
Subject Section

PETAL: A Python tool for deep analysis of
biological pathways
Giuseppe Sgroi1, Giulia Russo2,* and Francesco Pappalardo2

1Department of Mathematics and Computer Science, University of Catania, V.le A. Doria, 6, 95125
Catania, Italy, 2Depatment of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania,
Italy.

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Summary: Although several bioinformatics tools have been developed to examine signaling
pathways, little attention has been given to ever long-distance crosstalk mechanisms. Here, we
developed PETAL, a Python tool that automatically explores and detects the most relevant nodes
within a KEGG pathway, scanning and performing an in-depth search. PETAL can contribute to
discovering novel therapeutic targets or biomarkers that are potentially hidden and not considered in
the network under study.
Availability: PETAL is a freely available open-source software. It runs on all platforms that support
Python3. The user manual and source code are accessible from https://github.com/Pex2892/PETAL.
Contact: giuseppe.sgroi@unict.it

1 Introduction
Several web-based applications for pathway analysis and biomarker
identification (Cirillo et al., 2017) have been developed to extract more
complete and interpretable features from the molecular and biochemical
mechanisms among individual genes, proteins or metabolites in
predefined pathways present in biological databases (e.g. Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa, 2004). Here,
we present ParallEl paThways AnaLyzer (PETAL), a tool that provides a
better usage of KEGG through the employment of new specifically
developed open-source tools and Python libraries (Lindstrom, 2005),
such as Pandas1 and Joblib2. In particular, PETAL allows users to find
hidden interactions among significant proteins belonging to the same
pathway and other proteins within possible linked pathways. Web-tools
like STRING (Szklarczyk et al., 2015), Cytoscape (Franz et al., 2015)
and Reactome, with its browser pathway function (Fabregat et al., 2018)
have added valuable features in terms of visualization of complex
networks, and analysis of pathway knowledge to support basic research.

1 https://pandas.pydata.org/
2 https://joblib.readthedocs.io/en/latest/

However, PETAL adds the possibility to search in-depth for ancestor and
descendent nodes of a specific target gene, making this task faster in
terms of performance. PETAL is potentially able to find pathways that
are distant from the ones containing the targets of interest. Moreover,
PETAL includes a scalable and parallelized engine with the ability to
easily add new functionalities and specific modules to simplify and
automate the discovery of new therapeutic targets or biomarkers.
Inspired by Palumbo’s work and related tool MapReduce (Palumbo et
al., 2019), we propose a more efficient alternative solution in terms of
computational time and performance. Compared to MapReduce, PETAL
strongly optimizes the in-depth search. It employs a type of data
structure called data frame containing specific information about the
initial gene and the ending gene used to perform the step-by-step in-
depth analysis. This RAM-saved data frame performs much better in
terms of reading/writing access and allows an easier implementation
when used in HPC environment. Conversely, MapReduce accesses the
main memory more frequently at every single step, slowing down the
search. Another significant difference is the information extracted from
each analysed pathway and gene: MapReduce only tracks the
connections found during the analysis, while PETAL holds the pathways
of origin, the protein interaction and its biological function, and the

© The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa1032/6039123 by Auckland U

niversity of Technology user on 18 D
ecem

ber 2020

https://github.com/Pex2892/PETAL
mailto:giuseppe.sgroi@unict.it

G. Sgroi et al.

connections found. Moreover, during the analysis the number of
occurrences is calculated for each connection. Finally, PETAL provides
a graphical user interface allowing the user to navigate through an
interactive tree containing all the information found during the search.
The main advantages of the tool can be summarized in five points: i) a
better performing breadth-first search (BFS); ii) the decreased main
memory request during the analysis, avoiding text files management; iii)
the calculation of occurrences during the analysis (i.e., the number of
times that a determined pathway has been found in all the pathways
retrieved from KEGG during the search process between the starting
gene and the ending one); iv) a user-friendly interface with more
information shown and v) the possibility to save pathways locally. To get
a parallel working version, Joblib has been employed. Joblib is a set of
tools that lets Python manage parallel computing in an optimized way to
be fast and robust on extensive data. PETAL output is made available
through the d3.js library (Bostock et al., 2011). D3.js is a JavaScript
library developed to display data dynamically and interactively, starting
from some organized numeric data that combine HTML5, Scalable
Vector Graphics (SVG), and Cascading Style Sheets (CSS). It is worth
mentioning that PETAL GUI was not developed entirely from scratch
but from the "Radial Tree" project developed by Wm Leler
(https://gist.github.com/wmleler/a734fb2bb3319a2cb386). It represents a
viewer of interactive radial trees in which users can navigate and explore
all the available information obtained during the search. To this aim, the
GUI includes specific commands that allow users to manage the output
tree.

