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Bell-shaped Nonstationary Refinable Ripplets
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Abstract

We study the approximation properties of the class of nonstation-
ary refinable ripplets introduced in [19]. These functions are solution
of an infinite set of nonstationary refinable equations and are defined
through sequences of scaling masks that have an explicit expression.
Moreover, they are variation-diminishing and highly localized in the
scale-time plane, properties that make them particularly attractive
in applications. Here, we prove that they enjoy Strang-Fix condi-
tions and convolution and differentiation rules and that they are bell-
shaped. Then, we construct the corresponding minimally supported
nonstationary prewavelets and give an iterative algorithm to evaluate
the prewavelet masks. Finally, we give a procedure to construct the
associated nonstationary biorthogonal bases and filters to be used in
efficient decomposition and reconstruction algorithms.

As an example, we calculate the prewavelet masks and the non-
stationary biorthogonal filter pairs corresponding to the C2 nonsta-
tionary scaling functions in the class and construct the corresponding
prewavelets and biorthogonal bases. A simple test showing their good
performances in the analysis of a spike-like signal is also presented.
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onal basis
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1 Introduction

A ripplet is a function f whose integer translate are totally positive [26],
i.e. for any ordered real numbers x1 < · · · < xr, and any ordered integers
α1 < · · · < αr, r ≥ 1, it holds

det
(
f(xi − αℓ)

)
1≤i,ℓ≤r

≥ 0. (1.1)

Total positivity implies that the integer translates of f are variation dimin-
ishing, i.e. for any finite sequence c = {cα}

S−
(∑

α

cα f(· − α)
)
≤ S−(c) , (1.2)

where S− denotes the strict sign changes of its argument. The disequality
(1.2) in turn implies that the system {f(· − α)} has shape-preserving prop-
erties, which are known to play a crucial role in several applications, from
approximation of data to CAGD [11, 28].

The concept of a ripplet was first introduced by Goodman and Micchelli
in
[15], where the authors focused their interest on two-scale refinable ripplets,
i.e. ripplets that are solution of a two-scale refinable equation

ϕ =
∑

α

aα ϕ(2 · −α) , (1.3)

where the scaling mask a = {aα} is a suitable real sequence. Well known
examples of refinable ripplets are the cardinal B-splines, i.e. the polynomial
B-splines on integer nodes. Starting from the seminal paper of Goodman
and Micchelli, many families of two-scale refinable ripplets were constructed
(see, for instance, [2], [17]). More recently, M-scale refinable ripplets, with
dilation M greater than 2, were addressed in [16] and refinable ripplets with
dilation 3 were constructed in [20] (see also [21]).

The interest in refinable ripplets lies in the fact that they give rise to con-
vergent subdivision algorithms for the reconstruction of curves and the limit
curves they generate preserve the shape of the initial data [13, 28]. Refinable
ripplets can also be proved to solve the cardinal interpolation problem [28].
For instance, the construction of cardinal interpolants by by means of the
refinable ripplets in [17] was addressed in [30].
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Refinable ripplets have good properties not only in the context of geomet-
ric modeling and function approximation but they also enjoy some optimal-
ity properties useful in signal processing. In fact, refinable ripplets induces a
multiresolution analysis in L2(R) that allows us to generate a nested sequence
of wavelet spaces. Actually, it is always possible to construct compactly sup-
ported semiorthogonal wavelet bases starting from a refinable ripplet [27].
Moreover, refinable ripplets have asymptotically, i.e. when their smoothness
tends to infinity, the same optimal time-frequency window achieved by the
Gaussian function [2]. Since the rate of convergence can be proved to be
very fast for a large class of ripplets, including, for instance, the refinable
ripplets introduced in [17], refinable ripplets can approximate the Gaussian
with high accuracy giving rise to efficient algorithms for signal analysis [1].
Finally, a ripplet can be seen as a discrete kernel satisfying a causality prop-
erty so making the refinable ripplets particularly attractive in the scale-time
analysis of signals [12].

All the refinable ripplets quoted above are stationary in the sense that
they satisfy the functional equation (1.3) with the same mask sequence at
each dyadic scale. For this reason usually (1.3) is referred to as a stationary
two-scale equation. From the point of view of signal processing this means
that the same analysis and synthesis filters are used at all dyadic scales [31].
Nevertheless, the use of the same set of filters at each scale does not give
great flexibility in applications, especially when some preprocessing steps
with different filters are required. From the functional point of view, the
use of different filters at different scales gives rise to a nonstationary mul-
tiresolution analysis (see, for instance, [8], [14], [22], [29]). A nonstationary
multiresolution analysis can be generated by a set of nonstationary refinable
functions, i.e. an infinite set of functions {ϕm : m ∈ Z+} satisfying an infinite
set of nonstationary two-scale equations

ϕm =
∑

α∈Z

amα ϕm+1(· − 2−(m+1)α), m ∈ Z+ , (1.4)

for some infinite sequence of masks {am : m ∈ Z+}, each mask am = {amα }
being different at each dyadic scale.

The use of different scaling masks at different scales allows us to con-
struct refinable functions endowed with properties that cannot be achieved
in the stationary setting. For instance, the nonstationary process generated
by the B-spline masks of increasing support gives rise to a refinable func-
tion that is compactly supported while belongs to C∞(R) [10, 29]. Other
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families of C∞(R) nonstationary refinable functions based on pseudo-spline
masks were constructed in [24]. Exponential splines too can be associated
to a nonstationary process [8, 9]. They reproduce exponential polynomials
and the associated wavelet bases can be successfully used in the analysis of
signals with exponential behavior [32]. Families of nonstationary refinable
ripplets were introduced in [5] and [19]. In particular, the latter are highly
localized in the scale-time plane, a property that is crucial in many appli-
cations. For this reason, in the present paper we focus our interest in this
family of nonstationary refinable ripplets and prove that these ripplets en-
joy several properties which are relevant in the context of both geometric
modeling and signal processing. Then, we construct the associated wavelet
bases. We notice that, since the refinable ripplets we are considering are non
orthogonal, compactly supported orthogonal wavelets belonging to the space
generated by their translates do not exists. This motivates us to construct
nonstationary semiorthogonal prewavelets. In fact, giving up the orthogonal-
ity condition we can build wavelet bases with compact support. Moreover,
we give a procedure to construct the nonstationary compactly supported
biorthogonal bases associated with the nonstationary refinable ripplets we
are considering. Since we are interested in implementing efficient nonsta-
tionary decomposition and reconstruction algorithms for signal processing,
we construct also the corresponding pairs of nonstationary filters to be used
in the analysis and synthesis of a given discrete signal.

