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Abstract

Motivation: An interesting problem is to study how gene co-expression varies in two different populations, associ-
ated with healthy and unhealthy individuals, respectively. To this aim, two important aspects should be taken into
account: (i) in some cases, pairs/groups of genes show collaborative attitudes, emerging in the study of disorders
and diseases; (ii) information coming from each single individual may be crucial to capture specific details, at the
basis of complex cellular mechanisms; therefore, it is important avoiding to miss potentially powerful information,
associated with the single samples.

Results: Here, a novel approach is proposed, such that two different input populations are considered, and repre-
sented by two datasets of edge-labeled graphs. Each graph is associated to an individual, and the edge label is the
co-expression value between the two genes associated to the nodes. Discriminative patterns among graphs belong-
ing to different sample sets are searched for, based on a statistical notion of ‘relevance’ able to take into account
important local similarities, and also collaborative effects, involving the co-expression among multiple genes. Four
different gene expression datasets have been analyzed by the proposed approach, each associated to a different dis-
ease. An extensive set of experiments show that the extracted patterns significantly characterize important differen-
ces between healthy and unhealthy samples, both in the cooperation and in the biological functionality of the
involved genes/proteins. Moreover, the provided analysis confirms some results already presented in the literature
on genes with a central role for the considered diseases, still allowing to identify novel and useful insights on this
aspect.

Availability and implementation: The algorithm has been implemented using the Java programming language. The
data underlying this article and the code are available at https://github.com/CriSe92/DiscriminativeSubgraphDiscovery.

networks,” where nodes are associated to genes and they are linked
by edges if the corresponding genes are co-expressed. Usually, co-
expression networks represent the input sample set globally (Liu
et al. 2016; van Dam et al. 2018). However, it has been observed
that the gene expression profiles often share local, rather than glo-

1 Introduction

The analysis of gene expression data may contribute to unravel the
complex mechanisms that influence the occurrence and course of
disorders and diseases (Rung and Brazma 2013). An interesting

problem in this context is to identify relevant factors, related to gene
expression in different populations, able to characterize the un-
healthy status with respect to the healthy case. As an example, one
of these factors may be represented by the presence of genes that are
significantly co-expressed in unhealthy individuals rather than in
healthy ones, or vice versa.

It is well known that complex diseases are often characterized by
collaborative effects involving multiple genes/proteins, also referring
to the co-expression of different genes under specific conditions
(Anastassiou 2007; Watkinson et al. 2008). Effective models to rep-
resent gene expression data in this context are the “co-expression
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bal, similarities (Roy et al. 2014). Therefore, in modeling a popula-
tion of individuals through a single graph, some potentially
powerful details on the co-expressions occurring in different samples
may be left aside.

Here, we propose an approach based on the analysis of co-
expression networks to identify interesting differences between two
input sample sets, associated to healthy and unhealthy individuals,
respectively. Two main points characterize the proposed approach:

1. A representation of gene co-expression data able to take into ac-
count local similarities, by turning the input gene expression
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dataset into a graph dataset, where there is a labeled graph for
each sample.

2. The definition of a suitable notion of “discriminative patterns,”
useful to capture the differences between the two input sample
sets.

Other discriminative graph pattern mining approaches have
been proposed previously. As an example, Yan et al. (2008) search
for those graph patterns that occur with disproportionate frequency
in some graphs versus others, and consider the bioassay records for
anticancer screen tests with different cancer cell lines. However, in
that case, patterns discriminate among different graphs, rather than
between two different graphs populations as proposed here. Ting
and Bailey (2006) introduce the notion of “minimal contrast sub-
graph pattern” between a single positive graph and a set of negative
ones, for the comparison of chemical compounds. They are inter-
ested in finding edge sets in the positive graph which do not occur in
the negative samples set. However, they do not take into account
the pattern frequency, and related relevance, that is instead a key as-
pect here. Moreover, their approach cannot be easily extended to
pairs of populations. “Synergy graph patterns” have been defined by
Wang et al. (2015), referring to subgraphs such that the relation-
ships among the nodes are highly inseparable. They apply a classifi-
cation algorithm based on synergy graph patterns to real-life
datasets, such as an AIDS antiviral screen chemical compounds
dataset, and anticancer screen datasets. Similar to our approach,
they consider only those graph patterns with discriminative powers
much higher than all their subgraphs. However, their notion of dis-
criminative power is defined differently than here. Most important-
ly, all mentioned approaches have been applied in contexts different
than gene co-expression data, while that proposed here is specifical-
ly designed for the study of gene co-expression variation in healthy/
unhealthy populations. Moreover, all approaches recalled above
have mainly classification purposes, while our goal is to provide
compact descriptors able to single out important functional differen-
ces between the two input datasets for further analysis.