2 Design and function
PETAL uses the BFS search logic to carry out the breadth analysis,
which starts with the initial retrieving of data, in particular the biological
pathways present in KEGG. The analysis requires the following input
parameters: pathway name, starting gene, and maximum search depth. In
this way, it is possible to discover fewer common pathways and show the
number of times they appear in other biological pathways. Here, the
advantage consists of automatically and quickly obtaining the results,
saving time and decreasing complexity. This process would have
requested much more time if conducted manually. Moreover, a graphical
interface allows the exploration of the output tree, showing all the
connections among genes in different depths, the number of occurrences,
and other pathway information.

2.1 Reading the configuration file
The configuration file is read in INI format3 through the "read_config()"
method, a structure similar to what is found in Microsoft Windows INI
files, containing a set of mandatory and optional parameters for starting
the analysis:

 #CPU (optional): <integer>, sets the number of CPUs
available for the analysis. If this parameter is set to zero or its
value overcomes the number of installed CPUs, it is
automatically set to the maximum number.

 Pathway (mandatory): <string>, represents the biological
pathway from which the analysis starts.

 Gene (mandatory): <string>, represents the gene contained in
the pathway previously selected from which the analysis
begins. If the inserted gene is not contained in the biological
pathway, an error is issued.

3 https://docs.python.org/3/library/configparser.html

 Depth (mandatory): <integer>, sets the maximum depth of the
analysis.

2.2 Checking for pathway updates
The web page https://www.genome.jp/kegg/docs/upd_map.html,
available on KEGG, lists the names of the updated pathways and the
type of adjustment. The method "download_update_pathway_html()"
checks if any pathways have been updated, and eventually it downloads
the new XML file; if there are no updates, the process stops and proceeds
to the next step.

2.3 Preparation of data structures
In this step, the global DataFrame structure is created. It contains all the
connections found during the analysis, grouped by depth. Each row
shows the following data collection and information:

1. “deep”: shows the depth of the connection between the two
genes (e.g., 1);

2. “name_father”: indicates the name of the initial gene (e.g.,
MAPK1);

3. “hsa_father”: specifies the name of the initial gene in hsa
format (e.g., hsa:5594 hsa:5595);

4. “name_son”: indicates the name of the ending gene (e.g.,
EGFR);

5. “hsa_son”: specifies the name of the ending gene in hsa
format (e.g., has:1956 has:2064);

6. “url_kegg_son”: shows the address where it is possible to
retrieve the list of paths in which the gene of interest is
present (e.g., https://www.kegg.jp/dbget-
bin/www_bget?hsa:1956+hsa:2064);

7. “relation”: shows the protein interaction between the two
genes (e.g., PPre§§PPrel§§PPrel);

8. “type_rel”: represents the nature of the biochemical
interaction such as a phosphorylation reaction (e.g.,
activation//indirect effect§§activation//indirect
effect§§activation//phosphorylation//indirect effect);

9. “pathway_of_origin”: contains the list of pathways whose
ending gene is present (e.g.,
has04921§§has04928§§has05205);

10. “fullpath”: specifies the complete hierarchy from the initial
gene to the ending gene found (e.g., MAPK1/EGFR);

11. “occurrences”: shows the number of occurrences (e.g., 6).

2.4 Analysis
The analysis is performed in parallel through the Joblib library. To
speed-up the execution when reading the XML files compressed files by
gzip are used. The analysis deals with a depth equal or superior to 1. In
the former case, the analysis takes care of the initial gene, while in the
latter one, a list of genes is considered. Precisely, the analysis consists of
the following sub-phases:

 Depth 1
a. Download of the XML file of the selected pathway.
b. Reading of the XML file and extraction of those genes

directly connected to the one selected in the configuration
file.

c. Addition of the genes found in the data frame.
d. Creation of a list of pathways in which the selected gene is

present.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa1032/6039123 by Auckland U

niversity of Technology user on 18 D
ecem

ber 2020

https://gist.github.com/wmleler/a734fb2bb3319a2cb386

PETAL

e. Processing each pathway in the list in parallel, obtaining from
each process a list of found genes directly connected to the
selected gene.

f. Each process, upon its completion, provides the results in the
data frame.

 Depth 2, …, n
a. Extraction of the descendent genes previously found and

saving them in a list.
b. Processing of each gene in the list through steps d), e), and f)

of Depth 1 sub-phase.

2.5 Generation and display of the output
A JSON file must be created to view the tree by inserting all the links
saved in the global data frame after the analysis. Figure 1 shows a
screenshot of PETAL GUI: on the left, one can see the connection tree
and the command toolbox. On the right, one can see the information of a
specific gene divided by 1) whole path, 2) depth, 3) number of
occurrences, and 4) related organism code (e.g., "hsa"), which identifies
the gene accordingly to KEGG nomenclature.

Fig. 1. An output tree example (MAPK1 pathway) obtained by running the
algorithm with a depth equal to 5. The figure depicts an interactive example of the
output tree generated by analysing the biological pathway "MAPK". The starting
gene is represented by MAPK1 (alias ERK) and the depth search level is equal to
5. As one can see, all the genes in output are classified by their depth; the gene
in red (PIK3CA) represents the ending gene level reached by the analysis. The
box on the right shows specific information related to the pathway under study for
every single gene. The upper panel represents the graphical user interface
control buttons.