The paper is organized as follows. In Section 2 we give some basic defi-
nition concerning nonstationary multiresolution analysis and wavelet spaces
and recall some results about the existence of solutions of the nonstationary
refinable equations (1.4). The class of nonstationary refinable functions we
are interested in is described in Section 3, while in Section 4 we proved some
approximation properties that were not addressed in [19]. In Section 5 we
construct the nonstationary prewavelet bases associated with the nonstation-
ary refinable ripplets in the class and give an efficient algorithm to evaluate
nonstationary prewavelet masks. The construction of compactly supported
biorthogonal bases and filters, which give rise to efficient decomposition and
reconstruction formulas for discrete signals, is addressed in Section 6. Finally,
in Section 7 some examples of nonstationary masks and refinable bases are
given and the corresponding nonstationary filters are constructed. A simple
test on the analysis of a spike-like signal is also shown.
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2 Nonstationary Multiresolution Analysis and

Wavelet Spaces

Wavelet spaces are usually constructed starting from a multiresolution anal-
ysis that is a sequence {V m} of nested subspaces which are dense in L2(R)
and enjoy the separation property. Thus, the corresponding wavelet space
Wm ⊂ V m+1 is defined as the orthogonal complement of V m in V m+1 [7].
In the stationary case all the spaces {V m} are generated by the dilates and
translates of a unique refinable function ϕ ∈ V 0, solution of the stationary
two-scale equation (1.3), while the spaces Wm are generated by the dilates
and translates of a unique wavelet ψ ∈ W 0 ⊂ V 1.

In contrast, in the nonstationary setting any space V m (resp. Wm) is
generated by the 2−m-shifts of a different refinable function ϕm (resp. wavelet
ψm), which are not dilates of one another. As a consequence, the spaces {V m}
and {Wm} are not scaled versions of the spaces V 0 and W 0, respectively.

Nonstationary multiresolution analysis are addressed in several papers in
the literature (see, for instance, [8], [4], [9], [14], [22], [23], [29] and references
therein). Here, following [8] and [29], we say that a space sequence {V m :
m ∈ Z+} forms a nonstationary multiresolution analysis of L2(R) if

(i) V m ⊂ V m+1, m ∈ Z+; (ii) ∪m∈Z+V
m = L2(R); (iii)

⋂
m∈Z+

V m = {0};

(iv) for any m ∈ Z+, there exists a L2(R)-stable basis ϕm in V m such that
V m = span {ϕm(· − 2−mα), α ∈ Z} .

Property (i) implies that the refinable functions {ϕm : m ∈ Z+} satisfy a
set of nonstationary refinable equations, i.e.

ϕm =
∑

α∈Z

amα ϕm+1(· − 2−(m+1)α), m ∈ Z+ , (2.1)

for some sequence of scaling masks {am : m ∈ Z+}, where am = {amα : α ∈
Z} ∈ ℓ2(Z) and ∑

α∈Z

amα = 1 . (2.2)

Properties (ii) and (iii) are always true if any ϕm is compactly supported.
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As for (iv), the function system {ϕm(· − 2−mα) : α ∈ Z}, m ∈ Z+, is L2(R)-
stable if and only if the Fourier transform of ϕm has no 2m+1π-periodic real
zeros (cf. [8]).

The existence of a unique set of functions {ϕm : m ∈ Z+} solution to
(2.1), as well as their properties, are related to the properties of the mask
sequence {am : m ∈ Z+}. Since we are interested in the the case of compactly
supported masks, we assume that any mask am is compactly supported with

supp (am) ⊆ Ω ⊂ Z , m ∈ Z+ , (2.3)

and there exists a fundamental mask a = {aα : α ∈ Ω} satisfying the sum
rules ∑

α∈Z

a2α+γ = 1 , γ ∈ Z , (2.4)

such that ∑

m∈Z+

|amα − aα| <∞ , α ∈ Ω , (2.5)

(cf. [14]). Even if the assumption above excludes the mask sequence associ-
ated with the up function and the nonstationary mask sequence considered in
[22], nevertheless it covers many nonstationary scaling masks, such us those
ones associated with the exponential splines [9], [32] and the mask families
associated with the ripplets introduced in [5], [19]. For the case of mask
sequences with growing support we refer the reader to [4], [29].

The nonstationary refinable equations (2.1) can be associated to a non-
stationary cascade algorithm [14], which generates at any iteration k ∈ Z+

the sequence of functions {hmk : m ∈ Z+} by

hmk+1 =
∑

α∈Ω

amα hm+1
k (· − 2−(m+1)α), k ∈ Z+ , m ∈ Z+ . (2.6)

Without loss of generality, we assume that the starting function hm0 is the
same for all m ∈ Z+, i.e. h

m
0 = h0, where h0 is a given L2(R)-stable function

with ĥ0(0) = 1, so that ĥmk (0) = 1 for any k,m ∈ Z+.
The convergence of the cascade algorithm is related to the spectral prop-

erties of the fundamental transition operator T : ℓ0(Z) → ℓ0(Z), defined as

(T Λ)α = 2
∑

β∈Z

ǎ2α−β λβ , α ∈ Z, (2.7)
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where
ǎ = {ǎα ∈ Z} , ǎα =

∑

β∈Z

aβ aβ−α , α ∈ Z , (2.8)

is the autocorrelation of the fundamental mask a. The cascade sequence
{hmk : k ∈ Z+} converges strongly to ϕm in L2(R) as k → ∞, uniformly in m,
if and only if the fundamental transition operator has unit spectral radius, 1
is the unique eigenvalue on the unit circle and is simple [14, Th. 1.3]. Under
these hypotheses the sequence {ϕm : m ∈ Z+} converges strongly to the
solution of the stationary refinable equation

ϕ = 2
∑

α∈Ω

aα ϕ(2 · −α) . (2.9)

We notice that any nonstationary mask sequence {am : m ∈ Z+} having
a B-spline mask as fundamental mask, gives rise to a convergent cascade
algorithm [9, 14].

The nonstationary refinable equations in the Fourier space read

ϕ̂m(ω) = Am
(
e−i

ω

2m+1
)
ϕ̂m+1(ω) , m ∈ Z+ , (2.10)

where the Laurent polynomials

Am(z) =
∑

α∈Ω

amα z
α , m ∈ Z+ , z ∈ C , (2.11)

are the mask symbols. We notice that any refinable function ϕm is normalized
so that ϕ̂m(0) = 1. In case the nonstationary cascade algorithm converges,
the Fourier transform of ϕm is given by

ϕ̂m(ω) =
∞∏

k=m

Ak
(
e−i

ω

2k+1
)
, ω ∈ R . (2.12)

Given a nonstationary multiresolution analysis {V m : m ∈ Z+}, at any
level m ∈ Z+ the wavelet space Wm is defined as the orthogonal complement
of V m in V m+1, i.e.

Wm = V m+1 ⊖ V m , m ∈ Z+ . (2.13)

Any wavelet space is generated by the 2−m-shifts of a wavelet function ψm,
i.e.

Wm = span
{
ψm(· − 2−mα), α ∈ Z

}
, (2.14)
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any ψm being different at any scale m. The existence of a set of generating
wavelets {ψm, m ∈ Z+} is always assured when all the refinable functions
{ϕm, m ∈ Z+} are compactly supported. Moreover, it is always possible to
construct compactly supported L2(R)-stable wave-lets associated with com-
pactly supported L2(R)-stable refinable functions [8, §4].