In more detail, the approach proposed here considers all the
complete information characterizing gene co-expression in each
sample of the input sets. Therefore, it is able to capture also relevant
collaborative effects occurring in single individuals and which
emerge during the pattern extraction process. To this aim, the dis-
criminative power of each pattern is measured based on a notion of
information entropy, which takes into account both the pattern sup-
port and the co-expression levels of genes involved in the pattern, in
one of the two datasets with respect to the other. The methodology
has been validated on synthetic data and applied to analyze four dif-
ferent gene expression datasets, each associated to a different disease
and containing the expression levels of genes for healthy and un-
healthy samples, respectively. The considered diseases are “prostate
cancer,” “pancreas cancer,” “gastric cancer,” and “psoriasis.” An
extensive set of experiments has been performed on these datasets,
at first with the aim of understanding to what extent the extracted
patterns significantly characterize important differences between
healthy and unhealthy samples. Then, further analysis of the
obtained results has been provided, in order to identify novel and
useful insights associated to the considered diseases.

In particular, enrichment analysis shows that for most of the
retrieved patterns (over the 93% for three out of the four considered
diseases) the intercepted genes are involved in common biological
processes/functions, often relevant for the associated diseases.
Moreover, protein—protein interaction (PPI) network analysis shows
that some of the genes involved in the extracted patterns correspond
to proteins that are “hubs” for human, i.e. they interact with a large
number of other proteins to perform important functional tasks in
the cell. On the other hand, both size and structure of patterns look
different depending on the fact that they characterize healthy or un-
healthy populations, respectively. Indeed, patterns characterizing
unhealthy samples often present a simpler structure and smaller size
than those associated to healthy populations, suggesting that passing

>

from the healthy to the unhealthy status may be associated to the
failure of some collaborative effects in the cell.

Finally, another interesting finding is that, for all considered
datasets, a few genes co-occur in a large number of patterns. To this
respect, the frequency of occurrence of single genes, as well as pairs,
triples, and quadruples of them reveals the presence of “building
blocks” recurrent inside the extracted patterns. By looking in more
detail at such building blocks, it is possible to observe that they con-
tain both genes which are known in the literature to be associated
with the disease under consideration, and other genes, known to be
implied instead in other diseases. This leads to the consideration
that the proposed approach may be usefully applied also to discover
novel putative associations between genes and diseases, as well as
possible risk factors involving different diseases.

2 Methods

Let DS be a population of individuals such that, for each individual,
the expression levels of the genes are known. DS can be represented
by a set of tuples defined on a set of attributes, such that each tuple ¢
is associated with an individual of DS and each attribute a is associ-
ated with a gene. The value #(a) which a tuple ¢ assumes on the attri-
bute a represents the expression level of the gene associated with a
for the corresponding individual. For the sake of simplicity, in the
following the symbol # will be used to denote indifferently the indi-
vidual or its corresponding tuple in DS (the same holds for genes
and attributes, respectively).

2.1 Characterizing pairs of genes

Given two genes a; and a,, it is important quantifying to what ex-
tent they may be “associated,” based on their co-expression in the
same individual. Let X}, X! be the random variables associated with
t(a;) and t(a;), respectively. Consider the bivariate normal distribu-
tion B = N/ 5 (5, L};) having mean vector p; and co-variance matrix

t .
X, where:
2 toig
—(Hi) g = O Pij0i0;

Bi=\w )5 =\ proe;, o2
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In particular, y; (u;, respectively) is the mean value of the attri-
bute a; (a;, respectively), o; (g;, respectively) is the standard deviation
of the attribute 4; (a;, respectively), and pf/» is the correlation between
X! and X!

The tlollowing two definitions are a revised version of those
introduced by Fassetti et al. (2016).

DerINITION 1 (Strength). The strength of the association between a;
and a; for the individual t is the value of correlation p; such that the
probability of observing the value t(a;) for X! and the value t(a;)
for Xt is maximum.

Intuitively, the strength of the association between two genes
quantifies the correlation between their values of expression. In
order to estimate the statistical significance of the strength values,
i.e. to measure the probability that a possible high value of correl-
ation is not due by chance under the Null Hypothesis that it is
implied by a certain value of expression, the notion of “relevance” is
defined as follows.

DerINITION 2 (Relevance). Let a; and a; be two genes. The relevance
of the association between a; and a; for t is the minimum between
the probability of observing a strength smaller than pf, given the ex-
pression level t(a;), and the probability of observing a strength
smaller than pj;, given the expression level t(a;).