3 Performance and simulation results
PETAL tests were performed on a server equipped with 8 Intel Xeon E5
CPUs at 2.40 GHz and 64 Gigabytes of RAM with different
combinations of depth levels ranging from 1 to 5, using 1, 2, 4 and 8
CPUs. Each step is performed starting from the initial gene. As a
working example, we considered MAPK1 genes (hsa5594 + hsa5595)
contained in MAPK pathway (hsa04010) (Morrison, 2012), as reported
in KEGG. MAPK1 represents one of the most important biomarkers of
response to protein kinase inhibitors associated with cellular proliferation
and differentiation in several types of cancer, such as melanoma and
thyroid cancer (Gianì et al., 2019; Pappalardo et al., 2016). As shown in
the resulting tree figure 1, running the algorithm with a depth equal to 5
and starting from MAPK1 gene, a generation of four output genes
(MAP2K1, MAP3K8, AKT3, PTK2 and PIK3CA) is obtained, moving
forward to their depth gene level. At level 3, the output graph pointed out
the presence of MAP3K8 gene as one of the possible descendent genes
involved in the modulation of MAPK1. This latter seems not directly
linked to MAP3K8 as MAPK1 pathway (hsa04010) as reported in

KEGG. Hence, from a biological point of view, this depth search helps
to retrieve certain interesting genes potentially hidden and involved in
important biological and cellular process.
Results in Table 1 show the number of connections found, the level of
depth search, and the total number of times (expressed in seconds)
necessary to complete the analysis without and with locally available
data. It is worth mentioning that there is no improvement during the
analysis at depth 1, because there is a constant performance time.
Interesting improvements have been observed starting from depth 2
using 8 CPUs. This is due to the fact that the number of connections to
be processed becomes ever greater in terms of time and computational
cost. As one can see, when data are not locally available, the total time of
each run is much higher. This fact is dependent on three reasons: i) the
quality and the speed of internet connection; ii) the number of CPUs
assigned for the running of the process, and iii) the time required by the
server to download the XML file of the pathway.

Table 1.  Computational efforts expressed in second required to
complete the analysis at different level of depth

Depth
#Connec
tions

1 CPU 2 CPUs 4 CPUs 8 CPUs

1 45 108/3 57/3 31/ 3 20/2
2 406 295/38 209/26 162/20 145/18
3 1669 977/248 818/170 762/137 716/122
4 4140 2544/1040 2109/707 1963/587 1890/544
5 7731 5374/3121 4385/2302 4031/2052 3899 / 1892

4 Conclusions
PETAL is an open-source tool that offers a wide range of features to
easily explore and detect the most relevant nodes within a KEGG
pathway in a significantly shorter time when compared to manual
analysis. Potential users can find supplementary information and source
code freely available on GitHub repository. Future PETAL releases will
allow the user to access other pathway databases than KEGG (i.e.,
Reactome and WikiPathways).

Conflict of Interest: none declared.

References
Bostock,M. et al. (2011) D3 Data-Driven Documents. IEEE Trans. Vis. Comput.

Graph., 17, 2301–2309.

Cirillo,E. et al. (2017) A review of pathway-based analysis tools that visualize

genetic variants. Front. Genet.

Fabregat,A. et al. (2018) The Reactome Pathway Knowledgebase. Nucleic Acids

Res.

Franz,M. et al. (2015) Cytoscape.js: A graph theory library for visualisation and

analysis. Bioinformatics.

Gianì,F. et al. (2019) Computational modeling reveals MAP3K8 as mediator of

resistance to vemurafenib in thyroid cancer stem cells. Bioinformatics, 35,

2267–2275.

Kanehisa,M. (2004) The KEGG resource for deciphering the genome. Nucleic

Acids Res., 32, 277D – 280.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa1032/6039123 by Auckland U

niversity of Technology user on 18 D
ecem

ber 2020

G. Sgroi et al.

Lindstrom,G. (2005) Programming with Python. IT Prof., 7, 10–16.

Morrison,D.K. (2012) MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 4.

Palumbo,G.A.P. et al. (2019) A MapReduce tool for in-depth analysis of KEGG

pathways: identification and visualization of therapeutic target candidates.

In, 2019 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM). IEEE, pp. 2157–2162.

Pappalardo,F. et al. (2016) Computational Modeling of PI3K/AKT and MAPK

Signaling Pathways in Melanoma Cancer. PLoS One, 11, e0152104.

Szklarczyk,D. et al. (2015) STRING v10: Protein-protein interaction networks,

integrated over the tree of life. Nucleic Acids Res.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa1032/6039123 by Auckland U

niversity of Technology user on 18 D
ecem

ber 2020