3 A Class of Bell-shaped Nonstationary Re-

finable Ripplets

The class of univariate compactly supported nonstationary masks and refin-
able functions we are interested in was introduced in [19]. Let us denoted
the masks in the class by

{a(n,m) : m ∈ Z+} , a(n,m) = {a(n,m)
0 , . . . , a

(n,m)
n+1 } , m ∈ Z+ , (3.1)

where n is an integer ≥ 2, related to the support of the mask a(n,m).
The explicit expression of a(n,m) is as follows. For any n, the starting mask
a(n,0) has entries 




a
(n,0)
0 = a

(n,0)
1 = 1

2
,

a
(n,0)
α = 0 , otherwise ,

(3.2)

while the entries of the higher level masks a(n,m), m ≥ 1, have expression





a
(n,m)
α =

1

2n+1+m−µ

[(
n+ 1

α

)
+ 4(2m

−µ − 1)

(
n− 1

α− 1

)]
, 0 ≤ α ≤ n + 1 ,

a
(n,m)
α = 0 , otherwise .

(3.3)
(We assume

(
n

α

)
= 0 when α < 0 or α > n.)

We notice that µ > 1 is a real parameter that acts as a tension parameter.
In fact, the larger µ the faster the factor 2m

−µ

in the nonstationary mask
coefficients goes to 1 when m → ∞. This means that the nonstationary
process behaves in practice as a stationary one if we choose large values of µ.
Thus, the more interesting cases are obtained for values of µ that are close
to 1.
For any n and µ, the mask a(n,m) is compactly supported on [0, n + 1] and
is bell-shaped, i.e. its entries are positive, centrally symmetric and strictly
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increasing on
[
0,
[
n+1
2

]]
.

We notice that for any n ≥ 2 the 0-level scaling mask a(n,0) is the mask of the
characteristic function of the interval [0,1], while the m-level scaling masks
a(n,m), m > 0, are related to the class of stationary masks introduced in [17].
Any mask sequence {a(n,m) : m ∈ Z+} can be associated with the set of
nonstationary refinable equations

ϕ(n,m) =
∑

α∈σ
(n,m)
a

a(n,m)
α ϕ(n,m+1)(· − 2−(m+1)α) , m ∈ Z+ , (3.4)

where

σ(n,m)
a = supp

(
a(n,m)

)
=

{
[0, 1], m = 0 ,
[0, n+ 1] , m > 0 .

(3.5)

From [19] it follows that for any n ≥ 2 and µ > 1, ϕ(n,m), m ∈ Z+, is
compactly supported with

supp ϕ(n,m) =
[
0, L(n,m)

]
=





[
0, n

2
+ 1

]
, m = 0 ,

[0, 2−m(n+ 1)] , m > 0 ,
(3.6)

and belongs to Cn−1(R). Moreover, any system

Φ(n,m) = {ϕ(n,m)(· − 2−mα) : α ∈ Z} , (3.7)

is linearly independent and L2(R)-stable, forms a partition of unity, is totally
positive, and enjoys the variation diminishing property.

For any n ≥ 2 and µ > 1, the mask sequence {a(n,m) : m ∈ Z+} has the
sequence

a(n) =
{
a(n)α , 0 ≤ α ≤ n + 1

}
, a(n)α =

1

2n+1

(
n + 1

α

)
, (3.8)

as fundamental mask [19]. Since a(n) is the mask of the B-spline of degree n

having integer knots on [0, n+1], the sequence of functions {h(n,m)
k : k ∈ Z+},

generated by the cascade algorithm

h
(n,m)
k+1 =

∑

α∈σ
(n,m)
a

a(n,m)
α h

(n,m+1)
k (· − 2−(m+1)α) , m ∈ Z+ , (3.9)
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converges strongly to ϕ(n,m) ∈ L2(R). The convergence of the cascade algo-
rithm implies that the Fourier transform of ϕ(n,m) is

ϕ̂(n,m)(ω) =

∞∏

k=m

A(n,k)
(
e−i

ω

2k+1

)
, ω ∈ R , (3.10)

where
A(n,m)(z) =

∑

α∈σ
(n,m)
a

a(n,m)
α zα . (3.11)

A straightforward computation gives

A(n,0)(z) = 1
2
(1 + z) = A(0)(z) ,

A(n,m)(z) =
1

2n+1+m−µ (1 + z)n−1
(
z2 + 2(21+m

−µ − 1) z + 1
)
=

= 1+z
2
A(n−1,m)(z) = A(0)(z)A(n−1,m)(z) , m > 0 .

(3.12)

It is worthwhile to observe that any symbol A(n,m)(z) is a Hurwitz polynomial
[17], i.e. it has only zeros with negative real part. Moreover, the fundamental
symbol of A(n,m)(z) is the B-spline symbol

A(n)(z) =

n+1∑

α=0

a(n)α zα =
1

2n+1
(1 + z)n+1 . (3.13)

4 Properties of the nonstationary refinable

ripplets ϕ(n,m)

In this section we analyze some properties of the refinable ripplets ϕ(n,m) that
are useful in both geometric modeling and signal processing applications.

First of all, let us denote by B(n,m) the 2m-dilates of the B-spline of degree
n with knots on 2−mZ, normalized so that B̂(n,m)(0) = 1, n ≥ 1, m ∈ Z+. In
the Fourier space B(n,m) satisfies the refinable equation

B̂(n,m)(ω) = A(n)
(
e−i

ω

2m+1

)
B̂(n,m+1)(ω) . (4.1)

Its Fourier transform is given by

B̂(n,m)(ω) =
∞∏

k=m

A(n)
(
e−i

ω

2k+1

)
=

(
1− e−i

ω
2m

iω2−m

)n+1

. (4.2)
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The refinable functions ϕ(n,m) are generated by a convolution low involving
the B-spline B(n,m).

Theorem 4.1. For n ≥ 3, ϕ(n,m), m ∈ Z+, satisfies the convolution property

ϕ(n,0) = B(0,1) ∗ ϕ(n−1,0) ,

ϕ(n,m) = B(0,m) ∗ ϕ(n−1,m) , m > 0 .
(4.3)

Proof. From (3.10), (3.12) and (4.2) it follows

ϕ̂(n,m)(ω) =

∞∏

k=m

A(0)
(
e−i

ω

2k+1

) ∞∏

k=m

A(n−1,k)(e−i
ω

2k+1 ) =

= B̂(0,m)(ω) ϕ̂(n−1,m)(ω)

for m > 0, and ϕ̂(n,0)(ω) = B̂(0,1)(ω) ϕ̂(n−1,0)(ω) , for m = 0. The claim
follows by applying the inverse Fourier transform to the relations above.

As a first consequence of the theorem above, we can prove that ϕ(n,m) satisfies
suitable Strang-Fix conditions.

Corollary 4.2. For any n ≥ 2 and m > 0, ϕ̂(n,m) has a zero of order n−1 for
ω = 2m+1πα, α ∈ Z\{0}. ϕ̂(n,0) has a simple zero for ω = 2πα, α ∈ Z\{0}.

Proof. By repeated application of Th. 4.1 we get

ϕ̂(n,m)(ω) = B̂(n−2,m)(ω)F (m)(ω) ,

ϕ̂(n,0)(ω) = B̂(n−2,1)(ω)F (0)(ω) ,

(4.4)

where

F (m)(ω) =
∞∏

k=m

A(1,k)(e−i
ω

2k+1 ) .