Details on the computation of strength and relevance are pro-
vided in Supplementary Section S1.1.
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Function TorKPatterns (Ny, N3, k)

Function PATTERNMINE (P)

Input: Two sets of WIGA-networks N1 and N2, an integer k
Output: Set of top-k discriminative patterns P12
P12 < GETEDGES(N1);
foreach P in P15 do
| P12 < P12 U PATTERNMINE(P);
Pio PRUNE(Plz);
return TOPK (P12, k);

2.2 Characterizing a population

Let, DS be a population and # be an individual in DS. The individual
t has a specific configuration of gene associations that can be charac-
terized according to the following definition.

DeriNiTioN 3 (WIGA-network). A Weighted Individual Gene
Association Network (WIGA-network, for short) is a weighted
graph (V,E, n) such that:

* Each node v; € V represents a gene a; of t,
* n:E— Ris a function associating each edge (v;,v;) € E with a
real number representing the strength of the association between

the corresponding genes a; and a;.

In order to avoid the presence of edges corresponding to insig-
nificant associations between genes, only those edges corresponding
to pairs of genes such that the relevance of their association is larger
than a value 7, fixed a priori (and equal to 0.9 in our experiments),
are left on. We will refer to such “filtered” WIGA-networks in the
following.

If DS consists of 2 individuals, a set N of m WIGA-networks
results, such that the ith WIGA—network N; is associated with the
ith individual of DS. All WIGA-networks are defined on the same
set of nodes V, due to the fact that individuals in the same popula-
tion have the same genes. The differences among the
WIGA-networks in N are in their topologies and/or edge weights.

One of the main goals here is to characterize a population DS
according to the most significant patterns that are recurrent in N.
The following definitions are introduced to this aim.

DEFINITION 4 (Pattern). A pattern P of N is a connected graph (Vp,
Ep) such that:

* VpcCVv,
* there exists at least a WIGA-network N'; = (V,E;,n;) in N such
that Ep C E;, i.e. P occurs or has a match in N;.

Given a pattern P, for each WIGA-network in N at most a
match of P may exist, due to the fact that all WIGA-networks are
defined on the same set of nodes (i.e. the genes of the individuals in
DS).

DerINITION S (Subpattern/Superpattern). Let, P = (Vp,Ep), P' =
(Vp,Ep) be two patterns of N. P’ is a subpattern of P (P is a
super-pattern of P, respectively) if Vi C Vp and Ep C Ep. This is
denoted by P'<P.

The same pattern may occur in different WIGA-networks, with
the involved edges having different values of strength. The value of a
match for a pattern in a WIGA-network is defined as follows.

Input: Current analysed pattern P
Output: Set of discriminative patterns res obtained from P
res < 0;
L, < RANKEXTENSION(P);
foreach P’ in L, do
if ISDISCRIMINATIVE(P’) then
| res < resU?P’;
if ISEXTENSIBLE(P’) then
| return res U PATTERNMINE(P’);
else
| break;

return res;

DerNITION 6 (Value of a match). Let N = (V,E,;n) be a
WIGA-network in N and P = (Vp,Ep) be a pattern of N which
occurs in N'. The value n(P,N') of the match of P in N is defined
as: W(P7N) = ﬁ : Zeeb'p n(e)

It is expected that the most significant patterns occur with high
value matches on a large sample of the considered population.
Given a pattern P of N, its incidence is defined below.

DerNTION 7 (Incidence of a pattern). The incidence of P on N is

defined as: s(P,N) = 3 yyon 1(P, N).

PROPERTY 1. The incidence of P on N is upper bounded by its
support, i.e., the number of WIGA-networks where P occurs.

This latter property immediately follows from the fact that the
value of a pattern match in a WIGA-network ranges in [0, 1].

The following definition allows to understand to what extent a
pattern P “characterizes” the considered population DS, given that
it occurs at least on a fixed percentage of the associated networks.

DeriNiTION 8 (Incidence of a pattern at x%). Let P be a pattern of N.
If the support of P in N is less than the x% of N, then the incidence
of P at the x% of N is null. Otherwise, it is defined as: $(P,N) =
Yonven 1P, N) where N are the first x% WIGA-networks in N
where P occurs, sorted in decreasing order with respect to the corre-
sponding values of P matches.

From this latter definition, it follows that compact descriptors
may be provided for a population, made of all its patterns having
non-null incidence at a given percentage. In the following, if not dif-
ferently specified, we assume that a percentage x has been fixed a
priori.

2.3 Discriminating different (sub)populations
Let, DS; and DS; be two subpopulations of DS, such that the parti-
tion is based on some properties of the samples independent from
the gene expression levels. Here we consider “healthy versus
unhealthy” individuals, for a given disease. The proposed approach
aims to investigate if, and to what extent, “macroscopic” differences
may be identified in the co-expression of genes corresponding to
individuals in the two different partitions. Given that in the previous
section, it has been explained how a population can be characterized
by a compact set of patterns, the attention now turns on identifying
those patterns which characterize one subpopulation, with reference
to the other one. Indeed, such patterns may help to discriminate be-
tween the two subpopulations.

