1,847 research outputs found

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Análise de propriedades intrínsecas e extrínsecas de amostras biométricas para detecção de ataques de apresentação

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os recentes avanços nas áreas de pesquisa em biometria, forense e segurança da informação trouxeram importantes melhorias na eficácia dos sistemas de reconhecimento biométricos. No entanto, um desafio ainda em aberto é a vulnerabilidade de tais sistemas contra ataques de apresentação, nos quais os usuários impostores criam amostras sintéticas, a partir das informações biométricas originais de um usuário legítimo, e as apresentam ao sensor de aquisição procurando se autenticar como um usuário válido. Dependendo da modalidade biométrica, os tipos de ataque variam de acordo com o tipo de material usado para construir as amostras sintéticas. Por exemplo, em biometria facial, uma tentativa de ataque é caracterizada quando um usuário impostor apresenta ao sensor de aquisição uma fotografia, um vídeo digital ou uma máscara 3D com as informações faciais de um usuário-alvo. Em sistemas de biometria baseados em íris, os ataques de apresentação podem ser realizados com fotografias impressas ou com lentes de contato contendo os padrões de íris de um usuário-alvo ou mesmo padrões de textura sintéticas. Nos sistemas biométricos de impressão digital, os usuários impostores podem enganar o sensor biométrico usando réplicas dos padrões de impressão digital construídas com materiais sintéticos, como látex, massa de modelar, silicone, entre outros. Esta pesquisa teve como objetivo o desenvolvimento de soluções para detecção de ataques de apresentação considerando os sistemas biométricos faciais, de íris e de impressão digital. As linhas de investigação apresentadas nesta tese incluem o desenvolvimento de representações baseadas nas informações espaciais, temporais e espectrais da assinatura de ruído; em propriedades intrínsecas das amostras biométricas (e.g., mapas de albedo, de reflectância e de profundidade) e em técnicas de aprendizagem supervisionada de características. Os principais resultados e contribuições apresentadas nesta tese incluem: a criação de um grande conjunto de dados publicamente disponível contendo aproximadamente 17K videos de simulações de ataques de apresentações e de acessos genuínos em um sistema biométrico facial, os quais foram coletados com a autorização do Comitê de Ética em Pesquisa da Unicamp; o desenvolvimento de novas abordagens para modelagem e análise de propriedades extrínsecas das amostras biométricas relacionadas aos artefatos que são adicionados durante a fabricação das amostras sintéticas e sua captura pelo sensor de aquisição, cujos resultados de desempenho foram superiores a diversos métodos propostos na literature que se utilizam de métodos tradicionais de análise de images (e.g., análise de textura); a investigação de uma abordagem baseada na análise de propriedades intrínsecas das faces, estimadas a partir da informação de sombras presentes em sua superfície; e, por fim, a investigação de diferentes abordagens baseadas em redes neurais convolucionais para o aprendizado automático de características relacionadas ao nosso problema, cujos resultados foram superiores ou competitivos aos métodos considerados estado da arte para as diferentes modalidades biométricas consideradas nesta tese. A pesquisa também considerou o projeto de eficientes redes neurais com arquiteturas rasas capazes de aprender características relacionadas ao nosso problema a partir de pequenos conjuntos de dados disponíveis para o desenvolvimento e a avaliação de soluções para a detecção de ataques de apresentaçãoAbstract: Recent advances in biometrics, information forensics, and security have improved the recognition effectiveness of biometric systems. However, an ever-growing challenge is the vulnerability of such systems against presentation attacks, in which impostor users create synthetic samples from the original biometric information of a legitimate user and show them to the acquisition sensor seeking to authenticate themselves as legitimate users. Depending on the trait used by the biometric authentication, the attack types vary with the type of material used to build the synthetic samples. For instance, in facial biometric systems, an attempted attack is characterized by the type of material the impostor uses such as a photograph, a digital video, or a 3D mask with the facial information of a target user. In iris-based biometrics, presentation attacks can be accomplished with printout photographs or with contact lenses containing the iris patterns of a target user or even synthetic texture patterns. In fingerprint biometric systems, impostor users can deceive the authentication process using replicas of the fingerprint patterns built with synthetic materials such as latex, play-doh, silicone, among others. This research aimed at developing presentation attack detection (PAD) solutions whose objective is to detect attempted attacks considering different attack types, in each modality. The lines of investigation presented in this thesis aimed at devising and developing representations based on spatial, temporal and spectral information from noise signature, intrinsic properties of the biometric data (e.g., albedo, reflectance, and depth maps), and supervised feature learning techniques, taking into account different testing scenarios including cross-sensor, intra-, and inter-dataset scenarios. The main findings and contributions presented in this thesis include: the creation of a large and publicly available benchmark containing 17K videos of presentation attacks and bona-fide presentations simulations in a facial biometric system, whose collect were formally authorized by the Research Ethics Committee at Unicamp; the development of novel approaches to modeling and analysis of extrinsic properties of biometric samples related to artifacts added during the manufacturing of the synthetic samples and their capture by the acquisition sensor, whose results were superior to several approaches published in the literature that use traditional methods for image analysis (e.g., texture-based analysis); the investigation of an approach based on the analysis of intrinsic properties of faces, estimated from the information of shadows present on their surface; and the investigation of different approaches to automatically learning representations related to our problem, whose results were superior or competitive to state-of-the-art methods for the biometric modalities considered in this thesis. We also considered in this research the design of efficient neural networks with shallow architectures capable of learning characteristics related to our problem from small sets of data available to develop and evaluate PAD solutionsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140069/2016-0 CNPq, 142110/2017-5CAPESCNP

    Analyzing Human-Human Interactions: A Survey

    Full text link
    Many videos depict people, and it is their interactions that inform us of their activities, relation to one another and the cultural and social setting. With advances in human action recognition, researchers have begun to address the automated recognition of these human-human interactions from video. The main challenges stem from dealing with the considerable variation in recording setting, the appearance of the people depicted and the coordinated performance of their interaction. This survey provides a summary of these challenges and datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection methods. We focus on recent, promising work based on deep learning and convolutional neural networks (CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze and, eventually, understand social human actions

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier
    corecore