPI
network

PPI network Number of unique proteins Number of interactions

Chuang 11,203 57,235

HPRD 30,047 41,327

GASOLINE 9556 53,859

BioGRID 20,364 315,507

Table 2 The number of proteins and interactions for each
induced PPI network

PPI network Number of unique proteins Number of interactions

Chuang 5293 26,773

HPRD 4762 18,684

GASOLINE 4277 22,253

BioGRID 5697 99,426

where xi is the expression level of the gene i and f j(xi) is
the conditional Gaussian probability density function of xi
under phenotype j.
The last term is the penalty termmeasured by the differ-

ence between discriminative power of considering genes.
The parameter, α, is defined between [ 0, 1] to control this
term. It is shown in our previous work [11] that the size
of the network decreases as α gets larger. It is because a
larger α tends to cluster genes with similar discriminative
power. As a result of that, it yields small subnetworks with
fewer genes.
The Eq. 1 is based on original assumptions that when

considering similarity between two genes, the gene itself
should have high discriminative power, combining both
genes as subnetwork should increase the overall dis-
criminative power, and both genes should have similar
discriminative power.

Incorporating topological information for computing the
similarity between genes
With the assumption that the proteins corresponding to
the genes in the same subnetwork should have common
topological attributes, we consider two following points:

• Densely connected subnetworks may likely be
potential functional modules.

• Proteins that are not directly connected but interact
with similar sets of other proteins may share similar
functionalities.

Based on these considerations, we incorporate the topo-
logical information of proteins in the PPI network by
measuring their association coefficient–or topological
similarity.
We measure topological attribute using different types

of association coefficients. Let Ni and Nk be the neigh-
borhood binary vectors of protein i and k. We define the
topological similarity between proteins i and k, sT (i, k),
based on different similarity indexes as follows:

1. Jaccard index: We define topological similarity,
sTJ (i, k), as

sTJ (i, k) = |Ni ∩ Nk|
|Ni ∪ Nk| (3)
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Jaccard index is widely used to quantify the similarity
2. Kulczyński index: This measure, sTK (i, k), represents

the average proportion of the number of common
neighbors to the total number of neighbors of each
protein. It is given by

sTK (i, k) = 1
2

( |Ni ∩ Nk|
|Ni| + |Ni ∩ Nk|

|Nk|
)

(4)

3. Tversky index: We define topological similarity based
on Tversky index, sTT (i, k), as

sTT (i, k) = |Ni ∩ Nk|
|Ni ∩ Nk| + aTT |Ni − Nk| + bTT |Nk − Ni|

(5)

In order to indicate the direction of similarity
(asymmetric similarity), we let aTT = 1 and bTT = 0.
This asymmetric definition lets the exemplars of the
identified clusters be more densely connected than
other non-exemplars. We can rewrite the equation as
followings

sTT (i, k) = |Ni ∩ Nk|
|Ni| (6)

Tversky index can be viewed as a general form of
Tanimoto coefficient (Jaccard index) when aTT = 1
and bTT = 1, and Dice coefficient when aTT = 0.5
and bTT = 0.5.

We do not include other similarity indices whose results
are in the same order (no alteration in the ranks) because
they give the same output when applying affinity propaga-
tion. For example, Dice coefficient, (2·|Ni∩Nk |)|Ni|+|Nk | , and Jaccard
index share similar results in terms of ranking. Ochiai
index (or Cosine index), |Ni∩Nk |√|Ni|·|Nk | , and Geometric index,
|Ni∩Nk |2|Ni|·|Nk | provide the same ranks as of Kulczyński index.
As we focus on retrieving topological information from

the PPI network, we do not make use of the number of
common non-neighbor proteins |¬Ni∩¬Nk| in this study.
Finally, we add the topological similarity, (3), (4) and (6),

to the computation of similarity between genes i and k,
s(i, k), in two different ways.