Let, Ny and N, be the two sets of WIGA-networks associated to
DS; and DS,, respectively, such that N =N; UN,. In order to
measure the “discriminative power” of a pattern, the notion of

€202 8UNF Q1 UO J8SN ,J[|SUBIA S, BYdNewsjew & ayoishels 8zusids “did Aq 20860 L 2/89 L PEIG/F/6E/SI01HE/SONELIOJUI0IG/LL0D dNO DILSPEDE//:SARY WO} PAPEOJUMO(T



Fassetti et al.

information gain (Mitchell 1997) is considered and adapted to this
context. The aim is to measure the change in information entropy
(Gray 2011) induced by the pattern on the population DS, with
regards to its subpopulations DS; and DS,.

DerNITION 9 (Information entropy). The in Jormatzon entropy H(N)
may be defined as: H(N) = ‘ﬁi}‘ HNTI\‘_WI og N

Suppose that a pattern P of DS partitions N in two groups: N”,
i.e. the subset of WIGA-networks in N that contains P, and N” | i.e.
the WIGA-networks which do not contain P.

DeriNiTiON 10 (Information entropy given a pattern). Let P be a pat-

tern. The information entropy given a pattern H(N|P) is:

H(N|P) = H(N”) - q + HN”) - (1-g),
where q = L‘S(PNZ, and:

H(N”) = —q; log ¢1—(1-¢1) log(1-q1).

H(N”) = 3 log g2-(1-q2) log(1-q2),

$(PNy) N, [$(P.Ny)
SPNIHPN) 2 = NN NS (PN -

where q1 =

It is worth pointing out that Definition 10 is not symmetric. Indeed
it aims to highlight those patterns which characterize DSy but not
DS,, due to the fact that they have induced a variation of entropy
according to the above q; and gq,. The vice versa can be easily
obtained by switching Ny and N; in the definition.

DeriNiTioN 11 (Discriminative power). The discriminative power of
the pattern P, denoted by pow(P), is the gain in entropy:
pow(P) = H(N)-H(N|P).

In Supplementary Section S1.2, it is discussed how to determine an
upper bound for the discriminative power, which will be useful to
prune the search space in the discovery process.

DerNiTION 12 (Discriminative pattern). A pattern P is discriminative
if, for each pattern P'<XP, one of the two following conditions
holds: (1) pow(P) > pow(P'), (2) pow(P)=pow(P') and
$(P) > 5(P').

Therefore, a discriminative pattern has discriminative power
larger than that of all its subpatterns. However, we are interested in
discovering patterns that are also maximal, according to the follow-
ing definition.

DeriNiTION 13 (Maximal discriminative pattern). A discriminative
pattern P is maximal if there is not any other discriminative pattern
P'such that P<P'.

2.4 Algorithms

Given two (sub)populations DSy and DS;, the main goal here is to
extract the most representative discriminative patterns between
them (The algorithms described here are improved versions of
those in Fassetti et al. 2016.). To this aim, the function
TorKPATTERNS for the extraction of maximal discriminative pat-
terns is considered.

TorPKPATTERNS takes in input two sets of WIGA-networks Ny
and Ny, associated to DS; and DS, respectively. Its output is the set
of top-k discriminative patterns which distinguish samples in DS,
from those in DS, (the vice versa may be obtained analogously),
sorted with references to their discriminative power. The function
works as follows. Unidimensional patterns are generated at the be-
ginning, by taking each edge represented in at least one network in

N; (GeTEDGES). Each of these patterns, P is considered for possible
extension by the recursive function PATTERNMINE, in order to gen-
erate larger and potentially more interesting ones. The final set,
containing all (possible) extensions of the initial patterns is finally
pruned (PRUNE) by eliminating residual redundancy, according to
Definition 13, and the top-k patterns sorted according to their dis-
criminative power (TopK) are selected.The main core of
TorKPATTERNS is the function PATTERNMINE, based on a depth first
strategy applied to navigate and prune the search space, consisting
of the connected subgraphs of the input networks. PATTERNMINE
receives in input a pattern P. At the beginning, the pattern result
set res is set equal to the empty set, and the function
RANKEXTENSION is called to generate the list L, of all possible
extensions of P. A possible extension is a pattern P’ obtained from
P by adding a new edge that (i) connects two nodes already in P,
or (ii) involves a new external node. L, is sorted in decreasing
order, with regards to the patterns incidence. Then, for each pat-
tern P’ in L,, the function 1sSDISCRIMINATIVE checks if it is discrim-
inative according to Definition 12. In affirmative case, P’ is
inserted in the result-set res.

