451 research outputs found

    Understanding people through the aggregation of their digital footprints

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 160-172).Every day, millions of people encounter strangers online. We read their medical advice, buy their products, and ask them out on dates. Yet our views of them are very limited; we see individual communication acts rather than the person(s) as a whole. This thesis contends that socially-focused machine learning and visualization of archived digital footprints can improve the capacity of social media to help form impressions of online strangers. Four original designs are presented that each examine the social fabric of a different existing online world. The designs address unique perspectives on the problem of and opportunities offered by online impression formation. The first work, Is Britney Spears Span?, examines a way of prototyping strangers on first contact by modeling their past behaviors across a social network. Landscape of Words identifies cultural and topical trends in large online publics. Personas is a data portrait that characterizes individuals by collating heterogenous textual artifacts. The final design, Defuse, navigates and visualizes virtual crowds using metrics grounded in sociology. A reflection on these experimental endeavors is also presented, including a formalization of the problem and considerations for future research. A meta-critique by a panel of domain experts completes the discussion.by Aaron Robert Zinman.Ph.D

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Using Web Archives to Enrich the Live Web Experience Through Storytelling

    Get PDF
    Much of our cultural discourse occurs primarily on the Web. Thus, Web preservation is a fundamental precondition for multiple disciplines. Archiving Web pages into themed collections is a method for ensuring these resources are available for posterity. Services such as Archive-It exists to allow institutions to develop, curate, and preserve collections of Web resources. Understanding the contents and boundaries of these archived collections is a challenge for most people, resulting in the paradox of the larger the collection, the harder it is to understand. Meanwhile, as the sheer volume of data grows on the Web, storytelling is becoming a popular technique in social media for selecting Web resources to support a particular narrative or story . In this dissertation, we address the problem of understanding the archived collections through proposing the Dark and Stormy Archive (DSA) framework, in which we integrate storytelling social media and Web archives. In the DSA framework, we identify, evaluate, and select candidate Web pages from archived collections that summarize the holdings of these collections, arrange them in chronological order, and then visualize these pages using tools that users already are familiar with, such as Storify. To inform our work of generating stories from archived collections, we start by building a baseline for the structural characteristics of popular (i.e., receiving the most views) human-generated stories through investigating stories from Storify. Furthermore, we checked the entire population of Archive-It collections for better understanding the characteristics of the collections we intend to summarize. We then filter off-topic pages from the collections the using different methods to detect when an archived page in a collection has gone off-topic. We created a gold standard dataset from three Archive-It collections to evaluate the proposed methods at different thresholds. From the gold standard dataset, we identified five behaviors for the TimeMaps (a list of archived copies of a page) based on the page’s aboutness. Based on a dynamic slicing algorithm, we divide the collection and cluster the pages in each slice. We then select the best representative page from each cluster based on different quality metrics (e.g., the replay quality, and the quality of the generated snippet from the page). At the end, we put the selected pages in chronological order and visualize them using Storify. For evaluating the DSA framework, we obtained a ground truth dataset of hand-crafted stories from Archive-It collections generated by expert archivists. We used Amazon’s Mechanical Turk to evaluate the automatically generated stories against the stories that were created by domain experts. The results show that the automatically generated stories by the DSA are indistinguishable from those created by human subject domain experts, while at the same time both kinds of stories (automatic and human) are easily distinguished from randomly generated storie

    Implicit Entity Networks: A Versatile Document Model

    Get PDF
    The time in which we live is often referred to as the Information Age. However, it can also aptly be characterized as an age of constant information overload. Nowhere is this more present than on the Web, which serves as an endless source of news articles, blog posts, and social media messages. Of course, this overload is even greater in professions that handle the creation or extraction of information and knowledge, such as journalists, lawyers, researchers, clerks, or medical professionals. The volume of available documents and the interconnectedness of their contents are both a blessing and a curse for the contemporary information consumer. On the one hand, they provide near limitless information, but on the other hand, their consumption and comprehension requires an amount of time that many of us cannot spare. As a result, automated extraction, aggregation, and summarization techniques have risen in popularity, even though they are a long way from being comprehensive. When we, as humans, are faced with an overload of information, we tend to look for patterns that bring order into the chaos. In news, we might identify familiar political figures or celebrities, whereas we might look for expressive symptoms in medicine, or precedential cases in law. In other words, we look for known entities as reference points, and then explore the content along the lines of their relations to others entities. Unfortunately, this approach is not reflected in current document models, which do not provide a similar focus on entities. As a direct result, the retrieval of entity-centric knowledge and relations from a flood of textual information becomes more difficult than it has to be, and the inclusion of external knowledge sources is impeded. In this thesis, we introduce implicit entity networks as a comprehensive document model that addresses this shortcoming and provides a holistic representation of document collections and document streams. Based on the premise of modelling the cooccurrence relations between terms and entities as first-class citizens, we investigate how the resulting network structure facilitates efficient and effective entity-centric search, and demonstrate the extraction of complex entity relations, as well as their summarization. We show that the implicit network model is fully compatible with dynamic streams of documents. Furthermore, we introduce document aggregation methods that are sensitive to the context of entity mentions, and can be used to distinguish between different entity relations. Beyond the relations of individual entities, we introduce network topics as a novel and scalable method for the extraction of topics from collections and streams of documents. Finally, we combine the insights gained from these applications in a versatile hypergraph document model that bridges the gap between unstructured text and structured knowledge sources

    A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

    Get PDF
    A thesis submitted to the University of Bedfordshire, in ful filment of the requirements for the degree of Doctor of PhilosophyToday, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects

    Visualization of analytic provenance for sensemaking

    Get PDF
    Sensemaking is an iterative and dynamic process, in which people collect data relevant to their tasks, analyze the collected information to produce new knowledge, and possibly inform further actions. During the sensemaking process, it is difficult for the human’s working memory to keep track of the progress and to synthesize a large number of individual findings and derived hypotheses, thus limits the performance. Analytic provenance captures both the data exploration process and and its accompanied reasoning, potentially addresses these information overload and disorientation problems. Visualization can help recall, revisit and reproduce the sensemaking process through visual representations of provenance data. More interesting and challenging, analytic provenance has the potential to facilitate the ongoing sensemaking process rather than providing only post hoc support. This thesis addresses the challenge of how to design interactive visualizations of analytic provenance data to support such an iterative and dynamic sensemaking. Its original contribution includes four visualizations that help users explore complex temporal and reasoning relationships hidden in the sensemaking problems, using both automatically and manually captured provenance. First SchemaLine, a timeline visualization, enables users to construct and refine narratives from their annotations. Second, TimeSets extends SchemaLine to explore more complex relationships by visualizing both temporal and categorical information simultaneously. Third, SensePath captures and visualizes user actions to enable analysts to gain a deep understanding of the user’s sensemaking process. Fourth, SenseMap visualization prevents users from getting lost, synthesizes new relationship from captured information, and consolidates their understanding of the sensemaking problem. All of these four visualizations are developed using a user-centered design approach and evaluated empirically to explore how they help target users make sense of their real tasks. In summary, this thesis contributes novel and validated interactive visualizations of analytic provenance data that enable users to perform effective sensemaking
    corecore