Since the symbols A(1,m)(z) have the hat function symbol A(1)(z) as funda-
mental symbol, the infinite product converges [14]. Moreover, for m > 0
the symbol A(1,m)(z) has no zeros on the unit circle, so that F (m)(ω) has no

zeros, too. Thus, ϕ̂(n,m)(ω), m > 0, has zeros of the same order as B̂(n−2,m)
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does, and the claim follows.
For m = 0,

ϕ̂(n,0)(ω) = B̂(n−2,1)(ω)A(0)(e−i
ω
2 )F (1)(ω) .

A(1,0)(e−i
ω
2 ) has a simple zero for ω = 2(2α + 1)π, α ∈ Z, while B̂(n−2,1) has

a zero of order n− 1 for ω = 4απ, α ∈ Z\{0}. Thus, ϕ̂(n,0)(ω) has a simple
zero for ω = 2απ, α ∈ Z\{0}.

The Strang-Fix conditions allow us to conclude that polynomials of suit-
able degree are contained in the space generated by the 2−m-translates of
ϕ(n,m), i.e. the space

V (n,m) = span
{
ϕ(n,m)(· − 2−mα) : α ∈ Z

}
, m ∈ Z+ . (4.5)

Theorem 4.3. Let Πd be the space of polynomials up to degree d. For any
n ≥ 2 and m > 0, the space V (n,m) contains Πn−2, i.e. for any polynomial

p ∈ Πn−2 there exists a sequence of real numbers {γ(n,m)
α : α ∈ Z} such that

p =
∑

α∈Z

γ(n,m)
α ϕ(n,m)(· − 2−mα) . (4.6)

The space V (n,0) contains the space of the constants Π0.

Note. The roots of the nonstationary symbols (3.12) cannot fulfill the hy-
potheses of Th. 1 in [32]. Thus, the refinable functions ϕ(n,m) cannot generate
exponential polynomials. Actually, we are interest in the construction of ef-
ficient decomposition and reconstruction formulas for general (possibly non
exponential) signals. To this end high algebraic polynomial generation is
more effective since it induces a high number of vanishing moments in the
analyzing wavelet.

From the results above it follows the approximation order of the system
Φ(n,m) [25].

Corollary 4.4. For any n ≥ 2 and m > 0, the system Φ(n,m) has approx-
imation order n − 1, i.e. for any f ∈ L2(R) there exists a constant Cf ,
independent from m, such that

inf
fm∈V (n,m)

‖f − fm‖2 ≤ Cf 2
−m(n−1) . (4.7)

The system Φ(n,0) has approximation order 1.
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Note. Even if the system Φ(n,0) reproduces just the constants, polynomials of
higher degree can be represented by suitable integer translates of ϕ(n,0)(2−1·).
In fact, ϕ(n,0)(2−1·) ∈ Cn−1(R) and its Fourier transform has a zero of order
n − 1 for ω = 2απ, α ∈ Z\{0}. Thus, polynomials of degree n − 2 can
be represented by the integer shifts of the dilate ϕ(n,0)(2−1·) and the system
{ϕ(n,0)(2−1 · −α) : α ∈ Z} has approximation order n− 1 (cf. [6]).

Interestingly enough, the convolution property (4.3) allows us to prove a
differentiation rule for the functions ϕ(n,m).

Theorem 4.5. Let ∇r
h be the backward finite difference operator defined re-

cursively as

∇hf =
1

h

(
f − f(· − h)

)
, ∇0

hf = f , ∇r
hf = ∇h(∇r−1

h )f , r ≥ 1 .

For n ≥ 2, the derivatives of ϕ(n,m) are given by

Dr ϕ(n,0) = ∇r
2−1 ϕ(n−r,0), r ≤ n− 1 ,

Dr ϕ(n,m) = ∇r
2−m ϕ(n−r,m), r ≤ n− 1 , m > 0 .

(4.8)

Proof. We will prove (4.8) just for m > 0; the case m = 0 can be proved in
a similar way.
From (4.2) and the first of (4.4) it follows

̂(D ϕ(n,m))(ω) = iω ϕ̂(n,m)(ω) = iω B̂(n−2,m)(ω)F (m)(ω) =

=
(

1−e−i2−mω

2−m

)
B̂(n−3,m)(ω) F (m)(ω) =

=
(

1−e−i2−mω

2−m

)
ϕ̂(n−1,m)(ω) .

The inverse Fourier transform gives

Dϕ(n,m) = ∇2−m ϕ(n−1,m),

which is the derivation rule for r = 1. Repeated applications of this rule give
the derivation rules of higher order.
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From (4.8) and the variation diminishing property, we can infer that the
derivative Dr ϕ(n,m), m ∈ Z+ , has the same behavior of the finite difference

∇r
h ϕ

(n−r,m) =
1

hr

r∑

α=0

(−1)α
(
r

α

)
ϕ(n−r,m)(· − hα) , m ∈ Z+ , (4.9)

with h = 2−1 for m = 0 and h = 2−m for m > 0. In particular, the number
of strict sign changes of Dr ϕ(n,m) is not greater than the number of strict
sign changes of the sequence

cr = {crα : 0 ≤ α ≤ r} =
{
(−1)α

(
r

α

)
: 0 ≤ α ≤ r} ,

so that we can infer the shape of ϕ(n,m) from S− (cr).

Theorem 4.6. For any n > 2 and m ∈ Z+, ϕ
(n,m) is bell-shaped, i.e.

ϕ(n,m) is centrally symmetric, strictly increasing on [0, |supp ϕ(n,m)|/2], and
its second derivative has just 2 sign changes.

Proof. Since any mask a(n,m) is centrally symmetric, any ϕ(n,m) is centrally
symmetric, too. As a consequence Dϕ(n,m) is centrally antisymmetric and
D2 ϕ(n,m) is centrally symmetric. For m > 0 (4.8) and (4.9) give

Dϕ(n,m) =
1

h

(
ϕ(n−1,m) − ϕ(n−1,m)(· − h)

)
,

D2 ϕ(n,m) =
1

h2
(
ϕ(n−1,m) − 2ϕ(n−1,m)(· − h) + ϕ(n−1,m)(· − 2 h)

)
,

(4.10)

where h = 2−m, while for m = 0 (4.8)-(4.9) together with (3.4) yield

Dϕ(n,0) = 1
h

(
1
2
ϕ(n−1,1)(x)− 1

2
ϕ(n−1,1)(x− 2 h)

)
,

D2 ϕ(n,0) = 1
h2

(
1
2
ϕ(n−1,1)(x)− 1

2
ϕ(n−1,1)(x− h)−

1
2
ϕ(n−1,1)(x− 2 h) + 1

2
ϕ(n−1,1)(x− 3 h)

)
,

(4.11)

where h = 2−1. Since ϕ(n−1,m) is positive in (0, |supp ϕ(n−1,m)|) and van-
ishes for x ≤ 0, Dϕ(n,m) and D2ϕ(n,m) are positive for 0 < x < h. Now,
by the variation diminishing property from the first relations in (4.10) and
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(4.11) it follows that Dϕ(n,m) has just one sign change which has to be in
|supp ϕ(n,m)|/2; thus, Dϕ(n,m) > 0 in (0, |supp ϕ(n,m)|/2) and Dϕ(n,m) < 0 in
(|supp ϕ(n,m)|/2, |supp ϕ(n,m)|). As for the second derivative, a direct com-
putation shows that D2ϕ(n,m) is negative in |supp ϕ(n,m)|/2 so that D2ϕ(n,m)

has at least two sign changes; but from the variation diminishing property
and the second relations in (4.10) and (4.11) it follows that D2ϕ(n,m) cannot
have more than two sign changes, so proving the claim.