1. Similarity between genes i and k, s(i, k), as a product
of the topological similarity sT (i, k) and the
discriminative power based similarity sDP(i, k). We
define as:

s(i, k) = sT (i, k) · sDP(i, k) (7)

2. Similarity between genes i and k, s(i, k), as a
combination of the topological similarity sT (i, k) and
the discriminative power based similarity sDP(i, k).
We first scale the discriminative power based

similarity sDP(i, k) into the range [ 0, 1] as same as
topological similarity’s by

ŝDP(i, k) = sDP(i, k) − min(sDP)
max(sDP) − min(sDP)

(8)

where sDP is the set of all discriminative power based
similarity of all gene pairs. Then, we combine them
as follows

s(i, k) = β(sT (i, k)) + (1 − β)(ŝDP(i, k)) (9)

where β =[ 0, 1] is used to control the magnitude
between each similarity. Topological similarity,
sT (i, k), has more effects as β increases. It should be
noted that s(i, k) can be viewed as the summation of
topological similarity and discriminative power based
similarity when β = 0.5.

We use the same setting for preference as in [11]. The self-
similarity is set to s(k, k) = c for all k, where s(i, k) ≤ c for
only 1% of all gene pairs (gi, gk) to guarantee that every
gene gets equal chance to be an exemplar at the initial
stage of clustering process.

Probabilistic inference of subnetwork activity
To estimate the modular—or subnetwork—activity of
identified subnetwork, we employ the probabilistic infer-
ence method proposed in [7] which is the aggregation of
the LLRs of all member genes to represent the activity
level of the subnetwork markers, A(G). It is computed by

A(G) =
n∑

i=1
λ (xi) , (10)

where xi is the expression level of the gene gi in the sub-
network G = {

g1, g2, . . . , gn
}
. This inference method can

be viewed as the aggregation of the probabilistic evidence
of the expression level of genes in the subnetworks.

Experimental set-up
We identified subnetwork markers incorporating three
different strategies to measure topological similarity
which we referred to as Jaccard-based, Kulczyński-based,
and Tversky-based. As mentioned previously, we used
two different approaches to integrate topological simi-
larity to measure similarity between genes: 1) Product
of topological and discriminative power based similarity,
namely, “product-based approach”, and 2) Linear com-
bination of topological and discriminative power based
similarity, namely, “linear-combination-based approach”.
In the latter approach, we used three different values of
β(= 0.25, 0.5, 0.75) to investigate the impact of topologi-
cal similarity to the subnetwork identification. In fact, we
can also setup the experiments the other way around to
find the optimal the value of β for each data.
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After computing similarity between genes and apply-
ing affinity propagation-based subnetwork identification,
all output clusters were ranked based on the t-test statis-
tics score of their activity level. Then we selected the top
50 clusters with high discriminative power as the poten-
tial subnetwork markers for assessing their classification
performance.
We repeated these processes to both gene expression

datasets and all four PPI networks.

Table 3 The average size of top 50 highly discriminative
subnetwork markers from GSE2034 and NKI295

Gene expression dataset = GSE2034

Chuang HPRD GASOLINE BioGRID

Greedy 3.1 3.26 3.54 3.66

AP-based 36.28 35.78 34.18 38.78

jac_p 18.06 19.94 19.58 29

kul_p 21.16 25.32 22.48 36.28

tve_p 34.48 45.26 45.98 61.8

jac_lc β = 0.25 18.3 21.36 23.14 34

β = 0.5 15.08 15.38 16.44 24.24

β = 0.75 13.28 16.34 13.44 19.18

kul_lc β = 0.25 24 30.14 28.68 39.02

β = 0.5 18.98 22.86 24.18 38.32

β = 0.75 16.06 19.12 20.84 30.98

tve_lc β = 0.25 34.1 46.58 43.44 53.54

β = 0.5 28.98 43.8 45.5 71.24

β = 0.75 22.92 44.78 46.32 82.66

Gene expression dataset = NKI295

Chuang HPRD GASOLINE Biogrid

Greedy 4.12 3.68 4.46 4.42

AP-based 31.34 30.32 28.78 34.66

jac_p 14.62 16 18.94 27.72

kul_p 12.3 22.5 26.9 33.34

tve_p 28.22 42.24 49.9 57.1

jac_lc β = 0.25 15.14 16.8 19.66 30.06

β = 0.5 13.38 12.44 13.68 22.66

β = 0.75 11.54 12.88 10.78 17.98

kul_lc β = 0.25 14.8 24.6 27.06 39.26

β = 0.5 15.9 18.5 23.28 33.96

β = 0.75 13.7 17.12 17.22 27.14

tve_lc β = 0.25 30.76 41.78 48.66 52.44

β = 0.5 27.26 41.62 50.7 72.88

β = 0.75 18.52 43.22 48.24 81.42

Results
For comparison, we also evaluated the method proposed
in [9], and [11] which we refer to as the ‘greedy’ method,
and the ‘AP-based’ method, respectively. We applied the
greedy method with 5% minimum required improvement
which is the same setting as originally published in [9]. In
the AP-basedmethod, we set themagnitude of the penalty
term, α, to 0.5 by reason shown in [11] that it yields high
and consistent classification performance as of smaller α

