67,621 research outputs found

    Directed strongly walk-regular graphs

    Full text link
    We generalize the concept of strong walk-regularity to directed graphs. We call a digraph strongly ℓ\ell-walk-regular with ℓ>1\ell >1 if the number of walks of length ℓ\ell from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. This generalizes also the well-studied strongly regular digraphs and a problem posed by Hoffman. Our main tools are eigenvalue methods. The case that the adjacency matrix is diagonalizable with only real eigenvalues resembles the undirected case. We show that a digraph Γ\Gamma with only real eigenvalues whose adjacency matrix is not diagonalizable has at most two values of ℓ\ell for which Γ\Gamma can be strongly ℓ\ell-walk-regular, and we also construct examples of such strongly walk-regular digraphs. We also consider digraphs with nonreal eigenvalues. We give such examples and characterize those digraphs Γ\Gamma for which there are infinitely many ℓ\ell for which Γ\Gamma is strongly ℓ\ell-walk-regular

    New mixed Moore graphs and directed strongly regular graphs

    Get PDF

    Algebraic and combinatorial aspects of sandpile monoids on directed graphs

    Get PDF
    The sandpile group of a graph is a well-studied object that combines ideas from algebraic graph theory, group theory, dynamical systems, and statistical physics. A graph's sandpile group is part of a larger algebraic structure on the graph, known as its sandpile monoid. Most of the work on sandpiles so far has focused on the sandpile group rather than the sandpile monoid of a graph, and has also assumed the underlying graph to be undirected. A notable exception is the recent work of Babai and Toumpakari, which builds up the theory of sandpile monoids on directed graphs from scratch and provides many connections between the combinatorics of a graph and the algebraic aspects of its sandpile monoid. In this paper we primarily consider sandpile monoids on directed graphs, and we extend the existing theory in four main ways. First, we give a combinatorial classification of the maximal subgroups of a sandpile monoid on a directed graph in terms of the sandpile groups of certain easily-identifiable subgraphs. Second, we point out certain sandpile results for undirected graphs that are really results for sandpile monoids on directed graphs that contain exactly two idempotents. Third, we give a new algebraic constraint that sandpile monoids must satisfy and exhibit two infinite families of monoids that cannot be realized as sandpile monoids on any graph. Finally, we give an explicit combinatorial description of the sandpile group identity for every graph in a family of directed graphs which generalizes the family of (undirected) distance-regular graphs. This family includes many other graphs of interest, including iterated wheels, regular trees, and regular tournaments.Comment: v2: Cleaner presentation, new results in final section. Accepted for publication in J. Combin. Theory Ser. A. 21 pages, 5 figure

    A family of mixed graphs with large order and diameter 2

    Get PDF
    A mixed regular graph is a connected simple graph in which each vertex has both a fixed outdegree (the same indegree) and a fixed undirected degree. A mixed regular graphs is said to be optimal if there is not a mixed regular graph with the same parameters and bigger order. We present a construction that provides mixed graphs of undirected degree qq, directed degree View the MathML sourceq-12 and order 2q22q2, for qq being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to View the MathML source9q2-4q+34 the defect of these mixed graphs is View the MathML source(q-22)2-14. In particular we obtain a known mixed Moore graph of order 1818, undirected degree 33 and directed degree 11 called Bosák’s graph and a new mixed graph of order 5050, undirected degree 55 and directed degree 22, which is proved to be optimal.Peer ReviewedPostprint (author's final draft
    • …
    corecore