Each pattern P’ in L, has also to be checked for possible further
expansion. To this aim, the upper bound discussed in
Supplementary Section S1.2 has a key role. Indeed, it provides a
measure of the largest possible discriminative power that can be
obtained by extending it. Therefore, those patterns in L, whose
upper bound is lower than the discriminative power of the pattern P
from which they have been generated, will not be extended any
more. Furthermore, as the upper bound grows together with the in-
cidence and L, is sorted with respect to this measure, if a pattern
cannot be extended then all the other ones that follow it in L, can
be safely pruned.

The function 1SEXTENSIBLE executes the upper bound check on
each pattern P’ in L, and, if successful, the PATTERNMINE function is
recursively called until one of the following two conditions is veri-
fied: (i) the pattern cannot be extended anymore, (ii) the pattern has
reached a maximum size eventually fixed a priori.

3 Results

The proposed approach has been applied to both synthetic and real
data. In particular, Supplementary Section S2 describes experiments
performed on a simulation scenario aiming at evaluating the robust-
ness of the proposed approach. Real data have been retrieved from
four different datasets of the gene expression omnibus public func-
tional genomics data repository (Edgar et al. 2002). Each dataset
refers to a disease and contains the expression levels of a certain
number of genes for two different samples, associated to healthy
and unhealthy individuals, respectively. In the following, we refer to
each dataset by the name of the corresponding disease, i.e. “prostate
cancer” (GSE68907), “pancreas cancer” (GSE15471), “gastric can-

er” (GSE65801), and “psoriasis” (GSE13355). Datasets features
are summarized in Supplementary Table S4.

Supplementary Table S5 shows a summary of some statistics on
the discriminative patterns extracted at 20% of the considered pop-
ulations, in both cases of “healthy versus unhealthy” (healthy, for
short) and the vice versa (unhealthy), for each dataset. The number
of patterns is between 286 and 654, while their size is between 2
and 11 genes. It is worth remarking that the proposed approach is «
asymmetric,” in that it aims at building a compact set of patterns
which characterize one subpopulation, with reference to the other
one. In particular, the first subpopulation “guides” the extraction
process, thus that the patterns resulting in the highest discriminative
power are those most representative of that population in contrast
to the second one. This allows to accomplish the final goal of discov-
ering which co-expression relationships characterize each of the two
subpopulations in comparison.

The following subsections illustrate the different types of ana-
lysis performed on the considered datasets.
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3.1 Functional enrichment analysis

For each considered dataset, and for each of the healthy and un-
healthy cases, a “global view” of the extracted discriminative pat-
terns has been generated as follows (see also Supplementary Fig. S1).
All genes taking part in at least one pattern of the result set are con-
sidered, and an edge is put between a pair of genes if they are con-
nected in at least one of these patterns. Edge weights are also
considered, scoring the number of patterns where that edge occurs.
A global view may include different connected components.

Functional enrichment analysis has been performed on all sets of
genes intercepted by patterns included into the same connected com-
ponents, to infer their possible association with disease phenotypes.
Only connected components with size larger than 4 have been con-
sidered. The analysis has been performed from the home page of the
gene ontology (GO) website, by the GO service that connects to the
analysis tool from the PANTHER Classification System (Mi et al.
2013).

Gene sets with a P-value<.05 have been considered significantly
enriched, with references to each of the three GO vocabularies, i.e.
“biological process,” “molecular function,” and “cellular
component.” As shown in Table 1, the percentage of patterns
involving sets of genes significantly enriched is very large (over
93%) for pancreas, gastric, and prostate cancer and for almost all
three GO vocabularies. For psoriasis, the obtained connected com-
ponents are smaller with only two having size larger than 4. Results
obtained from the functional enriched analysis are discussed below.

3.1.1 Prostate cancer

For this dataset, the largest number of GO annotations has been
returned from the enrichment analysis. In particular, the healthy
case is characterized by significant annotations for biological pro-
cess, which include translation, peptide biosynthetic and metabolic
processes, amide biosynthetic process. The unhealthy case also
presents a large number of significant annotations such as response
to stimulus, multicellular organismal process, and development, re-
sponse to stimulus, cytoplasmic translation, peptide, and amide bio-
synthetic process, mostly confirming other previous findings on
prostate cancer (see, e.g. Sun et al. 2019).

3.1.2 Pancreas cancer

In this case, patterns discriminating the healthy population do not
include sets of genes involved in significant biological processes. On
the other hand, the related main molecular functions involve serine-
type endopeptidase, peptidase, and hydrolase activity, as well as
endopeptidase, peptidase, and hydrolase activity. Patterns discrimi-
nating the unhealthy case intercept genes characterized by anti-
microbial humoral response and proteolysis, accordingly to Bharmal
et al. (2017), who have found that pancreatic hormones exhibit a
differential effect on the pancreatic proteolytic enzymes. Genes in
the patterns result significantly enriched in molecular functions such
as hydrolase, catalytic, lipase, and peptidase activity.