Table 4 The number of unique genes in top 50 highly
discriminative subnetwork markers from GSE2034 and NKI295

Gene expression dataset = GSE2034

Chuang HPRD GASOLINE Biogrid

Greedy 130 121 140 139

AP-based 1814 1789 1709 1939

jac_p 903 997 979 1450

kul_p 1058 1266 1124 1814

tve_p 1724 2263 2299 3090

jac_lc β = 0.25 915 1068 1157 1700

β = 0.5 754 769 822 1212

β = 0.75 664 817 672 959

kul_lc β = 0.25 1200 1507 1434 1951

β = 0.5 949 1143 1209 1916

β = 0.75 803 956 1042 1549

tve_lc β = 0.25 1705 2329 2172 2677

β = 0.5 1449 2190 2275 3562

β = 0.75 1146 2239 2316 4133

Gene expression dataset = NKI295

Chuang HPRD GASOLINE Biogrid

Greedy 114 110 118 150

AP-based 1567 1516 1439 1733

jac_p 731 800 947 1386

kul_p 615 1125 1345 1667

tve_p 1411 2112 2495 2855

jac_lc β = 0.25 757 840 983 1503

β = 0.5 669 622 684 1133

β = 0.75 577 644 539 899

kul_lc β = 0.25 740 1230 1353 1963

β = 0.5 795 925 1164 1698

β = 0.75 685 856 861 1357

tve_lc β = 0.25 1538 2089 2433 2622

β = 0.5 1363 2081 2535 3644

β = 0.75 926 2161 2412 4071



The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):351 Page 148 of 186

with the smaller size of identified subnetworks compared
to larger α.
For simplicity in displaying Tables and Figures in this

section, we abbreviate Jaccard-based, Kulczyński-based,
and Tversky-based to jac, kul, and tve, respectively. The
suffixes, _p, and _lc are appended to indicate product-
based approach, and linear-combination-based approach,
respectively.

Statistics of the subnetwork markers
Table 3 shows the average size of top 50 highly discrim-
inative subnetwork markers identified by each method
on GSE2034 and NKI295. Each column shows the results
for each PPI network. The average size of markers iden-
tified by product-based and linear-combination-based
approach is similar to the original AP-based method. We
can clearly see that the average size of top markers identi-
fied by the proposed method and AP-based is larger than
the greedy-based.
As we can see from Table 3, the average size of top

50 highly discriminative subnetwork markers increases
as the PPI network with larger number of interac-
tions and unique proteins is used. This trend can be
clearly seen when BioGRID is employed. Among product-
based approach group, Tversky-based similarity, tve_p,
yields larger subnetworks. In linear-combination-based
approach, we can see that the average size decreases as
β increases in most cases. However, we cannot see this
trend distinctly in Tversky-based, tve_lc. The main reason
is that Tversky-based similarity mostly provides higher
similarity index compared with the others as it is designed

Table 5 Overlap between the top subnetwork markers identified
on different gene expression datasets

Chuang HPRD GASOLINE Biogrid

Greedy 5.63% 4.05% 4.88% 3.96%

AP-based 24.90% 28.70% 27.71% 23.89%

jac_p 37.89% 29.28% 32.01% 31.97%

kul_p 15.38% 27.52% 26.49% 28.26%

tve_p 25.80% 44.15% 50.57% 42.33%

jac_lc β = 0.25 39.10% 22.54% 26.55% 30.20%

β = 0.5 53.51% 26.68% 26.87% 37.94%

β = 0.75 54.55% 31.74% 26.67% 40.12%

kul_lc β = 0.25 12.73% 24.47% 27.90% 28.50%

β = 0.5 39.86% 28.29% 31.18% 33.26%

β = 0.75 50.61% 35.53% 31.42% 40.73%

tve_lc β = 0.25 27.53% 44.47% 46.75% 36.57%

β = 0.5 32.14% 43.47% 52.41% 54.90%

β = 0.75 32.99% 50.94% 57.71% 69.05%

Table 6 The number of genes in top 50 highly discriminative
subnetwork markers from tve_pmethod on GASOLINE
categorized by their GO terms