5 Nonstationary Prewavelets

From the results in the previous sections it follows that, for any n ≥ 2 held
fix, the spaces V (n,m), m ∈ Z+, generate a nonstationary multiresolution
analysis as defined in Section 2.

We note that the L2(R)-stability of the basis Φ(n,m) implies that the
symbol of the autocorrelation of ϕ(n,m), i.e. the polynomial

ρ
(n,m)
ϕ (ω) =

∑

α∈Z

(∫

R

ϕ(n,m) ϕ(n,m)(·+ 2−mα)

)
e−iω 2−m α =

= 2m
∑

α∈Z

∣∣ϕ̂(n,m)(ω + 2m+1π α)
∣∣2 ,

(5.1)

is non vanishing for any ω ∈ R. The vector η(n,m) = [η
(n,m)
α ]T , where η

(n,m)
α =∫

R
ϕ(n,m) ϕ(n,m)(·+2−mα)) , is the eigenvector corresponding to the eigenvalue

1 of the transition operator

(T (n,m) Λ)α = 2
∑

β∈Z

ǎ
(n,m)
2α−β λβ , α ∈ Z , Λ ∈ ℓ0(Z) , (5.2)

where ǎ(n,m) = {ǎ(n,m)
α =

∑
β∈σ

(n,m)
a

a
(n,m)
β a

(n,m)
β−α , α ∈ Z}, is the autocor-

relation of the mask a(n,m) . The sequence {η(n,m)
α } is positive, compactly

supported with

σ(n,m)
η = supp{η(n,m)

α } =





[
−
[n
2
+ 1

]
,
[n
2
+ 1

]]
, m = 0 ,

[−n− 1, n+ 1] , m > 0 ,
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and centrally symmetric. As a consequence ρ(n,m) ∈ R with

0 < ρ(n,m)
ϕ (2mπ) ≤ ρ(n,m)

ϕ (ω) ≤ ρ(n,m)
ϕ (0) = 2m . (5.3)

Since

ρ
(n,m)
ϕ (2mπ) =

∑
α∈Z (−1)α

(∫
R
ϕ(n,m) ϕ(n,m)(·+ 2−mα))

)
=

=
∑

α∈Z (−1)α
(
ϕ(n,m) ∗ ϕ(n,m))

)
(L(n,m) + 2−mα) ,

(5.4)

at any level m the basis Φ(n,m) is a non orthogonal basis.
The nonstationary multiresolution analysis {V (n,m) : m ∈ Z+} allows us

to define a wavelet space sequence {W (n,m) : m ∈ Z+}, where each space
W (n,m) is the orthogonal complement of V (n,m) in V (n,m+1). Since ϕ(n,m) is
non orthogonal, orthogonal wavelets with compact support do not exists. On
the other hand, due to the L2(R)-stability and the compact support of each
ϕ(n,m), it is always possible to construct compactly supported semiorthogonal
wavelets [8, Th. 3.12].

The explicit expression of the prewavelet of minimal support can be ob-
tained generalizing to the nonstationary case the results in [27] (see also
[18]).

Theorem 5.1. For any n ≥ 2, the functions

ψ(n,0) =

n+1∑

α=−n

(−1)α g
(n,0)
α−1 ϕ(n,1)(· − 2−1α) ,

ψ(n,m) =

n+1∑

α=−2n

(−1)α g
(n,m)
α−1 ϕ(n,m+1)(· − 2−(m+1)α) , m > 0 ,

(5.5)

where

g(n,m)
α =

∫

R

ϕ(n,m) ϕ(n,m+1)(·+ 2−(m+1)α) , α ∈ Z , (5.6)

are the prewavelets generating the wavelet spaces

W (n,m) = span
{
ψ(n,m)(· − 2−mα) : α ∈ Z

}
, m ∈ Z+ . (5.7)

The functions ψ(n,m) are compactly supported. Moreover, any system

Ψ(n,m) = {ψ(n,m)(x− 2−mα) : α ∈ Z} (5.8)

is L2(R)-stable and linearly independent. Finally, ψ(n,m) has n− 1 vanishing
moments.
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Proof. A straightforward computation yields
∫

R

ψ(n,m)) ϕ(n,m)(· − 2−mβ) =

=
∑

α

(−1)α g
(n,m)
α−1

∫

R

ϕ(n,m+1)(· − 2−(m+1)α) ϕ(n,m)(· − 2−mβ) =

=
∑

α

(−1)α g
(n,m)
α−1 g

(n,m)
2β−α = 0 ,

for any β ∈ Z , i.e. ψ(n,m) is orthogonal to the space V (n,m). Due to the
support of ϕ(n,m) it follows

σ(n,m)
g = supp {g(n,m)

α } =





[−n− 1, n] , m = 0 ,

[−2n− 1, n] , m > 0 ,

so that ψ(n,m) is compactly supported with

supp ψ(n,m) =





[
−n

2
, n+ 1

]
, m = 0,

[−2−mn, 2−m(n+ 1)] , m > 0.
(5.9)

Now, the wavelet equations (5.5) in the Fourier space reads

ψ̂(n,m)(ω) = d(n,m)(e−i
ω

2m+1 ) ϕ̂(n,m+1)(ω) , m ∈ Z+ ,

where d(n,m)(z) =
∑

α d
(n,m)
α zα, d

(n,m)
α = (−1)α g

(n,m)
α−1 . An explicit calculation

gives

d(n,m)(e−i
ω

2m+1 ) = −e−i ω

2m+1A(n,m)
(
−ei ω

2m+1
)
ρ(n,m+1)
ϕ (ω + 2m+1π) . (5.10)

As a consequence,

ρ
(n,m)
ψ (ω) =

∑
α∈Z

(∫
R
ψ(n,m) ψ(n,m)(·+ 2−mα)

)
e−iω 2−m α =

= 2m
∑

α∈Z

∣∣∣ψ̂(n,m)(ω + 2m+1πα)
∣∣∣
2

=

= 2m
∑

α∈Z |A(n,m)
(
−ei( ω

2m+1 +πα)
)
|2

∣∣∣ρ(n,m+1)
ϕ (ω + 2m+1π(α + 1))

∣∣∣
2

×

×
∣∣ϕ̂(n,m+1)(ω + 2m+1πα)

∣∣2 , ω ∈ R ,
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is non-vanishing. It follows that at any level m, the system Ψ(n,m), gen-
erating the wavelet space W (n,m), is linearly independent and L2(R)-stable.
Moreover, ψ(n,m) is non orthogonal with

∫

R

ψ(n,m) ψ(n,m)(·+ 2−mα) =
∑

β

(−1)βη
(n,m+1)
2α−β ǧ

(n,m)
β , α ∈ Z ,

where {ǧ(n,m)
α } = {

∑
γ g

(n,m)
γ g

(n,m)
γ−α } is the autocorrelation of the sequence

{g(n,m)
α }.