Table 1. Percentage of patterns involving sets of genes significantly
enriched, for each GO vocabulary and dataset, and both Healthy
(H) and Unhealthy (U). When connected components have size
lower than 4, the enrichment analysis has not been performed
(denoted by —in the table).

Prostate cancer Pancreas cancer Gastric cancer Psoriasis
H U H U H U H U
Biological process

1 0.93 0 0.97 0.96 0.97 0.14 -
Molecular function

1 0.93 1 0.97 0.96 0.97 026 -
Cellular component

1 0.93 0 0.97 0.96 0 0.34 -

3.1.3 Gastric cancer

Patterns characterizing the healthy case intercept sets of genes sig-
nificantly enriched with terms related to sensory perception (of
smell) and nervous system process, which has been identified also by
Wang et al. (2021) as possibly implied in this type of cancer. For the
unhealthy case, G protein-coupled receptor signaling pathway and
detection of chemical stimulus involved in sensory perception have
been found, accordingly to both Ge et al. (2019) and Tian et al.
(2019).

3.1.4 Psoriasis

The healthy population in Psoriasis is discriminated from the un-
healthy one by patterns including genes involved in lipid, sterol,
cholesterol, and alcohol metabolic processes. This confirms some re-
cent findings by Nowowiejska et al. (2021), showing that psoriatic
patients suffer frequently from obesity, dyslipidemia, and liver dis-
ease, also due to the fact that lipid expression and metabolism disor-
ders are often present in such patients. Moreover, the associated
proteins result to be involved in oxidoreductase activity, binding,
acyltransferase, and catalytic activity.

3.2 Shape of the resulting patterns

Most of the generated patterns involve the co-occurrence of groups
of genes linked in non-linear structures and pattern shapes seem to
vary across to the different populations, as discussed in detail below.
Supplementary Table S6 shows the top-12 patterns scoring the high-
est commonness values for prostate cancer (plots for the other data-
sets are analogous and they are not shown).

3.2.1 Prostate cancer

Patterns characterizing the healthy population include either chains
or more complex structures: some genes exist that keep the pattern
joined or there are triplets of genes organized to form triangles, stat-
ing that a kind of inter-dependency exists in their expression. When
moving to the unhealthy case, simpler structures emerge, and most
patterns with high incidence are just chains formed by two or more
genes.

3.2.2 Pancreas cancer

Patterns getting higher incidence have all complex structures, in
both healthy and unhealthy populations. The ones describing the
healthy samples are based on a very small set of genes, which are
variously combined; these genes result to be the building blocks
characterizing the interactions in healthy samples. Some of them ap-
pear also in the patterns describing unhealthy; however, most of
their interactions are different in the latter case, as if the pathologic-
al status implies both a rewiring among the genes, and the appear-
ance or disappearance of interactions.

3.2.3 Gastric cancer

Although patterns with up to six nodes have been extracted, the
ones at the top of the ranking contain three or four nodes, mostly
arranged to form chains or triangles. However, although no import-
ant differences may be highlighted in the pattern structures between
healthy and unhealthy cases, we may point out that the genes
involved in the two cases are completely different.

3.2.4 Psoriasis

Here most extracted patterns are pairs. This is always true for the
healthy population, whereas for the unhealthy one there are also a
few larger patterns. Although pattern shapes and their sizes are dif-
ferent than in the previously analyzed datasets, we highlight a simi-
larity with the prostate cancer case, in the fact that patterns in
unhealthy present a simpler structure than in the healthy case.

€202 8UNF Q1 UO J8SN ,J[|SUBIA S, BYdNewsjew & ayoishels 8zusids “did Aq 20860 L 2/89 L PEIG/F/6E/SI01HE/SONELIOJUI0IG/LL0D dNO DILSPEDE//:SARY WO} PAPEOJUMO(T


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad168#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad168#supplementary-data

Fassetti et al.

3.3 Frequency of occurrence analysis

Another perspective of analysis is related to the fact that, for each
considered dataset, a few genes occur in a large number of patterns.
To this respect, the frequency of occurrence of single genes, as well
as pairs, triples, and quadruples of them in the result-set has been
analyzed (see Supplementary Tables $7-510), and the DisGeNET
discovery platform (Bauer-Mehren et al. 2010; Pifiero et al. 2019)
has been used to study the implication of such frequent genes in
diseases.