Ontology: Molecular function

GO term GO id GSE2034 NKI295

transporter activity GO:0005215 240 251

translation regulator activity GO:0045182 37 41

protein binding transcription factor
activity

GO:0000988 35 42

enzyme regulator activity GO:0030234 193 205

catalytic activity GO:0003824 1146 1221

channel regulator activity GO:0016247 5 6

receptor activity GO:0004872 346 370

nucleic acid binding transcription
factor activity

GO:0001071 307 316

antioxidant activity GO:0016209 8 6

structural molecule activity GO:0005198 226 260

binding GO:0005488 1237 1330

Ontology: Cellular component

GO term GO id GSE2034 NKI295

synapse GO:0045202 15 15

cell junction GO:0030054 13 11

membrane GO:0016020 288 290

macromolecular complex GO:0032991 213 214

extracellular matrix GO:0031012 50 58

cell part GO:0044464 765 794

organelle GO:0043226 411 441

extracellular region GO:0005576 151 153

Ontology: Biological process

GO term GO id GSE2034 NKI295

cellular component organization or
biogenesis

GO:0071840 278 309

cellular process GO:0009987 1559 1679

localization GO:0051179 536 577

apoptotic process GO:0006915 174 194

reproduction GO:0000003 104 118

biological regulation GO:0065007 886 933

response to stimulus GO:0050896 547 593

developmental process GO:0032502 634 692

rhythmic process GO:0048511 3 1

multicellular organismal process GO:0032501 393 413

locomotion GO:0040011 20 24

biological adhesion GO:0022610 127 147

metabolic process GO:0008152 1773 1876

growth GO:0040007 1 3

immune system process GO:0002376 314 342
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to indicate the direction of the similarity. For instance,
when a gene shares all of its neighbors with another gene
(|Ni ∩ Nk| = |Ni|), it returns the maximum similarity
(sTT (i, k) = 1), whereas the other topological similari-
ties yield lower because they depend on the number of
neighbors the both genes.
As defined in Eq. 9, the clustering process relies more

on topological information as β gets larger. Therefore, in
this case, more genes tend to be clustered into the same
subnetwork.
We can see the similar trends for the number of unique

genes in top 50 discriminative subnetwork markers as
shown in Table 4. We can also clearly see that the top
markers identified by the proposed method and AP-
based cover more genes than the greedy-based. The larger
unique genes covered show that the proposed method
may increase the chance to discover genes that are not
known to be related to the disease. This also means the
higher probability of identifying new subnetwork and
pathway.
Next, we studied the overlap between the top 50 highly

discriminative subnetwork markers identified on differ-
ent gene expression datasets. The proposed method yield
larger overlap when comparing to all of the previous
methods as shown in Table 5. Again, similar trends as in
Table 3 can also be observed here. The larger overlaps
show that more of common genes are covered and shared

among identified subnetworks from independent dataset
from different platforms. This may lead us to more robust
classifiers, we demonstrate the robustness by providing
classification performance charts showing that the exper-
imental results from the proposed method are consistent
in the next section.
Additionally, we analyzed enriched functions of the

genes in the subnetwork markers using Panther [21], a
web-based system designed to facilitate analysis of large
numbers of genes and provide comprehensive function
information which includes up-to-date comprehensive
Gene Ontology (GO) annotations (GO database version
1.2, released 2016-05-20 with 44,588 total annotations).
An example of the enrichment analysis of the top 50
highly discriminative subnetworks identified using tve_p
method on GASOLINE is shown in Table 6. We can
see that the genes in identified subnetworks from dif-
ferent gene expression datasets also share common GO
terms.

Discriminative power of the subnetwork markers
We evaluated the discriminative power of the subnetwork
markers based on the same procedure as previously used
in these studies [6–8, 10]. We computed the t-test score
of the inferred subnetwork activity level. And then we
sorted the absolute value in descending order. The aver-
age absolute t-test score of the top K = 10, 20, 30, 40, 50