Finally, since W (n,m) ⊥ V (n,m), from Th. 4.3 it follows that
∫
R
xd ψ(n,m)(x) =

0, 0 ≤ d ≤ n− 2, so concluding the proof.

Theorem 5.2. For any n ≥ 2 and m ∈ Z+, ψ
(n,m) is the unique minimally

supported wavelet generating the wavelet space W (n,m).

Proof. The orthogonality conditions

∫

R

ψ(n,m)(x) ϕ(n,m)(x − 2−mβ) dx = 0,

β ∈ Z, can be proved to be equivalent to the conditions

∑

α

d(n,m)
α g

(n,m)
2β−α = 0 , β ∈ Z . (5.11)

Let d
(n,m)
e (z) =

∑
α d

(n,m)
2α zα, d

(n,m)
o (z) =

∑
α d

(n,m)
2α+1 z

α, and, similarly, for the

polynomial g(n,m)(z) =
∑

α g
(n,m)
α zα, let g(n,m)

e (z) =
∑

α

g
(n,m)
2α zα, g

(n,m)
o (z) =

∑
α g

(n,m)
2α+1 z

α, so that d(n,m)(z) = d
(n,m)
e (z2) + z d

(n,m)
o (z2), and g(n,m)(z) =

g
(n,m)
e (z2) + z g

(n,m)
o (z2). It follows that conditions (5.11) are equivalent to

d(n,m)
e (z) g(n,m)

e (z) + z d(n,m)
o (z) g(n,m)

o (z) = 0 . (5.12)

Thus, ψ(n,m) is the minimally supported prewavelet if and only if d(n,m) is the
minimally supported polynomial satisfying (5.12), i.e. if and only if d

(n,m)
e (z)

and d
(n,m)
o (z) have no common zeros or, equivalently, d(n,m)(z) and d(n,m)(−z)

have no common zeros for z = ei
ω

2m+1 . But this easily follows from (5.10) since

any symbol A(n,m)(z) has only zeros with negative real part and ρ
(n,m+1)
ϕ (ω)

is positive.
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We note that ψ(n,m) is the 2m-dilate of the prewavelet constructed in [19]
and Th. 5.1 and Th. 5.2 generalize to the nonstationary case the stationary
prewavelet constructed in [27].

Even if the prewavelet coefficients {g(n,m)
α } do not have an explicit expres-

sion, they can be evaluated efficiently by an iterative algorithm.

Theorem 5.3. Let M (n,m) = [g
(n,m)
α , α ∈ σ

(n,m)
g ]T be the nonstationary pre-

wavelet coefficients, and let M (n) = [g
(n)
α , α ∈ σ

(n,m)
g ]T be the prewavelet coef-

ficients corresponding to the stationary fundamental mask a(n).
For any n ≥ 2 and m ∈ Z+ held fixed, consider the iterative procedure

{
P

(n,m)
0 =M (n) ,

P
(n,m)
k+1 = C(n,m) P

(n,m+1)
k , k ≥ 0 ,

(5.13)

where C(n,m) = (c
(n,m)
2α−β) with

c(n,m)
α =

∑

β∈σ
(n,m)
a

a
(n,m)
β a

(n,m+1)
α+2β , β ∈ σ(n,m)

c , (5.14)

and

σ(n,m)
c =

{
[−2, n+ 1] , m = 0 ,
[−2(n+ 1), n+ 1] , m > 0 .

(5.15)

The sequence {P (n,m)
k } converges strongly to M (n,m) when k → ∞. Moreover,

the following error estimate holds

‖P (n,m)
k −M (n,m)‖ ≤ γn,m ‖M (n) −M (n,m+k)‖ , (5.16)

where γn,m is a positive constant independent from k.

Proof. Using the refinable equation (3.4) in (5.6) we get g
(n,m)
α =

∑
β c2α−β g

(n,m)
β ,

which in matrix form can be written as M (n,m) = C(n,m)M (n,m+1). Repeated
applications of both algorithm (5.13) and the relation above give

‖P (n,m)
k+1 −M (n,m)‖ = ‖

∏k

l=0C
(n,m+l)(M (n) −M (n,m+k+1))‖ ≤

≤ ‖
∏k

l=0 C(n,m+l)‖ · ‖M (n) −M (n,m+k+1)‖ .
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Now, let C(n) = (c
(n)
2α−β), where c

(n)
α =

∑
a
(n)
β a

(n)
α+2β . We note that ρ(C(n)) =

1. Since a(n) is the fundamental mask of the mask sequence {a(n,m)}, it
follows

∑
m∈Z+

‖C(n,m) − C(n)‖ <∞, and

‖
m+k∏

l=m

C(n,l)‖ ≤ exp


 ∑

m∈Z+

‖C(n,m) − C(n)‖


 <∞ ,

(cf. [14, Prop. 2.1]). Moreover, limk→∞M (n,k) =M (n) , thus,

lim
k→∞

‖P (n,m)
k+1 −M (n,m)‖ = 0 ,

and the claim follows with γn,m = exp
(∑

m∈Z+
‖C(n,m) − C(n)‖

)
.

6 Nonstationary Biorthogonal Bases

The refinable functions ϕ(n,m) and the prewavelets ψ(n,m) are linearly inde-
pendent and L2(R)-stable, but they are not orthogonal. As a consequence,
the dual bases of ϕ(n,m) and ψ(n,m) in V (n,m) and W (n,m), respectively, have
infinite support. Nevertheless, compactly supported bases giving rise to ef-
ficient reconstruction and decomposition formula of a given discrete signal,
can be obtained introducing biorthogonal bases.

The theory of biorthogonal bases in the stationary case [3] can be gen-
eralized to the nonstationary framework (cf. [22, 24, 32]). For any mul-
tiresolution analysis {V (n,m) : m ∈ Z+} we can introduce a biorthogonal
multiresolution analysis {Ṽ (n,m) : m ∈ Z+} with

Ṽ (n,m) ⊂ Ṽ (n,m+1) , m ∈ Z+ , (6.1)

and biorthogonal wavelet spaces {W (n,m) : m ∈ Z+} and {W̃ (n,m) : m ∈ Z+},
such that for any m ∈ Z+

W (n,m) = V (n,m+1) ⊖ V (n,m) , W̃ (n,m) = Ṽ (n,m+1) ⊖ Ṽ (n,m) ,

W (n,m) ⊥ Ṽ (n,m) , W̃ (n,m) ⊥ V (n,m) .

