24,264 research outputs found

    What have they been up to in Lübeck recently

    Get PDF
    This talk will give an overview over three related research prototypes for ambient interactive systems. We start by introducing NEMO, the Network Environment for Multimedia Objects. NEMO is a smart media environment for semantically rich, personalised, and device-specific access to and interaction with multimedia objects. Next, a shared electronic whiteboard called ShareBoard is decribed. The goal of ShareBoard is to deliver a natural user interface to working with electronic whiteboards. Integrated within ShareBoard are input devices to recognise the movement of users in the surrounding space and for sensing 3D-gesture. ShareBoard can make use of media objects in NEMO. Last, we introduce the Modular Awareness Construction Kit. MACK is a framework for developing context aware, ambient intelligent systems that blend seamlessly with the users’ everyday route, enabling unobtrusive in-situ interaction and facilitating enhanced cooperation and communication. In the future, MACK is to deliver contextual information to both NEMO and ShareBoard

    Mobile Privacy and Business-to-Platform Dependencies: An Analysis of SEC Disclosures

    Get PDF
    This Article systematically examines the dependence of mobile apps on mobile platforms for the collection and use of personal information through an analysis of Securities and Exchange Commission (SEC) filings of mobile app companies. The Article uses these disclosures to find systematic evidence of how app business models are shaped by the governance of user data by mobile platforms, in order to reflect on the role of platforms in privacy regulation more generally. The analysis of SEC filings documented in the Article produces new and unique insights into the data practices and data-related aspects of the business models of popular mobile apps and shows the value of SEC filings for privacy law and policy research more generally. The discussion of SEC filings and privacy builds on regulatory developments in SEC disclosures and cybersecurity of the last decade. The Article also connects to recent regulatory developments in the U.S. and Europe, including the General Data Protection Regulation, the proposals for a new ePrivacy Regulation and a Regulation of fairness in business-to-platform relations

    EYES - Energy Efficient Sensor Networks

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This document gives an overview of the EYES project

    Agent oriented AmI engineering

    Get PDF

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach
    corecore