Fig. 1 Discriminative power of subnetwork markers identified on GSE2034 by different methods. We computed the average absolute t-test score of
the top K=10, 20, 30, 40, and 50 subnetwork markers identified on GSE2034 by various methods for the following PPI datasets: a Chuang, b HPRD,
c GASOLINE, and d BioGRID
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subnetwork markers is shown in Fig. 1. We can see that
the discriminative power of subnetwork markers identi-
fied by product-based approach, and linear-combination-
based approach are considerably higher than the result
of the greedy method. Among product-based approach
group, Tversky-based yields the highest in most of the
results.
We also assessed how the subnetwork markers iden-

tified on specific gene expression dataset perform in
another independent dataset. We sorted the subnetwork
markers based on their t-test score of the inferred subnet-
work activity level on one dataset and we reevaluated the
discriminative power on the other dataset. As shown in
Fig. 2, we can see that the trends of discriminative power
of subnetwork markers across different gene expression
datasets are similar to those observed in Fig. 1. The anal-
ysis of discriminative power of the subnetwork markers
identified on NKI295 data also shows a similar trend
(Figures S1 and S2 in Additional file 1).
About the impact of different PPI networks, the PPI net-

work with larger number of interactions tends to yield the
higher discriminative power. One of the reasons may be
that it contains more topological information which may
help to measure the similarity between genes. As intu-
itively expected, we can see that BioGRID is advantageous
to the other PPI networks because it contains the largest

number of interactions (as shown in Figures 1d and
Additional file 1: Figure S1(d)).

Evaluating the reproducibility of the identified subnetwork
markers
In order to evaluate the reproducibility of subnetwork
markers, we performed five-fold cross-validation experi-
ments based on a similar set-up that has been commonly
used in previous studies [6–11], where the entire process
was repeated for 100 random partitions.
We identified potential subnetwork markers and

selected the top 50 subnetworks as a feature set for
the classifier on one gene expression dataset. After that,
we built the linear discriminant analysis (LDA) classi-
fiers based on the selected features and evaluated the
accuracy on the other dataset. The classification perfor-
mance assessed by the area under ROC curve (AUC)
is shown in Fig. 3. We can see that both product-
based approach and linear-combination based approach
yield consistently high performance across different gene
expression datasets and PPI networks.
In this work, we use the term, ‘reproducibility’ in

the sense of the ability to identify common discrimina-
tive genes or subnetworks across different independent
datasets. Therefore, using these subnetworks as biomark-
ers for disease classification may lead to consistent

Fig. 2 Discriminative power of subnetwork markers across independent gene expression datasets. The markers were identified and ranked on
GSE2034 and their discriminative power was evaluated on NKI295. We computed the mean absolute t-score of the top K=10, 20, 30, 40, and 50
markers by different methods for the following PPI datasets: a Chuang, b HPRD, c GASOLINE, and d BioGRID
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a b

Fig. 3 Reproducibility of subnetwork markers identified by various methods. The bars show the cross-dataset classification performance (average
AUC) of different methods. a GSE2034 was used for identifying the potential markers and NKI295 was used for training and evaluating the classifier,
bWe repeated as NKI295 was used for identifying the markers and GSE2034 was used for training and evaluation of the classifier

performance. Furthermore, in terms of reproducibility in
practical usage, the AP-basedmethods, including our pro-
posed methods, cost less computation time compared to
the greedy algorithm as shown in [11].

Conclusion
In this paper, we propose a novel method that incor-
porates topological information to identify subnetwork
markers that can be used in cancer prognosis predic-
tion. We demonstrate how widely used association coef-
ficients, such as Jaccard index, Kulczyński index, and
Tversky index can be utilized to measure topological sim-
ilarity. Also, we show how to integrate these measures
by two different approaches, product-based, and linear-
combination based.
Based on our experimental results, Tversky-based strat-

egy is most suitable to measure similarity between genes
when the direction of interaction is involved. It yields
consistently high discriminative power across different
datasets. Furthermore, utilizing the larger PPI network
with larger number of unique proteins and interactions,
such as BioGRID, may lead to the better subnetwork
identification with higher classification performance.
The proposed method considerably increases the cover-

age of genes and also the overlap of genes when identified
across different independent datasets. Through extensive
evaluations using various independent breast cancer gene
expression datasets and PPI networks, the experimental
results show that our method leads to the identification
of robust and reproducible subnetwork markers that may
lead to better cancer classification.

Additional file

Additional file 1: Supplementary materials. Figure S1: Discriminative
power of subnetwork markers identified on NKI295 by different methods.
Figure S2: Discriminative power of subnetwork markers across
independent gene expression datasets. (PDF 1260 kb)
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