(6.2)

At each level m, the spaces V (n,m), Ṽ (n,m), W (n,m) and W̃ (n,m) are generated
by the 2−m-integer translates of the biorthogonal functions ϕ(n,m), ϕ̃(n,m),
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ψ(n,m) and ψ̃(n,m), respectively, satisfying the following biorthogonality con-
ditions: 〈

ϕ(n,m)(· − 2−mα), ϕ̃(n,m)(· − 2−mβ)
〉
= δαβ ,

〈
ψ(n,m)(· − 2−mα), ψ̃(n,m)(· − 2−mβ)

〉
= δαβ ,

〈
ϕ(n,m)(· − 2−mα), ψ̃(n,m)(· − 2−mβ)

〉
= 0 ,

〈
ψ(n,m)(· − 2−mα), ϕ̃(n,m)(· − 2−mβ)

〉
= 0 .

(6.3)

We stress that all the biorthogonal functions ϕ(n,m), ϕ̃(n,m), ψ(n,m) and ψ̃(n,m),
m ∈ Z+, cannot be obtained each other by dilation. Thus, none of the
biorthogonal spaces at level m is a scaled versions of the spaces at level 0.

Biorthogonal bases for the exponential splines were constructed in [32].
Here, we want to construct the biorthogonal bases associated with the non-
stationary refinable functions ϕ(n,m), m ∈ Z+.

As a consequence of (6.1) and (6.2), the wavelet ψ(n,m) belongs to V (n,m+1),
while the biorthogonal functions ψ̃(n,m) and ϕ̃(n,m) belong to Ṽ (n,m+1), so that

ψ(n,m) =
∑

α∈Z q
(n,m)
α ϕ(n,m+1)(· − 2−(m+1)α) , m ∈ Z+ ,

ϕ̃(n,m) =
∑

α∈Z ã
(n,m)
α ϕ̃(n,m+1)(· − 2−(m+1)α) , m ∈ Z+ ,

ψ̃(n,m) =
∑

α∈Z q̃
(n,m)
α ϕ̃(n,m+1)(· − 2−(m+1)α) , m ∈ Z+ .

(6.4)

Moreover, perfect reconstruction at each level m is guaranteed if for any
m ∈ Z+ the biorthogonal symbols

A(n,m)(z) =
∑

α∈Z a
(n,m)
α zα , Ã(n,m)(z) =

∑
α∈Z ã

(n,m)
α zα ,

Q(n,m)(z) =
∑

α∈Z q
(n,m)
α zα , Q̃(n,m)(z) =

∑
α∈Z q̃

(n,m)
α zα ,

(6.5)

satisfy
A(n,m)(z) Ã(n,m)(z−1) + A(n,m)(−z) Ã(n,m)(−z−1) = 1 , (6.6)

with

Q(n,m)(z) = −Ã(n,m)(−z−1) , Q̃(n,m)(z) = A(n,m)(−z−1) . (6.7)

Identity (6.6) is a Bezout’s equation which has a unique polynomial solution
Ã(n,m) of a given degree [7].
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Under mild conditions on the symbols A(n,m) and Ã(n,m), biorthogonality
conditions (6.3) guarantee that the biorthogonal bases

Φ(n,m) = {ϕ(n,m)(· − 2−mα), α ∈ Z} , Ψ(n,m) = {ψ(n,m)(· − 2−mα), α ∈ Z} ,
Φ̃(n,m) = {ϕ̃(n,m)(· − 2−mα), α ∈ Z} , Ψ̃(n,m) = {ψ̃(n,m)(· − 2−mα), α ∈ Z} ,

(6.8)
are L2(R)-stable, so that, for any f ∈ L2(R), the following decomposition
formula holds

f = fm0 +
∑

m≥m0

∑

α∈Z

〈
f, ψ̃(n,m)(· − 2−mα)

〉
ψ(n,m)(· − 2−mα) , (6.9)

where
fm0 =

∑

α∈Z

〈
f, ϕ̃(n,m0)(· − 2−m0α)

〉
ϕ(n,m0)(· − 2−m0α) (6.10)

is the m0-level approximation. Some examples of nonstationary biorthogonal
bases will be given in the next section.

The sequences {aα}, {ãα}, {qα}, {q̃α} are pairs of biorthogonal FIR filters
that give rise to the decomposition and reconstruction algorithms

λmα =
1√
2

∑

β∈Z

ã
(n,m)
β−2α λ

m+1
β , ζmα =

1√
2

∑

β∈Z

q̃
(n,m)
β−2α λ

m+1
β , (6.11)

λm+1
α =

1√
2

[
∑

β∈Z

a
(n,m)
α−2β λ

m
β +

∑

β∈Z

q
(n,m)
α−2β ζ

m
β

]
, (6.12)

which can be efficiently used for the analysis and synthesis of a given data
sequence Λ0 = {λ0α : α ∈ Z}.

7 A case study

In this section we give some examples of both nonstationary prewavelets and
biorthogonal bases in the case when n = 3. In this case the nonstationary
refinable functions ϕ(3,m), m ≥ 0, belong to C2(R), i.e. they have the same
smoothness as the cubic B-spline. Interestingly enough, any ϕ(3,m) with
m > 0 has the same support as B(3,m), i.e. [0, 4 · 2−m], while ϕ(3,0) is more
localized in the scale-time plane having supp ϕ(3,0) = [0, 5/2], a property that
appears very useful in applications (see the example below). In order to
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Table 1: Numerical values (rounded to the forth digit) of the mask coefficients

a
(3,m)
0 , a

(3,m)
1 , a

(3,m)
2 for m = 0, . . . , 8. Here µ = 1.1

m 0 1 2 3 4 5 6 7 8

a
(3,m)
0 0.5 0.0313 0.0452 0.0508 0.0537 0.0555 0.0567 0.0576 0.0583

a
(3,m)
1 0.5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

a
(3,m)
2 0 0.4375 0.4095 0.3984 0.3925 0.3889 0.3865 0.3848 0.3835
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Figure 1: The nonstationary mask coefficients listed in Tab. 1 (left) and ϕ(3,0)

(right). The stationary mask of the cubic B-spline and the cubic B-spline
itself are also displayed (dashed line)

obtain refinable beses and nonstationary filters significantly different from
those ones generated by the cubic B-spline, we choose µ = 1.1 as a value for
the tension parameter.
The coefficients of the mask a(3,0) = {a(3,0)0 , a

(3,0)
1 } are a

(3,0)
0 = a

(3,0)
1 = 1

2
,

while the coefficients of the mask a(3,m) = {a(3,m)
0 , a

(3,m)
1 , a

(3,m)
2 , a

(3,m)
3 , a

(3,m)
4 }

for m > 0 are

a
(3,m)
0 = a

(3,m)
4 = 2−4−m−µ

, a
(3,m)
1 = a

(3,m)
3 =

1

4
, a

(3,m)
2 =

1

2
− 2−3−m−µ

.

