1,419 research outputs found

    Kantian fractionalization predicts the conflict propensity of the international system

    Get PDF
    The study of complex social and political phenomena with the perspective and methods of network science has proven fruitful in a variety of areas, including applications in political science and more narrowly the field of international relations. We propose a new line of research in the study of international conflict by showing that the multiplex fractionalization of the international system (which we label Kantian fractionalization) is a powerful predictor of the propensity for violent interstate conflict, a key indicator of the system's stability. In so doing, we also demonstrate the first use of multislice modularity for community detection in a multiplex network application. Even after controlling for established system-level conflict indicators, we find that Kantian fractionalization contributes more to model fit for violent interstate conflict than previously established measures. Moreover, evaluating the influence of each of the constituent networks shows that joint democracy plays little, if any, role in predicting system stability, thus challenging a major empirical finding of the international relations literature. Lastly, a series of Granger causal tests shows that the temporal variability of Kantian fractionalization is consistent with a causal relationship with the prevalence of conflict in the international system. This causal relationship has real-world policy implications as changes in Kantian fractionalization could serve as an early warning sign of international instability.Comment: 17 pages + 17 pages designed as supplementary online materia

    Wavelets and Fast Numerical Algorithms

    Full text link
    Wavelet based algorithms in numerical analysis are similar to other transform methods in that vectors and operators are expanded into a basis and the computations take place in this new system of coordinates. However, due to the recursive definition of wavelets, their controllable localization in both space and wave number (time and frequency) domains, and the vanishing moments property, wavelet based algorithms exhibit new and important properties. For example, the multiresolution structure of the wavelet expansions brings about an efficient organization of transformations on a given scale and of interactions between different neighbouring scales. Moreover, wide classes of operators which naively would require a full (dense) matrix for their numerical description, have sparse representations in wavelet bases. For these operators sparse representations lead to fast numerical algorithms, and thus address a critical numerical issue. We note that wavelet based algorithms provide a systematic generalization of the Fast Multipole Method (FMM) and its descendents. These topics will be the subject of the lecture. Starting from the notion of multiresolution analysis, we will consider the so-called non-standard form (which achieves decoupling among the scales) and the associated fast numerical algorithms. Examples of non-standard forms of several basic operators (e.g. derivatives) will be computed explicitly.Comment: 32 pages, uuencoded tar-compressed LaTeX file. Uses epsf.sty (see `macros'

    Does Aid translate into Bilateral Trade? Findings for Recipient Countries

    Get PDF
    This paper uses the gravity model of trade to investigate the link between foreign aid and exports in recipient countries. Most of the theoretical work emphasizes the negative impact of aid on recipient countries' exports primarily due to exchange rate appreciation, disregarding possible positive effects of aid in overcoming supply bottlenecks and promoting bilateral trade relations. Our empirical findings -all based on endogeneity-proof techniques (such as Dynamic OLS or more refined techniques) - depend very strongly on whether bilateral trade relations and autocorrelation of the disturbances are controlled for. When not controlling for these phenomena, the impact of aid is quite substantial (especially in Asia, Latin America & Caribbean) but when sound estimation techniques are applied the net impact of aid on recipient countries' exports becomes insignificant in the full 130-country sample and the subsamples: Sub-Saharan Africa & MENA, Asia and Latin America & the Caribbean. However, this rather disappointing finding is in line with the small macroeconomic impact of aid found in earlier studies. --International trade,foreign aid,recipient exports,bilateral trade relations

    Wavelet Methods in the Relativistic Three-Body Problem

    Full text link
    In this paper we discuss the use of wavelet bases to solve the relativistic three-body problem. Wavelet bases can be used to transform momentum-space scattering integral equations into an approximate system of linear equations with a sparse matrix. This has the potential to reduce the size of realistic three-body calculations with minimal loss of accuracy. The wavelet method leads to a clean, interaction independent treatment of the scattering singularities which does not require any subtractions.Comment: 14 pages, 3 figures, corrected referenc

    Social Network Analysis with sna

    Get PDF
    Modern social network analysis---the analysis of relational data arising from social systems---is a computationally intensive area of research. Here, we provide an overview of a software package which provides support for a range of network analytic functionality within the R statistical computing environment. General categories of currently supported functionality are described, and brief examples of package syntax and usage are shown.

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Phase Harmonic Correlations and Convolutional Neural Networks

    Full text link
    A major issue in harmonic analysis is to capture the phase dependence of frequency representations, which carries important signal properties. It seems that convolutional neural networks have found a way. Over time-series and images, convolutional networks often learn a first layer of filters which are well localized in the frequency domain, with different phases. We show that a rectifier then acts as a filter on the phase of the resulting coefficients. It computes signal descriptors which are local in space, frequency and phase. The non-linear phase filter becomes a multiplicative operator over phase harmonics computed with a Fourier transform along the phase. We prove that it defines a bi-Lipschitz and invertible representation. The correlations of phase harmonics coefficients characterise coherent structures from their phase dependence across frequencies. For wavelet filters, we show numerically that signals having sparse wavelet coefficients can be recovered from few phase harmonic correlations, which provide a compressive representationComment: 26 pages, 8 figure

    Bell-shaped nonstationary refinable ripplets

    Get PDF
    We study the approximation properties of the class of nonstationary refinable ripplets introduced in \cite{GP08}. These functions are solution of an infinite set of nonstationary refinable equations and are defined through sequences of scaling masks that have an explicit expression. Moreover, they are variation-diminishing and highly localized in the scale-time plane, properties that make them particularly attractive in applications. Here, we prove that they enjoy Strang-Fix conditions and convolution and differentiation rules and that they are bell-shaped. Then, we construct the corresponding minimally supported nonstationary prewavelets and give an iterative algorithm to evaluate the prewavelet masks. Finally, we give a procedure to construct the associated nonstationary biorthogonal bases and filters to be used in efficient decomposition and reconstruction algorithms. As an example, we calculate the prewavelet masks and the nonstationary biorthogonal filter pairs corresponding to the C2C^2 nonstationary scaling functions in the class and construct the corresponding prewavelets and biorthogonal bases. A simple test showing their good performances in the analysis of a spike-like signal is also presented. Keywords: total positivity, variation-dimishing, refinable ripplet, bell-shaped function, nonstationary prewavelet, nonstationary biorthogonal basisComment: 30 pages, 10 figure
    • …
    corecore