7,584 research outputs found

    PETAL: a python tool for deep analysis of biological pathways.

    Get PDF
    Abstract Summary Although several bioinformatics tools have been developed to examine signaling pathways, little attention has been given to ever long-distance crosstalk mechanisms. Here, we developed PETAL, a Python tool that automatically explores and detects the most relevant nodes within a KEGG pathway, scanning and performing an in-depth search. PETAL can contribute to discovering novel therapeutic targets or biomarkers that are potentially hidden and not considered in the network under study. Availabilityand implementation PETAL is a freely available open-source software. It runs on all platforms that support Python3. The user manual and source code are accessible from https://github.com/Pex2892/PETAL

    Exact reconstruction of gene regulatory networks using compressive sensing.

    Get PDF
    BackgroundWe consider the problem of reconstructing a gene regulatory network structure from limited time series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse, meaning the connectivity among genes is much less than full connectivity. We develop a method for network reconstruction based on compressive sensing, which takes advantage of the network's sparseness.ResultsFor the case in which all genes are accessible for measurement, and there is no measurement noise, we show that our method can be used to exactly reconstruct the network. For the more general problem, in which hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost of experiments. For each problem, a set of numerical examples is presented.ConclusionsThe method provides a guarantee on how well the inferred graph structure represents the underlying system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies

    From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data

    Get PDF
    Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining approaches towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal with respect to a functional module, and 3) revealing the architecture of a signaling system organize signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis have led to many hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architect of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which readily can be translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed"

    Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation.

    Get PDF
    The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome

    The Infinite Hierarchical Factor Regression Model

    Get PDF
    We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis
    • …
    corecore