3.3.1 Prostate cancer

Healthy population for this dataset is characterized by patterns
involving genes that code for ribosomal proteins, often combined
with each other and with the gene SRP14. The unhealthy population
presents apparently a more variegated set of genes frequently occur-
ring in the extracted discriminative patterns. The gene SPINK2 is
the most frequent one. Its encoded protein acts as a trypsin and acro-
sin inhibitor in the genital tract, and it is localized in the spermato-
zoa, being also associated with the progression of lymphomas
Fagerberg et al. (2014). Looking at the co-occurrence of 3/4 genes in
the unhealthy case, it results that the most frequent triples/quadru-
ples involve the gene AMELX combined with genes coding for ribo-
somal proteins. This confirms previous studies, where an altered
expression of AMELX was found to be associated to prostate cancer
[see, e.g. research by Hong et al. (2015)]. Moreover, these results
suggest that the co-expression of AMELX with genes coding for
ribosomal proteins could play some roles in the occurrence and/or
progress of the considered disease. Interestingly, many of the pat-
terns characterizing the unhealthy population involve the two genes
HSPB1 and POU3F1, often co-occurring with genes coding for
ribosomal proteins (i.e. showing the same behavior of AMELX).
This is another novel result, which may deserve further investiga-
tion. Indeed, such two genes are known to be associated with other
types of cancer, such as Liver Carcinoma Cheng et al. (2015) and
Lung Cancer Ubhi and Price (2005).

3.3.2 Pancreas cancer

The main players in this case are the genes associated to the two
enzymes CELA3A and CELA2B, which are characteristic of both
the healthy and unhealthy populations. CELA3A is associated to
exocrine pancreatic insufficiency (Vanga et al. 2018) and diabetes
mellitus (Riceman et al. 2019), whereas CELA2B is determinant of
blood pressure and body mass index (Giri et al. 2019). What is dif-
ferent in the patterns between healthy and unhealthy is the set of
other genes with which CELA3A and CELA2B co-occur. Indeed, in
the healthy case they are often paired with SYNC, encoding a pro-
tein highly expressed in skeletal and cardiac muscle, where it has a
structural role. In the unhealthy population they co-occur with
REG1A, REG1B, CPB1, and REG3A, all involved in diabetes mel-
litus and malignant neoplasms. This confirms what already observed
also in Section 3.2: a few genes such as CELA3A and CELA2B have
an important role in Pancreas Cancer, and in particular their inter-
play with other genes change when the disease arises and develops.

3.3.3 Gastric cancer

For this disease the healthy population is characterized by the co-
occurrence of both genes, such as RTL1, PSG3, F9, and non-coding
RNA, such as SERPINA13 and ADAMG6. The case “unhealthy ver-
sus healthy” presents the gene BTG4, already known to be associ-
ated with Gastric Cancer (Dong et al. 2009) as well as to Colorectal
and Breast Carcinoma (Mori et al. 2011), often co-occurring with
LGALS13 and IFLTD1, associated with Neoplastic Processes
(Gilson et al. 2017) and respiratory tracts Neoplasms (Manenti
et al. 2004), Cardiovascular Diseases (El Rouby et al. 2019), respect-
ively. These latter co-occurrences may suggest possible risk factors
for patients affected by Gastric Cancer to contract other types of
Neoplasms, as well as Cardiovascular Diseases. Moreover, as in the
previous analyzed cases, our analysis induces the hypothesis of new
gene-disease associations for the considered disease.

3.3.4 Psoriasis

The healthy case is characterized by the frequent co-occurrence of
genes encoding different keratines (KRT35, KRTAP1-3, KRTAP3-3,
KRTAP4-1, and KRTAP4-3). In the unhealthy case, as already
explained in Section 3.2, the structure of patterns is not much com-
plex and patterns are very diversified in the genes they involve.
However, also in this case interesting examples of co-occurrences
may be found, often involving genes known to be associated with
Psoriasis, such as QTRT1 (Baurecht et al. 2015), as well as genes
related to other diseases, e.g. ERF, implied in complex craniosynos-
tosis (Twigg et al. 2013), and ISOC2, biomarker of Osteoarthrosis
Deformans (Ruiz-Romero et al. 2009).

3.4 Hub gene identification via PPl network analysis

A further analysis has been performed to investigate if genes
involved in the extracted patterns code for proteins, which may be
considered “hubs” in the human PPI network, built by downloading
data from IntACT (Orchard et al. 2014). It is well known that the
degree distribution of PPI networks follows a power law, with many
nodes having a low degree and few highly connected ones.
Accordingly to Cui et al. (2020), hubs are nodes with degree at least
10.

A first observation is that the number of genes in the patterns
which code for hub proteins is significantly larger for prostate can-
cer and psoriasis than for the other datasets, as evident from
Supplementary Table S11. A second observation is that, in some of
the considered populations, hubs corresponding to genes in the pat-
terns have a degree considerably larger than 10 (e.g. 349 for prostate
cancer). Supplementary Table S12 shows the top-25 hub proteins
and their corresponding degrees, also discussed in detail below.