The numerical values (rounded to the forth digit) of the mask coefficients
are listed in Tab. 1, while their behavior is shown in Fig. 1 (right). The
behavior of ϕ(3,0) in comparison with B(3,0) is displayed in Fig. 1 (left). The
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Figure 2: The prewavelet mask {g(3,0)} (left) and ψ(3,0) (right)

nonstationary prewavelets ψ(3,m) are given by:

ψ(3,0) =

4∑

α=−3

(−1)α g
(3,0)
α−1 ϕ

(3,1)(· − 2−1α) ,

ψ(3,m) =

4∑

α=−6

(−1)α g
(3,m)
α−1 ϕ(3,m+1)(· − 2−(m+1)α) , m > 0 ,

where the prewavelet coefficients {g(3,n)α } can be evaluated by the algorithm
in Th. 5.3. From (5.9) it follows that supp ψ(3,0) = [−3/2, 4], while for m > 0
supp ψ(3,m) = [−2−m 3, 2−m 4]. We notice that ψ(3,0) is more localized in
the scale-time plane than both ψ(3,m), m > 0, and the B-spline prewavelet.
The prewavelet mask coefficients, rounded to the forth digit, are g

(3,0)
−4 =

−g(3,0)3 = −0.0015, g
(3,0)
−3 = −g(3,0)2 = 0.0259, g

(3,0)
−2 = −g(3,0)1 = −0.1479,

g
(3,0)
−1 = −g(3,0)0 = 0.3244.

In Fig. 2 the behavior of {g(3,0)α } and ψ(3,0) are displayed. Finally, we give the
explicit expression of the biorthogonal masks ã(3,m), m ≥ 0. It is well known
that the biorthogonal mask of a(3,0) is ã(3,0) = {ã(3,0)0 , ã

(3,0)
1 } =

{
1
2
,−1

2

}
.

In order to fulfill conditions ensuring the existence of the biorthogonal re-
finable function ϕ̃(3,m), for m > 0 we construct the biorthogonal mask ã(3,m)

with support [0, 14]. Its explicit expression is given by
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ã
(3,m)
0 = ã

(3,m)
14 =

8−3−h

−4 + 2h
(128 + 26+h + 5 · 41+h + 5 · 8h)

ã
(3,m)
1 = ã

(3,m)
13 = − 4−5−h

−4 + 2h
(128 + 26+h + 5 · 41+h + 5 · 8h)

ã
(3,m)
2 = ã

(3,m)
12 = − 8−3−h

−4 + 2h
(640 + 7 · 26+h + 33 · 41+h + 29 · 8h − 5 · 16h)

ã
(3,m)
3 = ã

(3,m)
11 =

2−9−2·h

−4 + 2h
(128 + 3 · 26+h + 17 · 41+h + 17 · 8h)

ã
(3,m)
4 = ã

(3,m)
10 =

8−3−h

−4 + 2h
(1152 + 15 · 26+h + 133 · 41+h + 89 · 8h − 39 · 16h)

ã
(3,m)
5 = ã

(3,m)
9 =

4−5−h

−4 + 2h
(128 + 26+h − 123 · 41+h − 123 · 8h)

ã
(3,m)
6 = ã

(3,m)
8 = − 8−3−h

−4 + 2h
(640 + 9 · 26+h − 81 · 21+4·h + 105 · 41+h + 577 · 8h)

ã7 = − 4−4−h

−4 + 2h
(128 + 3 · 26+h + 81 · 41+h − 175 · 8h)

where h = 3+m−µ. The biorthogonal mask coefficients {ã(3,m)
α } (rounded to

the forth digit) are listed in Tab. 2. In Fig. 3 the behavior of {ã(3,m)
α } and

ϕ̃(3,0) are displayed. The biorthogonal wavelet mask coefficients q(3,m) and
q̃(3,m) can be obtained by q

(3,m)
α = (−1)α ã

(3,m)
−α+1, q̃

(3,m)
α = −(−1)α a

(3,m)
−α+1. In

Fig. 4 the behavior of ψ(3,0) and ψ̃(3,0) is displayed.
Just to show how the properties of the constructed nonstationary biorthog-

onal filters can affect the analysis of a given signal, we evaluate the coefficients
{λmα } and {ζmα }, obtained after three steps of the decomposition algorithm
(6.11), when the starting sequence is a spike-like signal (see Fig. 5 (left)).
The coefficients are plotted in Fig. 5 (right) in comparison with the coeffi-
cients obtained when using the stationary cubic spline biorthogonal filters.
The figure shows that the nonstationary decomposition algorithm has higher
compression properties: actually the number of nonzero coefficients are 26 in
the nonstationary case, while they are 39 in the B-spline case.
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Table 2: Numerical values (rounded to the forth digit) of the mask coefficients

ã
(3,m)
α , for α = 0, . . . , 7, and m = 0, . . . , 8
m 0 1 2 3 4 5 6 7 8

ã
(3,m)
0 0.5 0.0011 0.0021 0.0026 0.0030 0.0064 0.0034 0.0035 0.0036

ã
(3,m)
1 0.5 -0.0085 -0.0114 -0.0129 -0.0138 -0.0288 -0.0148 -0.0151 -0.0154

ã
(3,m)
2 0 0.0066 0.0028 0.0005 -0.0010 -0.0039 -0.0027 -0.0032 -0.0036

ã
(3,m)
3 0 0.0574 0.0760 0.0857 0.0914 0.1905 0.0979 0.0999 0.1014

ã
(3,m)
4 0 -0.0810 -0.0790 -0.0768 -0.0752 -0.1480 -0.0732 -0.0725 -0.0720

ã
(3,m)
5 0 -0.1998 -0.5108 -0.2834 -0.2998 -0.6211 -0.3180 -0.3236 -0.3278

ã
(3,m)
6 0 0.3233 0.3241 0.3237 0.3232 0.6456 0.3225 0.3222 0.3220

ã
(3,m)
7 0 0.8019 0.8816 0.9212 0.9443 1.9187 0.9698 0.9776 0.9835
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Figure 3: The first 8 nonstationary biorthogonal masks ã(3,m) (left) and ϕ̃(3,0)

(right)
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Figure 4: Graphs of ψ(3,0) (left) and ψ̃(3,0) (right)
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Figure 5: The spike-like initial sequence (left) and the decomposition coef-
ficients obtained after 3 steps of the nonstationary decomposition algorithm
(upper right). The decomposition coefficients obtained by the stationary
cubic biorthogonal filters are also shown (bottom right)

8 Conclusion

We studied the properties of a class of refinable ripplets associated with se-
quences of nonstationary scaling masks. One of the most interesting property
of these functions is in that they have a smaller support than the stationary
refinable ripplets with the same smoothness. This localization property is
crucial in several applications, from geometric modeling to signal processing.
After proving some approximation properties, such as Strang–Fix conditions,
polynomial reproduction and approximation order, we proved also that any
refinable function in the family is bell-shaped, so that they can efficiently
approximate a Gaussian. Moreover, since these refinable functions gener-
ate nonstationary multiresolution analyses, we constructed the minimally
supported nonstationary prewavelets and proved that their 2m-shifts form
L2-stable bases. We note that this construction can be generalized to other
class of nonstationary refinable functions, like exponential splines. Moreover,
we constructed nonstationary biorthogonal bases and filters to be used in ef-
ficient decomposition and reconstruction algorithms.
The localization property of the refinable ripplets we studied implies that the
corresponding nonstationary wavelets have a small support too, a property
which is very desirable in the case when the relevant information of a func-
tion to be approximated or of a signal to be analyzed are focused in small
regions of the scale-time plane. The preliminary test in Section 6 shows
the good performances of the constructed nonstationary wavelets in a simple
compression test. More tests will be the subject of a forthcoming paper.
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