22,871 research outputs found

    Improving Big Data Visual Analytics with Interactive Virtual Reality

    Full text link
    For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.Comment: 6 pages, 8 figures, 2015 IEEE High Performance Extreme Computing Conference (HPEC '15); corrected typo

    CHORUS Deliverable 3.4: Vision Document

    Get PDF
    The goal of the CHORUS Vision Document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area and to highlight trends and challenges in this domain. The vision of CHORUS is strongly connected to the CHORUS Roadmap Document (D2.3). A concise document integrating the outcomes of the two deliverables will be prepared for the end of the project (NEM Summit)

    GeoNotes: A Location-based Information System for Public Spaces

    Get PDF
    The basic idea behind location-based information systems is to connect information pieces to positions in outdoor or indoor space. Through position technologies such as Global Positioning System (GPS), GSM positioning, Wireless LAN positioning o

    Towards Multi-Modal Interactions in Virtual Environments: A Case Study

    Get PDF
    We present research on visualization and interaction in a realistic model of an existing theatre. This existing ‘Muziek¬centrum’ offers its visitors information about performances by means of a yearly brochure. In addition, it is possible to get information at an information desk in the theatre (during office hours), to get information by phone (by talking to a human or by using IVR). The database of the theater holds the information that is available at the beginning of the ‘theatre season’. Our aim is to make this information more accessible by using multi-modal accessible multi-media web pages. A more general aim is to do research in the area of web-based services, in particu¬lar interactions in virtual environments

    CHORUS Deliverable 4.4: Report of the 2nd CHORUS Conference

    Get PDF
    The Second CHORUS Conference and third Yahoo! Research Workshop on the Future of Web Search was held during April 4-5, 2008, in Granvalira, Andorra to discuss future directions in multi-medial information access and other specialised topics in the near future of retrieval. Attendance was at capacity, with 97 participants from 11 countries and 3 continents

    DataHub: Collaborative Data Science & Dataset Version Management at Scale

    Get PDF
    Relational databases have limited support for data collaboration, where teams collaboratively curate and analyze large datasets. Inspired by software version control systems like git, we propose (a) a dataset version control system, giving users the ability to create, branch, merge, difference and search large, divergent collections of datasets, and (b) a platform, DataHub, that gives users the ability to perform collaborative data analysis building on this version control system. We outline the challenges in providing dataset version control at scale.Comment: 7 page

    Integrated Solution Support System for Water Management

    Get PDF
    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework Directive (WFD). The WFD requires an integrated approach in water management to achieve good ecological status of all water bodies. It consists amongst others of the following main planning stages: describing objectives, assessing present state, identifying gaps between objectives and present state, developing management plan, implementing measures and evaluating their impacts. The directive prescribes broad participation and consultation to achieve its objectives. Besides the obvious desktop software, such an integrated approach can benefit from using a variety of support tools. In addition to tools for specific tasks such as numerical models and questionnaires, knowledge bases on options and process support tools may be utilized. Water stress, defined as the lack of water of appropriate quality is one issue related to, but not specifically addressed by the WFD. However, like in the WFD, a participatory approach could be used to mitigate water stress. Similarly various tools can or need to be used in such a complex process. In the AquaStress Integrated project the Integrated Solution Support System (I3S ¿ I-triple-S) is developed. One of the cornerstones of the approach taken in AquaStress is that organizing available knowledge provides sufficient information to improve the possibility to make a water stress mitigation process truly end-user driven, meaning that dedicated local information is only collected after specific need is expressed by the stakeholders in the process. The novelty of the I3S lies in the combination of such knowledge stored in knowledge-bases, with adaptable workflow management facilities and with specific task-oriented tools ¿ all originating from different sources. This paper describes the I3S
    • …
    corecore