3.4.1 Prostate cancer

For the healthy population, the hub with the largest degree (87) is
RPS6, involved in the catalysis of protein synthesis and contributing
to the control of cell growth and proliferation, through the selective
translation of particular classes of mRNA (O’Leary et al. 2016). For
the unhealthy case, the top-25 hubs range from 349 to 74 connec-
tions with other proteins in the network. Among them, there is
HSPB1, a member of the small heat shock protein family of proteins
which, in response to environmental stress, translocates from the
cytoplasm to the nucleus and functions as a molecular chaperone
that promotes the correct folding of other proteins (O’Leary et al.
2016). It has been proved that the expression of this gene is corre-
lated also with poor clinical outcomes in multiple human cancers,
and the encoded protein may promote cancer cell proliferation and
metastasis (Ajalyakeen et al. 2020; Drexler et al. 2020). As for the
hub RPS4X, it has been proven that dysregulation of RP expression
occurs in a variety of human diseases, notably in many cancers
(O’Leary et al. 2016), and altered expression of some RPs correlates
with different tumor phenotypes and patient survival (Dolezal et al.
2018), including the prostatic one.

3.4.2 Pancreas cancer

Patterns characterizing the healthy case come from the combination
of only 10 genes, 6 out of which are also in the PPI network and pre-
sent a small number of interactions. As for the unhealthy popula-
tion, 27 out of the 38 genes involved in the patterns have a
correspondence in the PPI network, where the highest degrees are
scored by FHL1 and KRT20. FHL1 provides instructions for mak-
ing three versions (isoforms) of a protein that plays an important
role in muscles used for movement (skeletal muscles) and in the
heart (cardiac muscle). KRT20 codes for a protein which is a mem-
ber of the keratin family, the intermediate filament proteins respon-
sible for the structural integrity of epithelial cells.

3.4.3 Gastric cancer

Only a few genes in the patterns characterizing both the healthy and
the unhealthy subpopulations code for proteins mapped in the con-
sidered PPI network. Among them, PAX2 belongs to the family of
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Paired-Box Containing Genes, which plays important roles in the
development and proliferation of multiple cell lines, development of
organs, and development and organization of the central nervous
system (Mansouri and Gruss 2013). The corresponding transcrip-
tion factor is important in the regionalized embryological develop-
ment of the central nervous system, and it is believed to be a target
of transcriptional suppression by the tumor suppressor gene WT1.
Another hub is IRS4, a cytoplasmic protein that contains many po-
tential tyrosine and serine/threonine phosphorylation sites. It char-
acterizes the unhealthy case and interacts with other 103 proteins in
the PPI network.

3.4.4 Psoriasis

Differently than in previous cases, for Psoriasis most genes involved
in patterns code for proteins mapped in the PPI network. There are
552 of such genes for the healthy and 595 for the unhealthy cases,
respectively. Moreover, the degree of the intercepted hubs is often
high, indeed the 43.84% and the 36.30% of proteins for healthy
and unhealthy, respectively, have a degree larger than 10. The top
hubs are RELA, encoding a transcription factor, for healthy, and
AGO1, required for RNA-mediated gene silencing, for unhealthy.

3.5 Comparison against a standard approach

In Supplementary Section S3.5 further experiments comparing the
proposed approach against a standard one, that identifies differen-
tially expressed genes without considering co-expression among
them, are presented. The main result is that, most of the genes
involved in the best scoring discriminative patterns returned by the
proposed approach and discussed in the previous paragraphs, would
not have been detected by the standard approach, thus confirming
the importance of taking into account collaborative effects, at the
basis of the proposed approach.

4 Conclusion

An approach for the extraction of graph patterns useful to discrim-
inate two different populations has been proposed and validated on
gene expression data. Results show that, by the analysis of the
extracted patterns, it is possible to identify significant differences be-
tween healthy and unhealthy samples, and also to investigate on the
role of genes and cellular components in the occurrence and progress
of diseases.

Interesting issues still remain open, e.g. the extension of the pro-
posed approach to multiple datasets. This will require to extend the
notions of information entropy and discriminative power introduced
in Section 2.3, to account for the relevant differences among 7 sets
of graphs. The goal will be to search for those graph patterns which
characterize each set, with respect to the others 7—1. We plan to
study this problem in the future, referring to some application con-
texts where discriminating among different stages, associated to dif-
ferent populations, may be significant. Examples of that are datasets
associated to patients at different states of a given disease, or to stem
cells differentiation.

Supplementary data
Supplementary data is available at Bioinformatics online.
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